進階搜尋


  查詢北醫館藏
系統識別號 U0007-3107201120215500
論文名稱(中文) 以有限元素法分析矯正用骨釘應力分布狀態
論文名稱(英文) Stress distribution analysis of orthodontic implant with finite element method
校院名稱 臺北醫學大學
系所名稱(中) 牙醫學系碩博士班
系所名稱(英) School of Dentistry
學年度 99
學期 2
出版年 100
研究生(中文) 陳俊伊
研究生(英文) Chun I Chen
學號 M204096007
學位類別 碩士
語文別 中文
口試日期 2011-06-27
論文頁數 115頁
口試委員 指導教授-鄭信忠
共同指導教授-歐耿良
委員-高嘉澤
委員-黃瓊芳
委員-林明宏
中文關鍵字 齒顎矯正  錨定  暫時性錨定裝置  田口品質工程  應力 
英文關鍵字 orthodontic treatment  anchorage  temporary anchorage device  Taguchi method  stress 
學科別分類
英文摘要 Purpose
Orthodontic implant has been used for temporary anchorage for orthodontic treatment.The stress states of loaded orthodontic implant–bone interfaces is related to success of orthodontic implant. Stress distribution were analyzed by finite element method(FEM), and determined the difference in the stress distribution for different thread design and different implant placement angle to identify risk factors for the loosening of orthodontic mini-implants.
Methods
The Taguchi method was employed to find out the significance of each thread design factor to affect bone stress. Using the computer program(ANSYS) to build up three-dimensional finite element models alveolar bone(cortical bone 2 mm thick) and orthodontic mini-implants(Ti-6Al-4V) corresponding to the Taguchi L9 array. Horizontal force(150 CN) was applied ; stimulation time was 1 second.
We calculated the most equivalent stresses(Von Mises) on the bone elements and evaluated stress distribution according to implantation direction (0, 15, 30, 45, 60, 75 degree) and three different kind of orthodontic implant : self-design orthodontic implant corresponding to the Taguchi L9 array result, AbsoanchorR (Dentos, Daegu, Korea), LOMASR (Mondeal Medical System GmbH,Tuttlingen, Germany).
Results
Equivalent stress on the cortical bone ranged from 1.30 to 4.69 MPa and on the cancellous bone anged from 0.10 to 0.17 MPa depending on the implantation direction. The stress distribution on the surrounding bone of implant placement angle 0 degree was even and small. Bone surrounding stress is small in self-design orthodontic implant corresponding to the Taguchi L9 array result.
Conclusions
This report suggests information for clinicians to understand the stress distribution on alveolar bone with different placement direction. Implant thread design is also one the factors to facilitate implant stability in clinical treatmentz
論文目次 目 錄
頁 數
中文摘要 ……………………………………………………… . I
英文摘要 ………………………………………………………… III
目 錄 …………………………………………………………. V
第一章 緒論
第一節 研究動機與重要性 ……………………………… 1
第二節 研究目的 ………………………………………… 3
第三節 研究假設 ………………………………………… 3
第四節 名詞界定…………………………………………… 3
第二章 文獻查證
第一節 錨定 ……………………………………………… 5
第二節 矯正植體 ………………………………………… 8
第三節 骨生理
3-1 骨骼系統……………………………………………...12
3-2 骨細胞…………………………………………………12
VI
3-3骨組織結構之代謝...................................................12
第四節 影響矯正植體成功之因素
4-1矯正植體成功定義.............................................. 15
4-2矯正植體成功率.................................................. 16
4-3 影響之因素 ........................................................16
第五節 、植體設計
5-1 植體設計之影響因素...........................................18
5-2 矯正植體設計的有限元素模擬分析.................... 18
5-3 最佳化方法………………………………………...19
第三章 研究材料與方法
第一節 田口品質化工程
1-1名詞解釋...............................................................21
1-2田口法介紹............................................................22
1-3 田口法實驗流程....................................................22
1-4矯正植體設計參數..................................................24
第二節 有限元素模型
2-1名詞解釋................................................................25
2-2有限元素法介紹......................................................26
2-3 有限元素分析法實驗流程......................................26
2-4有限元素模型之建立...............................................27
2-5模型的應力分析......................................................30
2-6 不同角度植入植體之模擬......................................31
2-7不同植體模擬之比較...............................................31
第四章 結果
第一節 田口品質化工程
1-1訊號/雜訊比結果.....................................................32
1-2 變異數分析 結果....................................................33
第二節 有限元素法分析矯正植體受力之趨勢
2-1不同角度植入植體之模擬....................................34
2-2不同植體模擬之比較............................................36
第五章 討論
第一節 植體骨生理………………………………………….38
第二節 田口品質工程……………………………………….39
第三節 有限元素分析法
3-1 有限元素分析法與植體牙科學……...……………..40
3-2骨骼與植體實際的幾何型態...................................42
3-3材料性質................................................................42
3-4 邊界效應...............................................................43
VIII
3-5植體與骨界面........................................................44
3-6 受力方式…………………………………………….44
3-7 本研究限制………………………………………….47
第四節 矯正植體於臨床應用
4-1植體植入之位置………………………………………50
4-2臨床應用…………………….…………………………51
第六章 結論……..………………………………………………. ….55
第七章 參考文獻..........................................................................56
第八章 附錄…..……………………………………………..……….64
參考文獻 第七章 參考文獻
1. William Proffit. Contemporary Orthodontics 3rd edtion. 240-293.
2. Stoner MM. Past and present concepts of anchorage preparation. Am J Orthod 1957;28:176-187.
3. Jason B. Cope. OrthoTADs : The Clinical Guide and Atlas. 1-20
4. Jason B. Cope. Temporary anchorage devices in orthodontis : A paradigm shift. 101-123.
5. Nanda R. Biomechnics and esthetic strategies in clinical
orthodontics 194-196.
6. Sandusky WC. Orthodontic anchorage. Am J Orthod 1951 ;
858-866.
7. Lao LC. Anchorage – Literature review. J Taiwan Asso Orthod
2007;19(2):5-13.
8. Greenfield E J. Mounting for Artificial Teeth. 1909:1-3.
9. Branemark PI, Aspegren K, Breine U. Microcircula tory studies in
man by high resolution vital microscopy. Angiology 1964;15: 329-332.
10. Branemark PI, Breine U, Adell R. Intraosseous anchorage of
57
dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 1969;3:81-100.
11. Gainsforth BL, Higley LB. A study of orthodontic anchorage
possibilities in basal bone. Am J Orthod Oral Surg 1945;31: 406-417.
12. Creegmore TD, Ekland MK. The possibility of skeletal
anchorage. J Clin Orthodont 1983;17(4):266-269.
13. Kanomi R. Mini-implant for orthodontic anchorage. J Clin
Orthod 1997;31:763-767.
14. Sugawara J. The skeletal anchorage system. J Clin Orthod
2000;33:689-696.
15. Umemori M, Sugawara J, Mitani H. Skeletal anchorage system
for open-bite correction . Am J Orthod Dentofacial Orthop 1999;115:166-174.
16. Costa A, Melsen B. Zygoma ligatures-An alternative
anchorage in the upper jaw. J Clin Orthod 1998;32:154-158.
17. Park HS. The skeletal cortical anchorage using titanium
microscrew implants. Kor J Orthod 1999;29:699-706.
18. Park HS, Bae SM, Kyung HM, Sung JH. Micro-implant
58
anchorage for treatment of skeletal Class I alveolar protrusion.
J Clin Orthod 2001;35(7):417-422.
19. Mori S, Burr DB. Increased intracortical remodeling following
fatigue damage. Bone 1993;14:103-109.
20. Garetto LP, Chen J, Parr JA, Roberts WE. Remodeling
dynamic of bone supporting rigidly fixed titanium implants: a
histomorphometric coMParison in four species including humans. Implant Dent 1995;4:235-243.
21. Cooper LF. A role for surface topography in creating and
maintaining bone at titanium endoosseous implants. J prosthe Dent 2000;84:522-534.
22. Kasemo B, Lausma J. Biomaterials and implant materials: a
surface science approach. Int J Oral Maxillofac Surg 1988;3:
247-259.
23. Cigada A, Cabrini M, Pedferri P. Increase of the corrosion
resistance of Ti6Al4V alloy by high thickness anodic oxidation. J Mater SciMater Med 1992;3:408-412.
24. Zinger O, Anselme K, Habersetzer P, Landolt D. Time-depend
adhesion and morphology of osteoblastic cell on titanium
59
model surfaces featuring scale-depend topohraphy. European Cell amd Materials 2003;5:21-23.
25. Brunski JB. Avoid pitfalls of overloading and micromotion of
intraosseous implants. Dent implantol Update 1993;4:77-81.
26. Albrektsson T, Branemark PI, Hansson HA, Lindstrom J.
Osseointegrated titanium implants. Requirements for ensuring a
long-lasting, direct bone-to-implant anchorage in man. Acta
Orthopaedica Scandinavica 1981;52:155-170.
27. Wachtel EF, Keaveny TM. Dependence of trabecular damage
on mechanical strain. J Orthop Res 1997;15:781-787.
28. Mori S, Burr M. Increased cortical remodeling following fatigue
microdamage. Bone 1993;14:103-109.
29. Deguchi T, Takano-Yamamoto T, Kanomi R, Hartsfield JK,
Roberts WE, Garetto LP. The use of small titanium screws for
orthodontic anchorage. J Dent Res 2003;82(5):377-381.
30. Kao CY, Cheng HC, Tsai CY. The evaluation of loading timing
and stability of anodized mini-screw in animal study. J Taiwan
Assoc Orthod 2006;18(2):5-11.
31. Corneli MA, Scheffler NR, Clerck HJ, Tulloch FC,
60
Nyssen-Behetse C. Systematic review of the experimental use
of temporary skeletal anchorage devices in orthodontics. Am J
Orthod Dentofacial Orthop 2007;131.
32. Viwattanatipa N, Thanakitcharu S, Uttraravichien A, Pitiphat W.
Survival analyses of surgical miniscrews as orthodontic
anchorage. Am J Orthod Dentofacial Orthop 2009;136:29-36.
33. Reynders R, Ronchi L, Bipat S. Mini-implants in orthodontics: A
systematic review of the literature. Am J Orthod Dentofacial
Orthop 2009;135:564.e1-19.
34. Wilmes B, Rademacher C, Olthoff G , Drescher D . Parameters
affecting primary stability of orthodontic mini-implants. J Orofac
Orthop 2006;67:162–174.
35. Migliorati M, Signori A, and Biavati AS. Temporary anchorage
device stability: an evaluation of thread shape factor. Eur J
Orthod March 2, 2011 published online
36. Lee CC, Lin SC, Kang MJ, Wu SW, Fu PY. Effects of implant
threads on the contact area and stress distribution of marginal
bone. J Dent Sci 2010;5(3):156−165.
37. Rismanchian M, Birang R, Shahmoradi M, Talebi H, Zare JR.
61
Developing a new dental implant design and comparing its
biomechanical features with four designs. J Dent Res 2010; 7(2):70-75.
38. Mitsuru M , Shinya Y, Takashi T, Noriyoshi S. Biomechanical
effect of abutment on stability of orthodontic mini-implant A finite
element analysis. Clin Oral Impl Res 2005;16:480–485.
39. Lin CL, Chang WJ, Lin YS, Lin YH .Evaluation of the relative
contributions of orthodontic miniscrew design factors using FE
analysis and the Taguchi method. APIEMS 2009 Dec. 14-16,
Kitakyushu
40. Farah JW, Craig RG, Meroueh KA. Finite element analysis of
three- and four-unit bridges. J Oral Rehabil 1989;16:603-611.
41. Ammar HH, Ngan P, Crou RJ, Mucino VH, Mukdadid OM.
Three-dimensional modeling and finite elementanalysis in
treatment planning for orthodontic tooth movement. Am J
Orthod Dentofacial Orthop 2011;139:59-71.
42. Lewis G. Aparametric finite element analysis study of the
stresses in an endosseous implant. Biomed Mater Eng
1994;4:495-502.
62
43. Lotz JC, Gerhart YN, Hayes WC. Mechanical properties of
metaphysical bone in the proximal femur. J Biomech 1991;24:
317-329.
44. Cowin SC. Strain assessment by bone cells. Tissue Eng
1988:181-186.
45. Patra AK, DePaolo JM, D’Souza KS, DeTolla D, Meenaghan
MA. Guidelines for analysis and redesign of dental implants.
Implant Dent 1998;7:355-368.
46. Sato Y, Teixeira ER, Tsuga K, Shindoi N. The effectiveness of a
new algorithm on a three-dimensional finite element model
construction of bone trabeculae in implant biomechanics. J Oral
Rehabil 1999;26:640-643.
47. Corneli MA, Scheffler NR, Clerck HJ, Tulloch FC,
Nyssen-Behetse C. Systematic review of the experimental use
of temporary skeletal anchorage devices in orthodontics. Am J
Orthod Dentofacial Orthop 2007;131.
48. Zhang JK, Chen ZQ. The study of effects of changes of the
elastic modulusof the materials substitute to human hard
tissues on the mechanical state in the implant-bone interface by
63
three-dimensional anisotropic finite element analysis. West
China J Stomatol 1998;16:274-278.
49. Clift SE, Fisher J, Watson CJ. Finite element stress and strain
analysis of the bone surrounding a dental implant: effect of
variations in bone modulus. Proc Inst Mech Eng 1992;206:
233-241.
50. Geng JP, Tan BC, Liu GR. Application of finite element analysis
in implant dentistry: A review of the literature. J Prosthet Dent
2001;85:585-98.
51. Yao CC, Lai HH ,Chang ZC ,ChenYJ. Comparison of treatment
outcomes between skeletal anchorage and extraoral
anchorage in adults with maxillary dentoalveolar protrusion.
Am J Orthod Dentofacial Orthop 2008;134:615-24
論文全文使用權限
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446