進階搜尋


  查詢北醫館藏
系統識別號 U0007-3007201222295600
論文名稱(中文) 自噬現象及其調控在脊髓損傷治療的應用研究
論文名稱(英文) Autophagy and its manipulation for possible application in treatment of spinal cord injury
校院名稱 臺北醫學大學
系所名稱(中) 臨床醫學研究所
系所名稱(英) Graduate Institute of Clinical Medicine
學年度 100
學期 2
出版年 101
研究生(中文) 陳先志
研究生(英文) Hsien-Chih Chen
學號 D102094009
學位類別 博士
語文別 中文
口試日期 2012-06-16
論文頁數 78頁
口試委員 委員-陳志華
委員-陳瑞明
委員-陳子勇
委員-馮琮涵
指導教授-邱文達
中文關鍵字 脊髓損傷  自噬  雷帕黴素  穿透式電子顯微鏡  微管相關蛋白輕鏈3 
英文關鍵字 spinal cord injury  autophagy  rapamycin  transmission electron microscopy  microtubule-associated protein 3 
學科別分類
中文摘要 脊髓損傷是一種對病患生理及心理具有嚴重破壞性影響的傷病,除了病患個人,對於其家庭和社會成本而言,實際上付出的代價也是非常巨大。雖然我們在了解脊髓損傷的病理生理機轉上已有顯著的進展,然而有關其引起後續細胞死亡的機制仍然不完全理解。細胞的死亡有三個主要類型,包括細胞壞死,細胞凋亡和細胞自噬。細胞壞死和細胞凋亡已知會在脊髓損傷以後發生,但細胞自噬這種細胞死亡方式則尚不清楚是否會發生。原發的衝擊損傷導致的細胞壞死是無法預防的,但在損傷震央附近的細胞雖倖免於最初的重創,卻可能會面臨繼發的生物化學影響所啟動的凋亡和自噬作用而導致細胞死亡。因此,本論文的主要目的,在於探討自噬現象在脊髓損傷後的發生與否,並期望藉由調控自噬現象來發展新的脊髓損傷治療對策。

在我們前段的研究,我們藉由西方墨點免疫印跡,免疫螢光和透射電子顯微鏡來證明自噬現象存在於大鼠脊髓損傷模型中。我們還發現了細胞自噬表現在實驗性大鼠脊髓損傷的時間過程,以及在急性期特定細胞的表現及其與細胞凋亡的關聯。鑒於一些研究已經提到了細胞自噬在神經退化性疾病和腦缺氧缺血引起的腦損傷中可能的保護作用,我們在後續的研究,假設在脊髓損傷後神經細胞的死亡,是可以經由調控細胞自噬的表現而加以避免。我們藉由西方墨點免疫印跡及大鼠運動功能評估,發現自噬現象是可以透過雷帕黴素抑制mTOR而使其表現增強,而且可以顯著地改善脊髓損傷大鼠運動功能的恢復;因此我們更深入探討雷帕黴素對大鼠脊髓損傷的影響,發現除了增進自噬表現以外,它在脊髓損傷模型中也有抗發炎反應及減少神經細胞損害的功能,因此而達到增進大鼠運動功能恢復的成果。

本研究藉由大鼠脊髓損傷模型印證自噬現象的存在,及其受調控後在脊髓損傷治療應用上的可能性,未來除了更深入探討細胞自噬與細胞凋亡的關聯,也可進一步發展藥物在外科手術治療後局部或靜脈給予,並參與有潛力的雞尾酒療法,以加速脊髓損傷臨床治療的進步。
英文摘要 Spinal cord injury (SCI) is a serious and debilitating health problem. Quite apart from the emotional and physical stress of SCI to the patient, the actual monetary costs of SCI to the family and community are enormous. Although remarkable progress has been made in pathophysiological mechanisms of SCI, the mechanisms causing cell deaths after SCI are still incompletely understood. There are three main types of cell death, including necrosis, autophagy and apoptosis. Cell deaths due to necrosis and apoptosis are known to occur after SCI; however, autophagic cell death is unclear. Prevention of cell necrosis before the primary injury is not possible. Cells around the epicenter of injuries that are spared from the initial trauma may experience a secondary biochemical insult to initiate the apoptosis and autophagic cell deaths. Therefore, the main purpose of this paper, is to explore the phenomenon of autophagy in spinal cord after injury or not, and hope that through manipulation of autophagy we can develop novel treatment for SCI.

In our first research, we depended on Western blotting, immunofluorescence, and transmission electron microscopy to prove autophagy expression exists in rat spinal cord injury model. We also found the time course of autophagy expression in experimental rat SCI, as well as autophagy expression in specific cells in the early stages and its correlation with apoptosis. As some researches in neurodegenerative diseases and brain hypoxia-ischemia, autophagy may induce neuroprotective effects on brain damage. We assumed death of neurons after SCI is possible avoided via manipulation of autophagy expression in the following study. We found rapamycin could increase autophagy expression by inhibition of mTOR through Western blots, and it was able to improve locomotor recovery in rats after SCI by way of BBB locomotor evaluation. We then in-depth explored the effects of rapamycin on SCI in rats. We found apart from promotion of autophagy, rapamycin has effects of anti-inflammation and reduction of neuronal damage, which leads to improvement of functional recovery.

Through this study in rats with SCI model proves existence of autophagy, and possibility for therapeutic application by manipulation of autophagy in SCI. In the future, we can further develop local or intravenous administration of drugs after surgical treatment, and participate in the potential cocktail therapy, to speed up the advancement of clinical therapy for spinal cord injury.
論文目次 中文摘要-------------------------------------------------- i
英文摘要------------------------------------------------ iii
第一章 緒論------------------------------------------- 1
1. 脊髓損傷的臨床概況
2. 脊髓損傷的病理機轉
3. 自噬現象與其檢測
4. 自噬對神經系統疾病與其調控的影響
5. 研究假說與特定目的
第二章 研究方法與材料--------------------------------- 8
1. 動物的準備工作和大鼠脊髓損傷模型
2. 免疫印跡技術
3. 免疫組織染色
4. 透射電子顯微鏡
5. 藥物的製備與使用
6. 統計分析
第三章 結果------------------------------------------ 16
1. 自噬現象的存在與表現於大鼠脊髓損傷之分析
2. 對大鼠脊髓損傷所表現自噬現象加以調控之分析
3. 雷帕黴素對脊髓損傷大鼠運動功能恢復的作用機轉分析
第四章 討論------------------------------------------ 23
1. 脊髓損傷的影響及與自噬現象的關聯
2. 自噬現象的監測與其在神經系統傷病的表現
3. 自噬現象調控的機制與選擇
4. 雷帕黴素的作用機制
5. 雷帕黴素使用方式與路徑
6. 本研究的研究方式限制及待解的問題
第五章 結論與展望------------------------------------ 37
第六章 參考文獻-------------------------------------- 39
第七章 圖表------------------------------------------ 51
附錄---------------------------------------------------- 64
參考文獻 Adams, J.M., 2003. Ways of dying: multiple pathways to apoptosis. Genes Develop. 17, 2481-2495.
Adhami, F., Liao, G., Morozov, Y.M., Schloemer, A., Schmithorst, V.J., Lorenz, J.N., Dunn, R.S., Vorhees, C.V., Wills-Karp, M., Degen, J.L., Davis, R.J., Mizushima, N., Rakic, P., Dardzinski, B.J., Holland, S.K., Sharp, F.R., Kuan, C.Y., 2006. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am. J. Pathol. 169(2), 566-583.
Amar, A.P., Levy, M.L., 1999. Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery. 44, 1027–1040.
Anderson, D.K., Hall, E.D., 1993. Pathophysiology of spinal cord trauma. Ann Emerg Med. 22, 987–992.
Basso, D.M., Beattie, M.S., Bresnahan, J.C., 1995. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma. 12(1), 1-21.
Beattie, M.S., Farooqui, A.A., Bresnahan, J.C., 2000. Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma. 17, 915-925.
Beattie, M.S., 2004. Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol. Med. 10, 580-583.
Berger, Z., Ravikumar, B., Menzies, F.M., Oroz, L.G., Underwood, B.R., Pangalos, M.N., Schmitt, I., Wullner, U., Evert, B.O., O’Kane, C.J., 2006. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet. 15, 433-442.
Bethea, J.R., 2000. Spinal cord injury-induced inflammation: a dual-edged sword. Prog. Brain Res. 128, 33-42.
Birmingham, C. L. Brumell, J. H., 2006 Autophagy recognizes intracellular Salmonella enterica serovar Typhimurium in damaged vacuoles. Autophagy. 2, 156–158.
Botti, J., Djavaheri-Mergny, M., Pilatte, Y., Codogno, P., 2006 Autophagy signaling and the cogwheels of cancer. Autophagy. 2, 67–73.
Bracken, M.B., Shepard, M.J., Holford, T.R., Leo-Summers, L., Aldrich, E.F., Fazl, M., Fehlings, M., Herr, D.L., Hitchon, P.W., Marshall, L.F., Nockels, R.P., Pascale, V., Perot, P.L. Jr, Piepmeier, J., Sonntag, V.K., Wagner, F., Wilberger, J.E., Winn, H.R., Young, W., 1997. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA. 277(20), 1597-1604.
Bracken, M.B., Holford, T.R., 2002. Neurological and functional status 1 year after acute spinal cord injury: estimates of functional recovery in National Acute Spinal Cord Injury Study II from results modeled in National Acute Spinal Cord Injury Study III. J. Neurosurg. 96(3 Suppl), 259-266.
Caccamo, A., Majumder, S., Richardson, A., Strong, R., Oddo, S., 2010. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem. 285, 13107-13120.
Carloni S., Buonocore G., Balduini W., 2008. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol. Dis. 32(3), 329-339.
Chen, H.C., Fong, T.H., Lee, A.W., Chiu, W.T., 2012. Autophagy is activated in injured neurons and inhibited by methylprednisolone after experimental spinal cord injury. Spine (Phila Pa 1976). 37(6), 470-475.
Cicora, F., Lausada, N., Vasquez, D.N., Cicora, P., Zalazar, G., Gonzalez, P., Palti, G., Raimondi, C., 2010. Sirolimus in kidney transplant donors and clinical and histologic improvement in recipients: rat model. Transplant Proc. 42, 365-370.
Citron, B.A., Arnold, P.M., Sebastian, C., Qin, F., Malladi, S., Ameenuddin, S., Landis, M.E., Festoff, B.W., 2000. Rapid upregulation of caspase-3 in rat spinal cord after injury: mRNA, protein, and cellular localization correlates with apoptotic cell death. Exp Neurol. 166, 213-226.
David, S., Lacroix, S., 2003 Molecular approaches to spinal cord repair. Annu. Rev. Neurosci. 26, 411-440.
Dietrich, W.D., 2012. Therapeutic hypothermia for acute severe spinal cord injury: ready to start large clinical trials? Crit Care Med. 40(2), 691-2.
Dumont, R.J., Okonkwo, D.O., Verma, S., Hurlbert, R.J., Boulos, P.T., Ellegala, D.B., Dumont, A.S., 2001. Acute spinal cord injury, part I: Pathophysiologic mechanisms. Clin Neuropharmacol. 24, 254–264.
Edinger, A.L., Thompson, C.B., 2004. Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell. Biol. 16, 663-669.
Erlich, S., Alexandrovich, A., Shohami, E., Pinkas-Kramarski R. 2007. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis. 26(1), 86-93.
Fehlings, M.G., Vawda, R., 2011. Cellular treatments for spinal cord injury: the time is right for clinical trials. Neurotherapeutics. 8(4), 704-20.
Furlan, J.C., Noonan, V., Cadotte, D.W., Fehlings, M.G., 2011. Timing of decompressive surgery of spinal cord after traumatic spinal cord injury: an evidence-based examination of pre-clinical and clinical studies J Neurotrauma. 28(8), 1371-1399.
Galanis, E., Buckner, J.C., Maurer, M.J., Kreisberg, J.I,, Ballman, K,, Boni, J,, Peralba, J.M., Jenkins, R.B., Dakhil, S.R., Morton, R.F., Jaeckle, K.A., Scheithauer, B.W., Dancey, J., Hidalgo, M., Walsh, D.J., 2005. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J. Clin. Oncol. 23, 5294–5304.
Gruner, J.A., 1992. A monitored contusion model of spinal cord injury in the rat. J. Neurotrauma. 9, 123-128.
Gurusamy, N., Das, D.K., 2009. Detection of cell death by autophagy. Meth. Mol Biol. 559, 95-103.
Harris, T.E., Lawrence, J.C.J. 2003. TOR signaling. Sci STKE. re15
Hayashi, M., Ueyama, T., Nemoto, K., Tamaki, T., Senba, E. 2000. Sequential mRNA expression for immediate early genes, cytokines, and neurotrophins in spinal cord injury. J. Neurotrauma. 17, 203-218.
He, Y., Wan, S., Hua, Y., Keep, R.F., Xi, G., 2008. Autophagy after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab. 28(5), 897-905.
Hsiao, H.W., Tsai, K.L., Wang, L.F., Chen, Y.H., Chiang, P.C., Chuang, S.M., Hsu, C., 2012. The decline of autophagy contributes to proximal tubular dysfunction during sepsis. Shock. 37(3), 289-296.
Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., Yoshimori, T., 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720-5728.
Kamada, Y., Sekito, T., Ohsumi, Y., 2004. Autophagy in yeast: a TOR mediated response to nutrient starvation. Curr. Top. Microbiol. Immunol. 279, 73–84.
Kanno, H., Ozawa, H., Sekiguchi, A., Itoi, E., 2009. Spinal cord injury induces upregulation of Beclin 1 and promotes autophagic cell death. Neurobiol. Dis. 33(2), 143-148.
Kanno, H., Ozawa, H., Sekiguchi, A., Yamaya, S., Itoi, E., 2011. Induction of autophagy and autophagic cell death in damaged neural tissue after acute spinal cord injury in mice. Spine (Phila Pa 1976). 36(22), E1427-1434.
Kitanaka, C., Kuchino, Y., 1999. Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ. 6(6), 508-515.
Klionsky, D. Emr, S., 2000. Autophagy as a regulated pathway of cellular degradation. Science. 290, 1717-1721.
Kouno, T., Mizuguchi, M., Tanida, I., Ueno, T., Kanematsu, T., Mori, Y., Shinoda, H., Hirata, M., Kominami, E., Kawano, K., 2005. Solution structure of microtubule-associated protein light chain 3 and identification of its functional subdomains. J. Biol. Chem. 280, 24610-24617.
Krakauer, T., Buckley, M., Issaq, H.J., Fox, S.D., 2010. Rapamycin protects mice from staphylococcal enterotoxin B-induced toxic shock and blocks cytokine release in vitro and in vivo. Antimicrob Agents Chemother. 54, 1125-1131.
Kwon, B.K., Tetzlaff, W., Grauer, J.N., Beiner, J., Vaccaro, A.R., 2004. Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. 4(4), 451-464.
Lai, Y., Hickey, R.W., Chen, Y., Bayir, H., Sullivan, M.L., Chu, C.T., Kochanek, P.M., Dixon, C.E., Jenkins, L.W., Graham, S.H., Watkins, S.C., Clark, R.S., 2008. Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J. Cereb. Blood Flow Metab. 28(3), 540-550.
Lee, V. W., Chapman, J. R. 2005 Sirolimus: its role in nephrology. Nephrology (Carlton). 10, 606–614.
Levine, B., 2006 Unraveling the role of autophagy in cancer. Autophagy. 2, 65–66.
Levine, B., Klionsky, D.J., 2004. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Develop. Cell. 6, 463-477.
Levine, B., Yuan, J., 2005. Autophagy in cell death: an innocent convict? J. Clin. Invest. 115, 2679-2688.
Liu, C.L., Chen, S., Dietrich, D., Hu, B.R., 2008. Changes in autophagy after traumatic brain injury. J. Cereb. Blood Flow Metab. 28(4):674-683.
Lockshin, R.A., Zakeri, Z., 2004. Apoptosis, autophagy, and more. Int. J. Biochem. Cell Biol. 36(12), 2405-2419.
Lu, D.Y., Liou, H.C., Tang, C.H., Fu, W.M., 2006. Hypoxia-induced iNOS expression in microglia is regulated by the PI3-kinase/Akt/mTOR signaling pathway and activation of hypoxia inducible factor-1 alpha. Biochem Pharmacol 72, 992-1000.
Lu, L., Wu, W., Yan, J., Li, X., Yu, H., Yu, X., 2009. Adriamycin-induced autophagic cardiomyocyte death plays a pathogenic role in a ratmodel of heart failure. Int J Cardiol. 134, 82-90.
Malagelada, C., Jin, Z.H., Jackson-Lewis, V., Przedborski, S., Greene, L.A., 2010. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson's disease. J Neurosci. 30, 1166-75.
Mizushima, N., 2004. Methods for monitoring autophagy. Int. J. Biochem. Cell Biol. 36, 2491-2502.
Napoli, K.L., Wang, M.E., Stepkowski, S.M., Kahan, B.D., 1997. Distribution of sirolimus in rat tissue. Clin Biochem. 30, 135-142.
Nixon, R.A., 2007. Autophagy amyloidogenesis and Alzheimer disease. J. Cell Sci. 120, 4081-4091.
Nixon, R.A., Cataldo, A.M., Mathews, P.M., 2000. The endosomal-lysosomal system of neurons in Alzheimer’s disease pathogenesis: a review. Neurochem. Res. 25, 1161-1172.
Noda, T., Ohsumi, Y., 1998. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273, 3963–3966.
Pan, T., Kondo, S., Zhu, W., Xie, W., Jankovic, J., Le, W., 2008. Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagyenhancement. Neurobiol Dis. 32, 16-25.
Pereira, J.E., Costa, L.M., Cabrita, A.M., Couto, P.A., Filipe, V.M., Magalhães, LG., Fornaro, M., Di Scipio, F., Geuna, S., Maurício, A.C., Varejão, A.S., 2009. Methylprednisolone fails to improve functional and histological outcome following spinal cord injury in rats. Exp Neurol. 220(1), 71-81.
Petiot, A., Ogier-Denis, E., Blommaart, E.F., Meijer, A.J., Codogno, P., 2000. Distinct classes of phosphatidylinositol 3-kinases are involved insignaling pathways that control macroautophagy in HT-29 cells. J Biol Chem. 275, 992-998.
Rami, A., Langhagen, A., Steiger, S., 2008. Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol. Dis. 29(1), 132-141.
Raught, B., Gingras, A.C., Sonenberg, N., 2001. The target of rapamycin (TOR) proteins. Proc. Natl. Acad. Sci. U.S.A. 98, 7037-7044.
Ravikumar, B., Duden, R., Rubinsztein, D.C. 2002. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11, 1107–1117.
Rubinsztein, D.C., Gestwicki, J.E., Murphy, L.O. and Klionsky, D.J., 2007 Potential therapeutic applications of autophagy. Nat. Rev. Drug Discov. 6, 304-312.
Rubinsztein, D.C., DiFiglia, M., Heintz, N., Nixon, R.A., Qin, Z.H., Ravikumar, B., Stefanis, L., Tolkovsky. A., 2005. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy. 1, 11-22.
Ruemmele, F.M., Dionne, S., Levy, E., Seidman, E.G., 1999. TNFalpha-induced IEC-6 cell apoptosis requires activation of ICE caspases whereas complete inhibition of the caspase cascade leads to necrotic cell death. Biochem. Biophys. Res. Commun. 260, 159-166.
Sadasivan, S., Dunn, W.A. Jr., Hayes, R.L., Wang, K.K., 2008. Changes in autophagy proteins in a rat model of controlled cortical impact induced brain injury. Biochem. Biophys. Res. Commun. 373(4), 478-481.
Sarkar, S., Krishna, G., Imarisio, S., Saiki, S., O’Kane, C.J., Rubinsztein, D.C., 2008. A rational mechanism for combination treatment of Huntington’s disease using lithium and rapamycin. Hum. Mol. Genet. 17, 170-178.
Sayer, F.T., Kronvall, E., Nilsson, O.G., 2006. Methylprednisolone treatment in acute spinal cord injury: the myth challenged through a structured analysis of published literature. Spine J. 6(3), 335-343.
Seglen, P.O., Gordon, P.B., 1982. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA. 79, 1889-1892.
Sekiguchi, A., Kanno, H., Ozawa, H., Yamaya, S., Itoi, E., 2012. Rapamycin promotes autophagy and reduces neural tissue damage and locomotor impairment after spinal cord injury in mice. J. Neurotrauma. 29(5), 946-956
Sekhon, L.H., Fehlings, M.G., 2001. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine. 26(24 Suppl), S2-S12.
Siegenthaler, M.M., Tu, M.K., Keirstead, H.S., 2007. The extent of myelin pathology differs following contusion and transection spinal cord injury. J Neurotrauma. 24(10), 1631-1646.
Springer, J.E., Azbill, R.D., Knapp, P.E., 1999. Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat Med. 5, 943-946.
Tanida, I., Ueno, T., Kominami, E., 2004. LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell. Biol. 36, 2503-2518.
Tanida, I., Minematsu-Ikeguchi, N., Ueno, T., Kominami, E., 2005. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy. 1(2), 84-91.
Tallóczy, Z., Virgin, H. W. IV, Levine, B., 2006. PKR dependent autophagic degradation of herpes simplex virus type 1. Autophagy. 2, 24–29.
Tator, C.H., 1995. Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol. 5, 407–413
Tator, C.H., Fehlings, M.G., 1991. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. 75, 15–26
Tian, D.S., Xie, M.J., Yu, Z.Y., Zhang, Q., Wang, Y.H., Chen, B., Chen, C., Wang, W., 2007. Cell cycle inhibition attenuates microglia induced inflammatory response and alleviates neuronal cell death after spinal cord injury in rats. Brain Res. 1135, 177-185.
Tsujimoto, Y., Shimizu, S., 2005. Another way to die: autophagic programmed cell death. Cell Death Differ. 12(Suppl 2), 1528-1534.
Vignot, S., Faivre, S., Aguirre, D., Raymond, E. 2005. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann. Oncol. 16, 525–537.
Wang, Z., Shi, X.Y., Yin, J., Zuo, G., Zhang, J., Chen, G., 2012. Role of autophagy in early brain injury after experim ental subarachnoid hemorrhage. J Mol Neurosci. 46(1), 192-202.
Wen, Y.D., Sheng, R., Zhang, L.S., Han, R., Zhang, X., Zhang, X.D., Han, F., Fukunaga, K., Qin, Z.H., 2008. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy. 4(6), 762-769.
Xue, L., Fletcher, G.C., Tolkovsky, A.M., 1999. Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol Cell Neurosci. 14, 180–198.
Yang, P.C., Yang, C.H., Huang, C.C., Hsu, K.S., 2008. Phosphatidylinositol 3-kinase activation is required for stress protocol-induced modification ofhippocampal synaptic plasticity. J Biol Chem. 283, 2631-2643.
Yoshimori, T., 2004. Autophagy: a regulated bulk degradation process inside cells. Biochem. Biophys. Res. Commun. 313, 453-458.
Zhou, J., Blundell, J., Ogawa, S., Kwon, C.H., Zhang, W., Sinton, C., Powell, C.M., Parada, L.F., 2009. Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neural-specific Pten knock-out mice. J Neurosci. 29, 1773-1783.
論文全文使用權限
  • 同意授權瀏覽/列印電子全文服務,於2015-08-21起公開。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446