進階搜尋


  查詢北醫館藏
系統識別號 U0007-3007201122255300
論文名稱(中文) 相同金屬不同類型之齒列矯正托架經長期浸泡後其顯微結構之變化
論文名稱(英文) Research of microstructural variations on various bracket systems by artificial saliva immersion
校院名稱 臺北醫學大學
系所名稱(中) 牙醫學系碩博士班
系所名稱(英) School of Dentistry
學年度 99
學期 2
出版年 100
研究生(中文) 范怡茜
研究生(英文) Yi- Chien Fan
學號 M204097007
學位類別 碩士
語文別 英文
口試日期 2011-06-27
論文頁數 89頁
口試委員 指導教授-蔡恆惠
共同指導教授-歐耿良
委員-蘇程裕
委員-劉沖明
委員-黃瓊芳
中文關鍵字 金屬矯正托架  金屬離子  抗腐蝕性  表面粗糙度  表面硬度 
英文關鍵字 Stainless steel brackets  mental ions  corrosion  surface roughness  surface hardness 
學科別分類
中文摘要 矯正托架為現代齒顎矯正治療的基本組成之一。矯正托架本身結構必須具備適當的硬度和強度且和矯正線接觸的溝槽必須要平滑減低摩擦力,才能將矯正線上的力量做有效的傳遞到牙齒。一般來說,矯正的治療需時一至兩年甚至更久,在治療期間矯正托架必須放置在口腔內溫暖潮濕的環境。隨著治療時間越來越長,金屬矯正托架可能會開始產生腐蝕作用,這腐蝕現象同時改變其表面機械特性,釋放金屬離子,進而危害患者的健康或治療失敗,故值探討。

本實驗的目的是研究以316SS製造的三種不同設計的矯正托架,將其分為A, B, C三組。A 組為一體注射單片式擠壓成形矯正托架,B 組為焊接型矯正托架,C 組為不含焊料焊接型金屬矯正托架。將三組的矯正托架浸泡在37℃, pH值為7.0的人工唾液中兩年做觀察其變化。本實驗的目的為分析這些組別間矯正托架離子釋出量、表面粗糙度及硬度的變化。實驗中將以耦合電漿質譜儀測量比較人工唾液中所釋出的不同金屬離子濃度,光學顯微鏡、電子顯微鏡觀察表面結構的變化, X光能量散佈光譜儀分析元素組成,以原子顯微鏡測量表面粗糙度變化,以微硬度儀測量其硬度之變化。其結果以統計學方式分析之。

結果發現A,B,C三組浸泡6, 12, 18及24個月後,在光學顯微鏡及掃描式電子顯微鏡的觀察下,隨浸泡時間越久,表面變得更粗糙。能量分散光譜則顯示出氧元素直到浸泡時間延長至6個月時才能被檢測出來,推測此時有氧化層產生。另外硬度則是在前6個月會有減少的趨勢,但是在第6個月到第24個月時,硬度就無明顯減少。離子釋出方面,C組浸泡24個月後,會釋放最多的鐵及鉻; A組在分別經過6,12,18及24個月後,釋放出最少的是鉻、鎳及鉬;B組則是釋放出最多鎳。

結論是316LL不袗齒顎矯正托架經過置放在37℃ pH7.0的人工唾液24個月後,發現浸放到第6個月時,腐蝕便會趨於和緩。而離子雖仍會繼續釋放,但是經過第6個月後,釋放的速度便會變慢。同樣地,矯正器的硬度也是在第六個月後,就幾乎不會再減少了,漸漸趨於穩定。在離子釋出方面,A組的矯正器在釋放出最少的鐵、鉻、鎳及鉬離子,C組則是釋放最多的鐵及鉻, B組則是釋放出最多的鎳。但是矯正器浸泡兩年之後所釋出的金屬離子總量還是少於我們一個人一天平均從食物攝入的量。
英文摘要 Orthodontic bracket is one of essential components of modern fixed appliances. In order to deliver the exact force from the wire to the teeth, brackets should have correct hardness and strength, and archwire slot must be smooth to reduce frictional resistance. Generally, orthodontic treatment time is one to two years or more, during the treatment the brackets must be put in oral cavity where is humid and warm. As time goes by, metallic brackets may suffer from corrosion processes. Corrosion of the brackets can contribute to ion release and changes of mechanical properties of brackets. That may cause treatment fail and even adverse effect to health.

The experiment design is to detect three different 316LL brackets which are divided into A, B, C groups. Group A is one piece injection molding type bracket, group B is soldering type with brazing alloy, and group C is soldering type without brazing alloy (two pieces). All these brackets were immersed in artificial saliva under 37℃ at pH 7 for 2 years.

The purpose of this study is to detect the changes of the surface roughness, material hardness and ion release of these brackets. These changes were observed by optic microscope(OM), scanning electron microscope(SEM), energy dispersive spectroscopy(EDS), and detected by atomic force microscope(AFM) and Vickers micro-hardness tester (MVK-100, Akashi). The amount of ion releasing were measured by inductively coupled plasma-mass spectrometry(ICP-MS). All the result were analyzed statistically.

The results showed that there were some changes of surface characteristics of brackets of group A, B and C after 6, 12, 18 and 24 months immersions under OM and SEM observation. We found that the surface of brackets became rougher and worse as increasing immersion times. The EDS showed that oxygen element could not be detected until prolong the immersion time to 6 months and an oxide film was formed suspected. On the other hand, the micro-hardness decreased within first 6 months and then stopped decreasing become smooth within 6 to 24 months. The group C released most Fe and Cr after 24 months immersion while the group A released least Cr, Ni, and Mo after 6, 12, 18 and 24 months immersions. Furthermore, the group B released highest nickel than the others.

The conclusion was that after 24 months immersion in 37℃ pH7.0 artificial saliva, the corrosion phenomenons became slower and smooth at 6 months. Though ion still continuous released with increasing immersion time, but the releasing rate was getting slower at 6 months. Likewise, the micro-hardness of the brackets stopped decreasing and became stable at 6 months. Moreover, the brackets of group A released least ions, the group C released most Fe and Cr, and the group B released most Ni. But total amount of ion released from the brackets after 2 years immersion was still less than the daily intake.
論文目次 碩士學位考試委員審定書……………………………………………I
學位考試保密同意書暨簽到表………………………………………II
電子暨紙本學位論文書目同意公開申請書……………………….....III
謝誌……………………………………………………………………..IV
中文摘要………….……………………….……………….................... V
Abstract……………..…………………………………….……..…....VII
Contents……………………………………………………..................IX
Table captions…………………………………………….....................XI
Figure captions……………….……………………………….............XII

Chapter 1. Introduction……………………………………………..1-8
Chapter 2. Materials and methods……………………………….9-12
2.1 Materials…………………………………………..............................9-10
2.2 Methods……….……………………………………………………11-13
Chapter 3. Results…………………………………………………14-24
3.1 Optic microscope (OM) observation………………..…………….14-15
3.2 Scanning electron microscope (SEM)…………………………….15-18
3.3 Atomic force microscope (AFM)………………………...………..18-19
3.4 Micro-hardness…………………………………………………….….19
3.5 Energy dispersive spectrometry (EDS) detections………………20-22
3.6 Ion release concentration………………………………………….22-24

Chapter 4. Discussion........................................................................24-30
4.1 Surface characteristic…………………………….………………..25-26
4.2 Surface roughness………………………………….………………….26
4.3 Micro-Hardness………………........................................................26-27
4.4 Element composition……………………………………………....27-28
4.5 Ion release………………………………………….……………….28-31
4.6 Improvement of the study………………………….…………………31
Chapter 5. Conclusion............................................................................32
Chapter 6. Table captions………………………………………..33-39
Chapter 7. Figure captions………………………………………40-82
Chapter 8. Reference………………………………………….……83-89
參考文獻 1. Oh K T, Choo S U, Kim K M, Kim K N, A stainless steel bracket for orthodontic application. European Journal of Orthodontics 2005, 27: 237-44.
2. Feldner J C, Sarkar N K, Sheridan J J, Lancaster D M, In vitro torque-deformation characteristics of orthodontic polycarbonate brackets. American Journal of Orthodontics & Dentofacial Orthopedics 1994, 106: 265-72.
3. Arici S, Regan D, Alternatives to ceramic brackets: the tensile bond strengths of two aesthetic brackets compared ex vivo with stainless steel foil-mesh bracket bases. British Journal of Orthodontics 1997, 24: 133-7.
4. Wheeler J J, Ackerman R J, Jr., Bond strength of thermally recycled metal brackets. American Journal of Orthodontics 1983, 83: 181-6.
5. Eliades T, Eliades G, Brantley W, Orthodontic brackets, in Orthodontic Material - Scientific and Clinical Aspects, T Eliades, Editor. 2001, Mosby Co. St. Louis. 144.
6. TM G. Orthodontic: Current Principles Techniques. 4th ed. Biomaterials in Orthodontics, ed. V RL. 2005, ELSEVIER MOSBY. 357-60.
7. Barrett R D, Bishara S E, Quinn J K, Biodegradation of orthodontic appliances. Part I. Biodegradation of nickel and chromium in vitro. American Journal of Orthodontics & Dentofacial Orthopedics 1993, 103: 8-14.
8. Pettersen A, Jacobsen N, Grimsdottir M, Allergic Reactions and Safety Concerns, in Orthodontic Materials - Scientific and Clinical Aspects, W Brantley T Eliades, Editors. 2007, Mosby Co St. Louis. 288.
9. Huang T H, Yen C C, Kao C T, Comparison of ion release from new and recycled orthodontic brackets. American Journal of Orthodontics & Dentofacial Orthopedics 2001, 120: 68-75.
10. Loreille J, Corrosion and calculus. How can the wire/bracket slide mechanics be improved? Orthod Fr. 2002, 73: 71– 81.
11. Gioka C, Bourauel C, Zinelis S, Eliades T, Silikas N, Eliades G, Titanium orthodontic brackets: structure, composition, hardness and ionic release. Dental Materials 2004, 20: 693-700.
12. House K, Sernetz F, Dymock D, Sandy J R, Ireland A J, Corrosion of orthodontic appliances--should we care? American Journal of Orthodontics & Dentofacial Orthopedics 2008, 133: 584-92.
13. Gursoy S, Acar A G, Sesen C, Comparison of metal release from new and recycled bracket-archwire combinations. Angle Orthodontist 2005, 75: 92-4.
14. Maijer R,Smith D C, Corrosion of orthodontic bracket bases. American Journal of Orthodontics 1982, 81: 43-8.
15. Eliades T, Eliades G, Brantley W, Orthodontic Brackets, in Orthodontic Material - Scientific and Clinical Aspects, T Eliades, Editor. 2007, Mosby Co St. Louis. 146-7.
16. Matasa C, Attachment corrosion and its testing. Journal of Clinical Orthodontics 1995, 29: 16-23.
17. Eliades T,Athanasiou A E, In vivo aging of orthodontic alloys: implications for corrosion potential, nickel release, and biocompatibility. Angle Orthodontist 2002, 72: 222-37.
18. Kerosuo H, Moe G, Hensten-Pettersen A, Salivary nickel and chromium in subjects with different types of fixed orthodontic appliances. American Journal of Orthodontics & Dentofacial Orthopedics 1997, 111: 595-8.
19. Genelhu M C, Marigo M, Alves-Oliveira L F, Malaquias L C, Gomez R S, Characterization of nickel-induced allergic contact stomatitis associated with fixed orthodontic appliances. American Journal of Orthodontics & Dentofacial Orthopedics 2005, 128: 378-81.
20. Dunlap C L, Vincent S K, Barker B F, Allergic reaction to orthodontic wire: report of case. Journal of the American Dental Association 1989, 118: 449-50.
21. Lindsten R,Kurol J, Orthodontic appliances in relation to nickel hypersensitivity. A review. Journal of Orofacial Orthopedics 1997, 58: 100-8.
22. Staerkjaer L,Menne T, Nickel allergy and orthodontic treatment. European Journal of Orthodontics 1990, 12: 284-9.
23. Grimsdottir M R, Hensten-Pettersen A, Kullmann A, Cytotoxic effect of orthodontic appliances. European Journal of Orthodontics 1992, 14: 47-53.
24. Pazzini C A, Junior G O, Marques L S, Pereira C V, Pereira L J, Prevalence of nickel allergy and longitudinal evaluation of periodontal abnormalities in orthodontic allergic patients. Angle Orthodontist 2009, 79: 922-7.
25. Schroeder H, Balassa J, Tipton I, Abnormal trace metals in man-nickel. J Chronic Disease 1962, 15: 51-62.
26. Park H Y,Shearer T R, In vitro release of nickel and chromium from simulated orthodontic appliances. American Journal of Orthodontics 1983, 84: 156-9.
27. Kuhta M, Pavlin D, Slaj M, Varga S, Lapter-Varga M, Type of archwire and level of acidity: effects on the release of metal ions from orthodontic appliances. Angle Orthodontist 2009, 79: 102-10.
28. Lin M C, Lin S C, Lee T H, Huang H H, Surface analysis and corrosion resistance of different stainless steel orthodontic brackets in artificial saliva. Angle Orthodontist 2006, 76: 322-9.
29. Maije R,Smith D, Biodegradation of the orthodontic bracket system. American Journal of Orthodontics 1986, 90: 195-8.
30. Matasa C, Characterization of used orthodontic brackets, in Dental Materials In Vivo: Aging and Related Phenomena, G Eliades, T Eliades, W Brantley, D Watts, Editors. 2003 New York, NY. 141-56.
31. Floria G,Franchi L, Metal injection molding in orthodontics. Virtual Journal of Orthodontics 1997, 2.
32. Cohrt H, Metal injection molding. Mater World 1997, 7: 201-3.
33. Eliades T, Orthodontic materials research and applications: part 2. Current status and projected future developments in materials and biocompatibility. American Journal of Orthodontics & Dentofacial Orthopedics 2007, 131: 253-62.
34. Zinelis S, Annousaki O, Eliades T, Makou M, Elemental composition of brazing alloys in metallic orthodontic brackets. Angle Orthodontist 2004, 74: 394-9.
35. Fontana M, Corrosion Engineering. 3 ed. 1986, New York McGrawHill.
36. Freitas M P, Oshima H M, Menezes L M, Machado D C, Viezzer C, Cytotoxicity of silver solder employed in orthodontics. Angle Orthodontist 2009, 79: 939-44.
37. Eliades T, Trapalis C, Eliades G, Katsavrias E, Salivary metal levels of orthodontic patients: a novel methodological and analytical approach. European Journal of Orthodontics 2003, 25: 103-6.
38. Jia W, Beatty M W, Reinhardt R A, Petro T M, Cohen D M, Maze C R, Strom E A, Hoffman M, Nickel release from orthodontic arch wires and cellular immune response to various nickel concentrations. Journal of Biomedical Materials Research 1999, 48: 488-95.
39. Sfondrini M F, Cacciafesta V, Maffia E, Scribante A, Alberti G, Biesuz R, Klersy C, Nickel release from new conventional stainless steel, recycled, and nickel-free orthodontic brackets: An in vitro study. American Journal of Orthodontics & Dentofacial Orthopedics 2010, 137: 809-15.
40. Petoumenou E, Arndt M, Keilig L, Reimann S, Hoederath H, Eliades T, Jager A, Bourauel C, Nickel concentration in the saliva of patients with nickel-titanium orthodontic appliances. American Journal of Orthodontics & Dentofacial Orthopedics 2009, 135: 59-65.
41. Kocadereli L, Atac P A, Kale P S, Ozer D, Salivary nickel and chromium in patients with fixed orthodontic appliances. Angle Orthodontist 2000, 70: 431-4.
42. Faccioni F, Franceschetti P, Cerpelloni M, Fracasso M E, In vivo study on metal release from fixed orthodontic appliances and DNA damage in oral mucosa cells. American Journal of Orthodontics & Dentofacial Orthopedics 2003, 124: 687-93; discussion 93-4.
43. Chen C H, Comparison of corrosion resistance and surface characteristics of orthodontic bracket with same metal between one piece injection molding and soldering types. 2008, tmu: Taipei, Taiwan.
44. Neter J, Wasserman W, Kutner M H, eds. Applied Linear Statistical models. ed. 4th. 1985: Homewood: Irwin. 663-96.
45. Zinelis S, Annousaki O, Makou M, Eliades T, Metallurgical characterization of orthodontic brackets produced by Metal Injection Molding (MIM). Angle Orthodontist 2005, 75: 1024-31.
46. Davison RM, Debold T, Johnson M, eds. Metals Handbook. 4th ed. Corossion of Stainless Steel Vol. 13. 1988. 547.
47. Sfondrini M F, Cacciafesta V, Maffia E, Massironi S, Scribante A, Alberti G, Biesuz R, Klersy C, Chromium release from new stainless steel, recycled and nickel-free orthodontic brackets. Angle Orthodontist 2009, 79: 361-7.
48. Wataha J C, Release of elements from dental casting alloys into cell-culture medium over 10 months. Dental Master 1998, 14: 158-63.
49. von Fraunhofer J A, Corrosion of orthodontic devices. Semin Orthodontist 1997, 3: 198-205.
50. Gursoy U K, Sokucu O, Uitto V J, Aydin A, Demirer S, Toker H, Erdem O, Sayal A, The role of nickel accumulation and epithelial cell proliferation in orthodontic treatment-induced gingival overgrowth. European Journal of Orthodontics 2007, 29: 555-8.
51. Trombelli L, Virgili A, Corazza M, Lucci R, Systemic contact dermatitis from an orthodontic appliance. Contact Dermatitis 1992, 27: 259-60.
52. Rahilly G,Price N, Nickel allergy and orthodontics. Journal of Orthodontics 2003, 30: 171-4.
53. Schubert H, Berova N, Czernielewski A, Hegyi E, Jirasek L, Kohanka V, Korossy S, Michailov P, Nebenfuhrer L, Prater E, et al., Epidemiology of nickel allergy. Contact Dermatitis 1987, 16: 122-8.
54. Meding B, Epidemiology of nickel allergy. J Environ Monit 2003, 5: 188-9.
55. Kerosuo H, Kullaa A, Kerosuo E, Kanerva L, Hensten-Pettersen A, Nickel allergy in adolescents in relation to orthodontic treatment and piercing of ears. American Jounal of Orthodontics and Dentofacial Orthopedics 1996, 109: 148-54.
56. Bencko V, Nickel: a review of its occupational and environmental toxicology. J Hyg Epidemiol Microbiol Immunol 1983, 27: 237-47.
57. Kim H,Johnson J W, Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires. Angle Orthodontist 1999, 69: 39-44.


論文全文使用權限
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446