進階搜尋


  查詢北醫館藏
系統識別號 U0007-3007201119031200
論文名稱(中文) 血小板富含血漿合併膠原蛋白基質於關節炎軟骨細胞再生之研究
論文名稱(英文) The regeneration potential of the combination of platelet-rich plasma and collagen matrix in an arthritic chondrocyte cell model
校院名稱 臺北醫學大學
系所名稱(中) 臨床醫學研究所
系所名稱(英) Graduate Institute of Clinical Medicine
學年度 99
學期 2
出版年 100
研究生(中文) 吳佳哲
研究生(英文) Chia-Che Wu
學號 D102091011
學位類別 博士
語文別 英文
口試日期 2011-06-13
論文頁數 71頁
口試委員 指導教授-吳志雄
共同指導教授-鄧文炳
委員-李學禹
委員-林鴻清
委員-王拔群
委員-吳駿翃
委員-李飛鵬
中文關鍵字 骨關節炎  富含血小板血漿  膠原基質  促炎性細胞激素  生理微環境  小耳症  新生軟骨 
英文關鍵字 Osteoarthritis (OA)  Platelet-rich plasma (PRP)  Collagen matrix  Physiological microenvironment  Pro-inflammatory cytokines  Microtia  Neo-cartilage 
學科別分類
中文摘要 本研究是評估膠原基質加強富含血小板血漿(PRP)影響促炎性細胞激素誘導關節發炎模型的角色。我們之前已經證實富含血小板血漿於恢復椎間盤退化和骨質疏鬆的高度再生作用。在這項研究中,膠原基質調控的富含血小板血漿作為再生和反炎症介質來挽救促炎症介白質IL- 1β(10ng/ml)及腫瘤壞死因子-α(20ng/ml)引起的軟骨細胞退化。首先,細胞活性測試法結果顯示,含1 ng/ml轉化生長因子-β1之富含血小板血漿為最佳軟骨細胞增殖劑量。富含血小板血漿可挽救介白質IL- 1β加上腫瘤壞死因子-α抑制下的軟骨細胞特異性基因表現,尤其是在膠原基質的調控下。被介白質IL - 1β加上腫瘤壞死因子-α激活的發炎因子也因富含血小板血漿含膠原基質的處理而顯著減少。由介白質IL-1β加上腫瘤壞死因子-α造成的強烈抑制細胞膜受體integrin α1β1和CD44的作用,也因富含血小板血漿濃厚液加膠原塗層而恢復。在一個封裝膠原蛋白的三維模型裡,富含血小板血漿高度增強誘導軟骨新生,如加強恢復介白質IL- 1β加上腫瘤壞死因子-α抑制的第二型膠原蛋白和聚醣。此結果表示,膠原基質可增強富含血小板血漿恢復促發炎反應細胞激素抑制軟骨新生的效應。這種結合富含血小板血漿和膠原基質的生理微環境可能有利於促進維持軟骨細胞的生理動態平衡,並可發展先進的骨關節炎療法且應用於臨床。
另外,小耳症是因不完整發展的外耳而形成畸形小耳,治療上的重建手術仍然有限且需要再開發。基於上述研究,延伸運用富含血小板血漿濃厚液培養小耳軟骨細胞形成新的耳廓軟骨以供將來的耳廓重建使用。
因此,富含血小板血漿被當做生長因子以促進體外小耳軟骨再生。小耳軟骨細胞在含膠原蛋白及富含血小板血漿的懸浮液內三維培養 4週。然後,從小耳症患者取得小耳軟骨細胞。同時,富含血小板血漿以轉化生長因子-β1的濃度來量化。小耳軟骨細胞於富含血小板血漿的單層和三維培養基中培養。 4週後,將人類組織工程耳廓軟骨利用蘇木紫-伊紅染色法(H&E染色)及免疫組織化學法染第二型膠原蛋白以組織學分析。研究顯示,小耳軟骨細胞在富含血小板血漿於轉化生長因子-β1 750 pg / ml和1ng/ml的濃度下體外培養 9天可增加細胞的活性(cell viability)。體外小耳軟骨細胞合併富含血小板血漿培養21天後,從逆轉錄聚合酶鏈反應(RT - PCR)的結果顯示,表示軟骨細胞特異性基因的聚醣和第二型膠原蛋白均顯著且持續表現。小耳軟骨培養於富含血小板血漿/膠原支架可形成新的組織工程耳軟骨。於4週的培養後,以免疫組織化學法染第二型膠原蛋白,顯示信號密集於細胞和基質之間。
我們的研究結果顯示,富含血小板血漿促進小耳軟骨細胞的增殖和分化以增加再生潛能,組織再生之新生軟骨將來可運用於耳廓軟骨重建。
英文摘要 This study was undertaken to evaluate the role of collagen matrix to enhance platelet-rich plasma (PRP) effects on pro-inflammatory cytokine-induced arthritic model. We have previously demonstrated the highly regenerative roles of PRP to restore disc degeneration and osteoporosis. In this study, PRP modulated by collagen matrix was used as a regenerative and anti-inflammatory mediator to rescue the chondrocyte degeneration induced by pro-inflammatory cytokines IL-1???n(10ng/ml)+TNF-???n(20ng/ml). First, the MTT result indicated that 1 ng/ml TGF-??1 in PRP showed an optimal dosage for chondrocytes proliferation. The chondrogenic-specific gene expressions were rescued by PRP from the inhibition of IL-1??+TNF-??, especially under the modulation of collagen matrix. The inflammatory molecules activated by IL-1??+TNF-?? were also significantly diminished by PRP with collagen matrix. The membrane receptors integrin ??1??1 and CD44 were strongly inhibited by IL-1??+TNF-??, while this inhibition was then recovered by PRP in collagen coating condition. In a 3D model encapsulated with collagen, PRP-induced chondrogenesis were highly enhanced, such as strong restoration of type II collagen and proteoglycan from the inhibition of IL-1??+TNF-??. The result indicated that collagen matrix enhances the effect of PRP on chondrogenesis in response to pro-inflammatory cytokines. The combination of PRP and collagen matrix might facilitate a physiological microenvironment beneficial for maintaining chondrocyte homeostasis and represents an advanced osteoarthritis therapy for clinical applications.
Besides, microtia is suggested as an incomplete auricular development and surgical reconstruction for microtia is still limited and emergent to be developed. Base on the previous study, further research was aimed to apply PRP for human auricular neo-cartilage reconstruction by using microtia chondrocytes.
So PRP was used as growth factor source to promote in vitro microtia regeneration. Microtia chondrocytes were then suspended in collagen for 3D culture for 4 weeks with PRP. Then chondrocytes were obtained from microtia patient. Meanwhile, PRP was extracted and quantified by transforming growth factor-???n1 (TGF-??1) concentration. Microtia chondrocytes were then cultured with PRP in monolayer and 3-dimentional (3D) cultures. After 4 weeks, human engineered auricular cartilage was then histologically analyzed by using H&E staining and immunohistochemistry (IHC) of type II collagen (Col II). It is demonstrated that the PRP (TGF-??1 750 pg/ml and 1ng/ml) increased cell viability of microtia chondrocyte during in vitro 9-day cultures. From the reverse-transcriptase polymerase chain reaction (RT-PCR) results, chondrogenic-specific mRNA of aggrecan and type II collagen (Col II) were significantly and continuously expressed by PRP during 21-day in vitro expansion. Tissue-engineered auricular neo-cartilage was performed by seeding microtia chondrocytes in PRP/ collagen scaffold. Immunohistochemistry (IHC) of Col II showed intensive signals between cells and matrix after 4-week cultures.
Our results demonstrated that PRP promotes proliferation and redifferentiation of microtia chondrocytes and provides regenerative potentials of auricular neo-cartilage reconstruction.
論文目次 Table of Contents
致謝....................................................III
List of abbreviations.....................................V
List of figures.........................................VII
中文摘要 .................................................1
Abstract .................................................3
Chapter 1.Introduction ...................................5
I. Overview.............................................6
Study I: Regenerative potentials of platelet-rich plasma enhanced by collagen in retrieving pro-inflammatory cytokine-inhibited chondrogenesis.........................7
Structure of cartilage................................7
Osteoarthritis........................................8
In vitro arthritic cell model .......................10
Platelet-rich plasma (PRP) ..........................10
Collagen matrix......................................11
Chondrogenic cell membrane receptors..................12
Hypothesis...........................................12
Study II: Reconstruction of Human Microtia by Using Platelet-rich Plasma and Chondrocytes in a Three-Dimensional Culture......................................12
Microtia..............................................13
Tissue-engineered cartilage...........................13
Platelet-rich plasma (PRP) and microtia chondrocytes..14
II. Aims of This Study.................................15
Study I Regenerative potentials of platelet-rich plasma enhanced by collagen in retrieving pro-inflammatory cytokine-inhibited chondrogenesis........................16
Chapter 2. Materials and Methods.........................17
Chapter 3. Results and Discussion........................23
Results..................................................24
Discussions..............................................28
Study II Reconstruction of Human Microtia by Using Platelet-rich Plasma and Chondrocytes in a Three-Dimensional Culture..................................................33
Chapter 4. Materials and Methods.........................34
Chapter 5. Results and Discussion........................38
Results................................................39
Discussion.............................................41
Chapter 6. Conclusion and Perspectives...................44
Chapter 7. Figures.......................................48
Chapter 8. References....................................63
Chapter 9. Appendices....................................71
參考文獻 1. Yang Y: Skeletal morphogenesis during embryonic development. Crit Rev Eukaryot Gene Expr 2009, 19(3):197-218.
2. Karsenty G, Wagner EF: Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002, 2(4):389-406.
3. Miura M, Miura Y, Sonoyama W, Yamaza T, Gronthos S, Shi S: Bone marrow-derived mesenchymal stem cells for regenerative medicine in craniofacial region. Oral Dis 2006, 12(6):514-522.
4. Bertrand J, Cromme C, Umlauf D, Frank S, Pap T: Molecular mechanisms of cartilage remodelling in osteoarthritis. Int J Biochem Cell Biol 2010, 42(10):1594-1601.
5. Kirkham SG, Samarasinghe RK: Review article: Glucosamine. J Orthop Surg (Hong Kong) 2009, 17(1):72-76.
6. Adams BD, Samani JE, Holley KA: Triangular fibrocartilage injury: a laboratory model. J Hand Surg Am 1996, 21(2):189-193.
7. Sugiki T, Uyama T, Toyoda M, Morioka H, Kume S, Miyado K, Matsumoto K, Saito H, Tsumaki N, Takahashi Y et al: Hyaline cartilage formation and enchondral ossification modeled with KUM5 and OP9 chondroblasts. J Cell Biochem 2007, 100(5):1240-1254.
8. Cooper C, Arden NK: Excess mortality in osteoarthritis. Bmj 2011, 342:d1407.
9. Zhang Y, Jordan JM: Epidemiology of osteoarthritis. Clin Geriatr Med 2010, 26(3):355-369.
10. Seed SM, Dunican KC, Lynch AM: Osteoarthritis: a review of treatment options. Geriatrics 2009, 64(10):20-29.
11. Carr AJ: Beyond disability: measuring the social and personal consequences of osteoarthritis. Osteoarthritis Cartilage 1999, 7(2):230-238.
12. Karlsson J, Sjogren LS, Lohmander LS: Comparison of two hyaluronan drugs and placebo in patients with knee osteoarthritis. A controlled, randomized, double-blind, parallel-design multicentre study. Rheumatology (Oxford) 2002, 41(11):1240-1248.
13. Archer CW, Francis-West P: The chondrocyte. Int J Biochem Cell Biol 2003, 35(4):401-404.
14. Abramson SB, Attur M: Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther 2009, 11(3):227.
15. Majumdar MK, Wang E, Morris EA: BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J Cell Physiol 2001, 189(3):275-284.
16. Murakami S, Lefebvre V, de Crombrugghe B: Potent inhibition of the master chondrogenic factor Sox9 gene by interleukin-1 and tumor necrosis factor-alpha. J Biol Chem 2000, 275(5):3687-3692.
17. Lopez-Armada MJ, Carames B, Lires-Dean M, Cillero-Pastor B, Ruiz-Romero C, Galdo F, Blanco FJ: Cytokines, tumor necrosis factor-alpha and interleukin-1beta, differentially regulate apoptosis in osteoarthritis cultured human chondrocytes. Osteoarthritis Cartilage 2006, 14(7):660-669.
18. Goldring SR, Goldring MB: The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin Orthop Relat Res 2004(427 Suppl):S27-36.
19. Ho ST, Yang Z, Hui HP, Oh KW, Choo BH, Lee EH: A serum free approach towards the conservation of chondrogenic phenotype during in vitro cell expansion. Growth Factors 2009, 27(5):321-333.
20. Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noel D: Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol 2009, 27(5):307-314.
21. Weibrich G, Kleis WK, Hafner G, Hitzler WE: Growth factor levels in platelet-rich plasma and correlations with donor age, sex, and platelet count. J Craniomaxillofac Surg 2002, 30(2):97-102.
22. Chen WH, Liu HY, Lo WC, Wu SC, Chi CH, Chang HY, Hsiao SH, Wu CH, Chiu WT, Chen BJ et al: Intervertebral disc regeneration in an ex vivo culture system using mesenchymal stem cells and platelet-rich plasma. Biomaterials 2009, 30(29):5523-5533.
23. Chen WH, Lo WC, Lee JJ, Su CH, Lin CT, Liu HY, Lin TW, Lin WC, Huang TY, Deng WP: Tissue-engineered intervertebral disc and chondrogenesis using human nucleus pulposus regulated through TGF-beta1 in platelet-rich plasma. J Cell Physiol 2006, 209(3):744-754.
24. Lo WC, Chiou JF, Gelovani JG, Cheong ML, Lee CM, Liu HY, Wu CH, Wang MF, Lin CT, Deng WP: Transplantation of embryonic fibroblasts treated with platelet-rich plasma induces osteogenesis in SAMP8 mice monitored by molecular imaging. J Nucl Med 2009, 50(5):765-773.
25. Spreafico A, Chellini F, Frediani B, Bernardini G, Niccolini S, Serchi T, Collodel G, Paffetti A, Fossombroni V, Galeazzi M et al: Biochemical investigation of the effects of human platelet releasates on human articular chondrocytes. J Cell Biochem 2009, 108(5):1153-1165.
26. Bendinelli P, Matteucci E, Dogliotti G, Corsi MM, Banfi G, Maroni P, Desiderio MA: Molecular basis of anti-inflammatory action of platelet-rich plasma on human chondrocytes: Mechanisms of NF-kappaB inhibition via HGF. J Cell Physiol 2010, 225(3):757-766.
27. Quintana L, zur Nieden NI, Semino CE: Morphogenetic and regulatory mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue engineering. Tissue Eng Part B Rev 2009, 15(1):29-41.
28. Chen CW, Tsai YH, Deng WP, Shih SN, Fang CL, Burch JG, Chen WH, Lai WF: Type I and II collagen regulation of chondrogenic differentiation by mesenchymal progenitor cells. J Orthop Res 2005, 23(2):446-453.
29. Chen WH, Lai MT, Wu AT, Wu CC, Gelovani JG, Lin CT, Hung SC, Chiu WT, Deng WP: In vitro stage-specific chondrogenesis of mesenchymal stem cells committed to chondrocytes. Arthritis Rheum 2009, 60(2):450-459.
30. Chen WH, Lai WF, Deng WP, Yang WK, Lo WC, Wu CC, Yang DM, Lai MT, Lin CT, Lin TW et al: Tissue engineered cartilage using human articular chondrocytes immortalized by HPV-16 E6 and E7 genes. J Biomed Mater Res A 2006, 76(3):512-520.
31. Kon E, Verdonk P, Condello V, Delcogliano M, Dhollander A, Filardo G, Pignotti E, Marcacci M: Matrix-assisted autologous chondrocyte transplantation for the repair of cartilage defects of the knee: systematic clinical data review and study quality analysis. Am J Sports Med 2009, 37 Suppl 1:156S-166S.
32. Cho YG, Cho ML, Min SY, Kim HY: Type II collagen autoimmunity in a mouse model of human rheumatoid arthritis. Autoimmun Rev 2007, 7(1):65-70.
33. Vierboom MP, Breedveld E, Kondova I, t Hart BA: Collagen-induced arthritis in common marmosets: a new nonhuman primate model for chronic arthritis. Arthritis Res Ther, 12(5):R200.
34. Reid DL, Aydelotte MB, Mollenhauer J: Cell attachment, collagen binding, and receptor analysis on bovine articular chondrocytes. J Orthop Res 2000, 18(3):364-373.
35. Zemmyo M, Meharra EJ, Kuhn K, Creighton-Achermann L, Lotz M: Accelerated, aging-dependent development of osteoarthritis in alpha1 integrin-deficient mice. Arthritis Rheum 2003, 48(10):2873-2880.
36. Cao L, Lee V, Adams ME, Kiani C, Zhang Y, Hu W, Yang BB: beta-Integrin-collagen interaction reduces chondrocyte apoptosis. Matrix Biol 1999, 18(4):343-355.
37. Woods A, Wang G, Beier F: Regulation of chondrocyte differentiation by the actin cytoskeleton and adhesive interactions. J Cell Physiol 2007, 213(1):1-8.
38. Suutarla S, Rautio J, Ritvanen A, Ala-Mello S, Jero J, Klockars T: Microtia in Finland: comparison of characteristics in different populations. Int J Pediatr Otorhinolaryngol 2007, 71(8):1211-1217.
39. Klockars T, Rautio J: Embryology and epidemiology of microtia. Facial Plast Surg 2009, 25(3):145-148.
40. Alasti F, Van Camp G: Genetics of Microtia and Associated Syndromes. J Med Genet 2009.
41. Arevalo-Silva CA, Cao Y, Vacanti M, Weng Y, Vacanti CA, Eavey RD: Influence of growth factors on tissue-engineered pediatric elastic cartilage. Arch Otolaryngol Head Neck Surg 2000, 126(10):1234-1238.
42. Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA: Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 1997, 100(2):297-302; discussion 303-294.
43. Johns DE, Athanasiou KA: Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage. Cell Tissue Res 2008.
44. Kizhner V, Barak A: Framework changes using costal cartilage for microtia reconstruction. Arch Otolaryngol Head Neck Surg 2008, 134(7):768-770.
45. van Osch GJ, van der Veen SW, Verwoerd-Verhoef HL: In vitro redifferentiation of culture-expanded rabbit and human auricular chondrocytes for cartilage reconstruction. Plast Reconstr Surg 2001, 107(2):433-440.
46. de Chalain T, Phillips JH, Hinek A: Bioengineering of elastic cartilage with aggregated porcine and human auricular chondrocytes and hydrogels containing alginate, collagen, and kappa-elastin. J Biomed Mater Res 1999, 44(3):280-288.
47. Yamaoka H, Asato H, Ogasawara T, Nishizawa S, Takahashi T, Nakatsuka T, Koshima I, Nakamura K, Kawaguchi H, Chung UI et al: Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials. J Biomed Mater Res A 2006, 78(1):1-11.
48. Kamil SH, Vacanti MP, Vacanti CA, Eavey RD: Microtia chondrocytes as a donor source for tissue-engineered cartilage. Laryngoscope 2004, 114(12):2187-2190.
49. Mandl EW, Jahr H, Koevoet JL, van Leeuwen JP, Weinans H, Verhaar JA, van Osch GJ: Fibroblast growth factor-2 in serum-free medium is a potent mitogen and reduces dedifferentiation of human ear chondrocytes in monolayer culture. Matrix Biol 2004, 23(4):231-241.
50. Saadeh PB, Brent B, Mehrara BJ, Steinbrech DS, Ting V, Gittes GK, Longaker MT: Human cartilage engineering: chondrocyte extraction, proliferation, and characterization for construct development. Ann Plast Surg 1999, 42(5):509-513.
51. Arevalo-Silva CA, Cao Y, Weng Y, Vacanti M, Rodriguez A, Vacanti CA, Eavey RD: The effect of fibroblast growth factor and transforming growth factor-beta on porcine chondrocytes and tissue-engineered autologous elastic cartilage. Tissue Eng 2001, 7(1):81-88.
52. Mehta S, Watson JT: Platelet rich concentrate: basic science and current clinical applications. J Orthop Trauma 2008, 22(6):432-438.
53. Sampson S, Gerhardt M, Mandelbaum B: Platelet rich plasma injection grafts for musculoskeletal injuries: a review. Curr Rev Musculoskelet Med 2008, 1(3-4):165-174.
54. Chen WH, Liu HY, Lo WC, Wu SC, Chi CH, Chang HY, Hsiao SH, Wu CH, Chiu WT, Chen BJ et al: Intervertebral disc regeneration in an ex vivo culture system using mesenchymal stem cells and platelet-rich plasma. Biomaterials 2009.
55. Lo WC, Chiou JF, Gelovani JG, Cheong ML, Lee CM, Liu HY, Wu CH, Wang MF, Lin CT, Deng WP: Transplantation of Embryonic Fibroblasts Treated with Platelet-Rich Plasma Induces Osteogenesis in SAMP8 Mice Monitored by Molecular Imaging. J Nucl Med 2009, 50(5):765-773.
56. Lai WF TJR, Chen C.T.: Fibrication of a cartilage implant. US patent 2003, 0152556A1.
57. DeLise AM, Fischer L, Tuan RS: Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage 2000, 8(5):309-334.
58. Wu W, Zhang J, Dong Q, Liu Y, Mao T, Chen F: Platelet-rich plasma - A promising cell carrier for micro-invasive articular cartilage repair. Med Hypotheses 2009, 72(4):455-457.
59. Arpornmaeklong P, Kochel M, Depprich R, Kubler NR, Wurzler KK: Influence of platelet-rich plasma (PRP) on osteogenic differentiation of rat bone marrow stromal cells. An in vitro study. Int J Oral Maxillofac Surg 2004, 33(1):60-70.
60. Liu Y, Kalen A, Risto O, Wahlstrom O: Fibroblast proliferation due to exposure to a platelet concentrate in vitro is pH dependent. Wound Repair Regen 2002, 10(5):336-340.
61. Del Carlo M, Jr., Loeser RF: Cell death in osteoarthritis. Curr Rheumatol Rep 2008, 10(1):37-42.
62. Hardingham T, Tew S, Murdoch A: Tissue engineering: chondrocytes and cartilage. Arthritis Res 2002, 4 Suppl 3:S63-68.
63. Demoor-Fossard M, Boittin M, Redini F, Pujol JP: Differential effects of interleukin-1 and transforming growth factor beta on the synthesis of small proteoglycans by rabbit articular chondrocytes cultured in alginate beads as compared to monolayers. Mol Cell Biochem 1999, 199(1-2):69-80.
64. Hedbom E, Hauselmann HJ: Molecular aspects of pathogenesis in osteoarthritis: the role of inflammation. Cell Mol Life Sci 2002, 59(1):45-53.
65. Knudson W, Loeser RF: CD44 and integrin matrix receptors participate in cartilage homeostasis. Cell Mol Life Sci 2002, 59(1):36-44.
66. Loeser RF: Chondrocyte integrin expression and function. Biorheology 2000, 37(1-2):109-116.
67. Aszodi A, Hunziker EB, Brakebusch C, Fassler R: Beta1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis. Genes Dev 2003, 17(19):2465-2479.
68. van der Kraan PM, Buma P, van Kuppevelt T, van den Berg WB: Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis Cartilage 2002, 10(8):631-637.
69. Miyamoto S, Teramoto H, Gutkind JS, Yamada KM: Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J Cell Biol 1996, 135(6 Pt 1):1633-1642.
70. Schneiderbauer MM, Dutton CM, Scully SP: Signaling "cross-talk" between TGF-beta1 and ECM signals in chondrocytic cells. Cell Signal 2004, 16(10):1133-1140.
71. Lai WF TJ, Chen CT: Fibrication of a cartilage implant. In: US patent. vol. 0152556A1; 2003.
72. Landesberg R, Roy M, Glickman RS: Quantification of growth factor levels using a simplified method of platelet-rich plasma gel preparation. J Oral Maxillofac Surg 2000, 58(3):297-300; discussion 300-291.
73. Ciorba A, Martini A: Tissue engineering and cartilage regeneration for auricular reconstruction. Int J Pediatr Otorhinolaryngol 2006, 70(9):1507-1515.
74. Kawase T, Okuda K, Wolff LF, Yoshie H: Platelet-rich plasma-derived fibrin clot formation stimulates collagen synthesis in periodontal ligament and osteoblastic cells in vitro. J Periodontol 2003, 74(6):858-864.
75. Tim Yoon S, Su Kim K, Li J, Soo Park J, Akamaru T, Elmer WA, Hutton WC: The effect of bone morphogenetic protein-2 on rat intervertebral disc cells in vitro. Spine 2003, 28(16):1773-1780.
76. von der Mark K, Gauss V, von der Mark H, Muller P: Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 1977, 267(5611):531-532.
77. Tay AG, Farhadi J, Suetterlin R, Pierer G, Heberer M, Martin I: Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Eng 2004, 10(5-6):762-770.
78. Wu W, Chen F, Liu Y, Ma Q, Mao T: Autologous injectable tissue-engineered cartilage by using platelet-rich plasma: experimental study in a rabbit model. J Oral Maxillofac Surg 2007, 65(10):1951-1957.
79. Marx RE: Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg 2004, 62(4):489-496.
80. Langer R, Vacanti JP: Tissue engineering. Science 1993, 260(5110):920-926.
81. Kitani Y, Kanemaru S, Umeda H, Suehiro A, Kishimoto Y, Hirano S, Nakamura T, Ito J: Laryngeal regeneration using tissue engineering techniques in a canine model. Ann Otol Rhinol Laryngol 2011, 120(1):49-56.
82. Xu W, Hu R, Fan E, Han D: Adipose-derived mesenchymal stem cells in collagen-hyaluronic acid gel composite scaffolds for vocal fold regeneration. Ann Otol Rhinol Laryngol 2011, 120(2):123-130.
論文全文使用權限
  • 同意授權瀏覽/列印電子全文服務,於2014-07-01起公開。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446