進階搜尋


  查詢北醫館藏
系統識別號 U0007-3007201118303800
論文名稱(中文) 利用羥乙基纖維素和幾丁聚醣開發Alendronate sodium之胃滯留藥物傳遞系統
論文名稱(英文) Development of Gastroretentive Drug Delivery System for Alendronate sodium Based on Hydroxyethylcellulose and Chitosan
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 99
學期 2
出版年 100
研究生(中文) 邱喬琪
研究生(英文) Chiao-Chi Chiu
學號 M301098017
學位類別 碩士
語文別 中文
口試日期 2011-07-19
論文頁數 90頁
口試委員 指導教授-許明照
委員-林文貞
委員-林山陽
委員-蔡義弘
委員-何秀娥
委員-林本元
中文關鍵字 胃滯留藥物傳遞系統  膨脹  幾丁聚醣 
英文關鍵字 gastroretentive  swellimg  chitosan 
學科別分類
中文摘要 骨質疏鬆症為目前常見的疾病之一,目前市面上許多治療方法當中最常使用的即是雙磷酸類(bisphosphonates)藥物,如 alendronate 、risedronate等。然而雙磷酸鹽類藥物最大的缺點即為口服吸收率極低以及造成上消化道黏膜的局部刺激,因此本實驗目的主要是以具有膨脹特性的幾丁聚醣溶於不同酸中形成不同的鹽類型式和聚合物羥乙基纖維素以不同比例混合來開發新穎的胃滯留藥物傳遞系統進而藉由延長胃部停留時間使模式藥物alendronate sodium經過其吸收部位時間增加導致其口服吸收率上升。此外,利用alendronate sodium和幾丁聚醣之間的結合,進而減少藥物對於消化道黏膜的局部刺激。
以不同分子量的幾丁聚醣和羥乙基纖維素以不同比例分別溶在醋酸、琥珀酸、檸檬酸、乳酸、蘋果酸,固定一噸的壓力打成錠,進而觀察其膨脹的狀態及錠劑結構,經綜合比較,發現以酸類處理後,醋酸鹽、琥珀酸鹽、檸檬酸鹽擁有較佳的膨脹效果以及錠劑結構;低中高分子量的幾丁聚醣的比較發現高分子量幾丁聚醣由於分子量及黏度過高進而導致錠劑過度黏稠緊密,無法有效導水進入而達到良好之膨脹效果;隨著羥乙基纖維素的增加,膨脹的效果下降,但錠劑結構相對提升。
進而以低分子量及中分子量的幾丁聚醣和羥乙基纖維素以不同比例分別溶在醋酸、琥珀酸、檸檬酸,進一步評估不同的打錠壓力(0.5噸/ 1噸/ 1.5噸)所造成的影響。實驗結果發現低分子量琥珀酸鹽及低分子量檸檬酸鹽在0.5噸的打錠壓力下均可快速的達到懸浮之效果;而1.5噸的打錠壓力在某些處方則有有較佳之膨脹效果。
經綜合比較之,挑選具有最佳膨脹及懸浮效果並具有良好胃滯留效果之處方添加模式藥物:alendronate sodium。結果顯示藥物皆能有效的緩慢釋出,沒有快速釋出的現象,而釋放機轉主要可由藥物擴散與膠體膨脹緩解效用所管控。
因此可以預期利用本研究所開發的胃滯留劑型於體內之緩釋效果不但可以提高模式藥物 alendronate的生體可用率,其與幾丁聚醣之間的正負電結合也可降低模式藥物對於腸胃道之副作用。
英文摘要 Osteoporosis is one of the common diseases, and currentlythe most used drug is biphosphonates. However, the adverse reactions in bisphosphonates are local stimulation on upper digestive mucous and low bioavailability. Hence, the aim of the study was to develop a novel gastrorentive drug delivery system (GRDDS) with different molecular weight of swellable chitosan and hydroxyethyl cellulose. GRDDs can prolong alendronate sodium in the upper part of absorption region by increasing the gastric retention time. Also, the positive and negative charge interaction between alendronate sodium and chitosan can decrease the irritation of upper digestive mucous.
Chitosans with various molecular weights formed CS-salt in acetic acid, succinic acid, citric acid, lactic acid and malic acid. And then various ratios of hydroxyethyl cellulose were added to form swellable tablets. After comparison with swell ability and formula structure, Chitosan of acetate, succinate and citrate salt forms possessed a better physical charasteristics for gastroretentive ability; Comparison among chitosans with various molecular weight concluded that high molecular weight chitosan has a worse swelling ability due to the retardation of water inward progression by its high viscosity and higher molecular weight; With increasing ratio of hydroxyethyl cellulose, the swelling ability of chitosan tablet deteriorated but improving characteristics of resulting gel structure.
Furthermore, chitosan with low and medium molecular weight were converted to CS-salt in acetic acid, succinic acid and citric acid. And swellable tablets were formulated with various ratio of hydroxyethyl cellulose. After comparison with different tableting pressure(0.5 ton/ 1 ton/ 1.5 ton), LMCS-succinate and LMCS-citrate in 0.5 ton tableting pressure have the less floating leg time and some formulae have great performance on swelling ability in 1.5 ton tableting pressure.
Based on the result of Part I, formulae with the best gastroretentive effect were selected to evaluate the properties of model drug: alendronate sodium. As a result, drugs release slowly rather than fast. And the release model was controlled by drug diffusion and gel swelling relaxation.
Consequently, we developed GRDDs which can increase the bioavailability of model drug, alendronate sodium, and the interaction between model drug and chitosan can also decrease the irritation of upper digestive mucous.
論文目次 目錄......I
附圖目錄..III
附表目錄..VI
中文摘要..VIII
Abstract..X
第壹章 緒論......1
第一節 研究背景介紹......1
一、骨質疏鬆症......1
二、模式藥物:Alendronate sodium......4
三、胃滯留藥物傳遞系統簡介..6
四、親水性凝膠簡介..18
五、幾丁聚醣之鍵結方式.....20
第二節 研究動機與目的.....24
第貳章 實驗材料與方法.....25
第一節 實驗材料及儀器設備..25
一、實驗材料......25
二、儀器設備......25
第二節 實驗方法..27
一、處方設計開發及製備.....27
二、漂浮能力試驗..31
三、錠劑硬度試驗..31
四、水分含量試驗..32
五、體外溶離試驗..32
五、分析方法......32
第參章 結果與討論 ..35
第一節 分析方法之確立.....35
一、Alendronate sodium紫外分光光度計之體外分析方法.....35
第二節 配方之實驗結果.....39
一、Chitosan-salt與HEC之綜合評估.....39
二、打錠壓力影響之綜合評估..50
三、體外溶離試驗..79
第肆章 結論......85
參考文獻..87
參考文獻 1. Brennan, O., Kennedy, O.D., Lee, T.C., Rackard, S.M. & Obrien, F.J. Effects of estrogen deficiency and bisphosphonate therapy on osteocyte viability and microdamage accumulation in an ovine model of osteoporosis. Journal of Orthopaedic Research 29, 419-424 (2011).
2. Kim, S.J. Diagnosis and management of noninfectious pediatric uveitis. International Ophthalmology Clinics 51, 129-145 (2011).
3. Van Den Bergh, J.P.W., Bours, S.P.G., Van Geel, T.A.C.M. & Geusens, P.P. Optimal use of vitamin D when treating osteoporosis. Current Osteoporosis Reports 9, 36-42 (2011).
4. McClune, B.L., et al. Screening, prevention and management of osteoporosis and bone loss in adult and pediatric hematopoietic cell transplant recipients. Bone Marrow Transplantation 46, 1-9 (2011).
5. Close, P., Neuprez, A. & Reginster, J.Y. Developments in the pharmacotherapeutic management of osteoporosis. Expert Opinion on Pharmacotherapy 7, 1603-1615 (2006).
6. Rosen, C.J., et al. Treatment with once-weekly alendronate 70 mg compared with once-weekly risedronate 35 mg in women with postmenopausal osteoporosis: A randomized double-blind study. Journal of Bone and Mineral Research 20, 141-151 (2005).
7. Eastell, R., Walsh, J.S., Watts, N.B. & Siris, E. Bisphosphonates for postmenopausal osteoporosis. Bone 49, 82-88 (2011).
8. Sambrook, P. Once weekly alendronate. Drugs of Today 39, 339-346 (2003).
9. Watts, N.B. Bisphosphonate treatment of osteoporosis. Clinics in Geriatric Medicine 19, 395-414 (2003).
10. Cremers, S. & Papapoulos, S. Pharmacology of bisphosphonates. Bone (2011).
11. Hoffman, A., et al. Pharmacokinetic and pharmacodynamic aspects of gastroretentive dosage forms. International Journal of Pharmaceutics 277, 141-153 (2004).
12. Chawla, G., Gupta, P., Koradia, V. & Bansal, A.K. Gastroretention: A means to address regional variability in intestinal drug absorption. Pharmaceutical Technology 27, 50-68 (2003).
13. Chavanpatil, M., Jain, P., Chaudhari, S., Shear, R. & Vavia, P. Development of sustained release gastroretentive drug delivery system for ofloxacin: In vitro and in vivo evaluation. International Journal of Pharmaceutics 304, 178-184 (2005).
14. Davis, S.S. Formulation strategies for absorption windows. Drug Discovery Today 10, 249-257 (2005).
15. Chavanpatil, M.D., Jain, P., Chaudhari, S., Shear, R. & Vavia, P.R. Novel sustained release, swellable and bioadhesive gastroretentive drug delivery system for ofloxacin. International Journal of Pharmaceutics 316, 86-92 (2006).
16. Pawar, V.K., et al. Gastroretentive dosage forms: A review with special emphasis on floating drug delivery systems. Drug Delivery 18, 97-110 (2011).
17. Park, K. & Robinson, J.R. Bioadhesive polymers as platforms for oral-controlled drug delivery: Method to study bioadhesion. International Journal of Pharmaceutics 19, 107-127 (1984).
18. Talukder, R. & Fassihi, R. Gastroretentive delivery systems: A mini review. Drug Development and Industrial Pharmacy 30, 1019-1028 (2004).
19. Bardonnet, P.L., Faivre, V., Pugh, W.J., Piffaretti, J.C. & Falson, F. Gastroretentive dosage forms: Overview and special case of Helicobacter pylori. Journal of Controlled Release 111, 1-18 (2006).
20. Arunachalam, A., et al. Floating drug delivery systems: A review. International Journal of Research in Pharmaceutical Sciences 2, 76-83 (2011).
21. Waterman, K.C. A critical review of gastric retentive controlled drug delivery. Pharmaceutical Development and Technology 12, 1-10 (2007).
22. Berger, J., et al. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics 57, 19-34 (2004).
23. Shalaby, W.S.W., Blevins, W.E. & Park, K. In vitro and in vivo studies of enzyme-digestible hydrogels for oral drug delivery. Journal of Controlled Release 19, 131-144 (1992).
24. Klausner, E.A., et al. Novel gastroretentive dosage forms: Evaluation of gastroretentivity and its effect on levodopa absorption in humans. Pharmaceutical Research 20, 1466-1473 (2003).
25. Gröning, R., Cloer, C., Georgarakis, M. & Müller, R.S. Compressed collagen sponges as gastroretentive dosage forms: In vitro and in vivo studies. European Journal of Pharmaceutical Sciences 30, 1-6 (2007).
26. Costa, P. & Sousa Lobo, J.M. Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences 13, 123-133 (2001).
27. Lin, C.C. & Metters, A.T. Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews 58, 1379-1408 (2006).
28. Shu, X.Z., Zhu, K.J. & Song, W. Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. International Journal of Pharmaceutics 212, 19-28 (2001).
29. Bhattarai, N., Gunn, J. & Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Advanced Drug Delivery Reviews 62, 83-99 (2010).
30. Lin, S.Y. & Lin, P.C. Effect of acid type, acetic acid and sodium carboxymethyl cellulose concentrations on the formation, micrometric, dissolution and floating properties of theophylline chitosan microcapsules. Chemical and Pharmaceutical Bulletin 40, 2491-2497 (1992).
31. Chen, R.N., Ho, H.O., Yu, C.Y. & Sheu, M.T. Development of swelling/floating gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose for Losartan and its clinical relevance in healthy volunteers with CYP2C9 polymorphism. European Journal of Pharmaceutical Sciences 39, 82-89 (2010).
32. 蕭雯萱. 膨脹型胃滯留傳遞系統的開發與特性探討. (2006).
33. Zhao, Q.S., Cheng, X.J., Ji, Q.X., Kang, C.Z. & Chen, X.G. Effect of organic and inorganic acids on chitosan/glycerophosphate thermosensitive hydrogel. Journal of Sol-Gel Science and Technology 50, 111-118 (2009).
34. Kuljanin, J., Janković, I., Nedeljković, J., Prstojević, D. & Marinković, V. Spectrophotometric determination of alendronate in pharmaceutical formulations via complex formation with Fe(III) ions. Journal of Pharmaceutical and Biomedical Analysis 28, 1215-1220 (2002).
35. Leguerinel, I. & Mafart, P. Modelling the influence of pH and organic acid types on thermal inactivation of Bacillus cereus spores. International Journal of Food Microbiology 63, 29-34 (2001).
論文全文使用權限
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446