進階搜尋


  查詢北醫館藏
系統識別號 U0007-3006201111293100
論文名稱(中文) 以蘭嶼迷你豬評估不同植體螺紋設計和間距對骨整合之影響
論文名稱(英文) Effect of different thread geometry and inter-distances on the osseointegration of dental implant with Lan-Yu mini-pig model
校院名稱 臺北醫學大學
系所名稱(中) 牙醫學系碩博士班
系所名稱(英) School of Dentistry
學年度 99
學期 2
出版年 100
研究生(中文) 錢世康
研究生(英文) Shih-Kang Chien
學號 M204096010
學位類別 碩士
語文別 中文
口試日期 2011-07-07
論文頁數 76頁
口試委員 指導教授-李勝揚
共同指導教授-王敦正
委員-楊正昌
委員-許明倫
委員-郭宗甫
中文關鍵字 植體  迷你豬  螺距  螺紋外型  骨植體接觸百分比  免疫化學組織染色 
英文關鍵字 implants  mini-pig  pitch  geometry  bone-to-implant contact  immunohistochemistry 
學科別分類
中文摘要 目的:本實驗乃比較兩種不同螺紋外型(梯型及方型)之植體,在不同螺紋間距(1.6、1.2、1.0、0.8、0.6 mm)下,植入蘭嶼豬上下顎骨後,評估可達到最多骨生成之最佳化螺紋組合。

材料與方法:共8隻四個月大蘭嶼迷你豬,先行拔除同側上下顎之乳齒及其底下恆牙牙胚。並於2個月後植入兩種螺紋之植體。其中4隻豬於植入後8週犧牲,其餘4隻於16週犧牲。犧牲後取下包含植體之骨塊以進行掃描式電子顯微鏡、Masson Goldner染色及免疫組織化學染色,分別觀察螺距間軟硬組織之生長、骨組織之生長及骨組織之成熟度。以螺紋間之骨植體接觸百分比(BIC, bone-to-implant contact)作為測量,其數值以(平均值 ± 標準差)計算呈現。顯著差界值為P < 0.05。同測試時間點同螺紋間距而不同螺紋外型,與不同測試時間點同螺紋外型同螺紋間距者以t檢定作統計,相同測試時間點相同螺紋外型但具不同螺紋間距則以變異數分析(ANOVA)作統計。

結果:在8週組中,以掃描式電子顯微鏡(SEM)觀察下之方型螺紋,其骨植體接觸百分比(BIC)依螺紋間距1.6 mm、1.4 mm、1.0 mm、0.8 mm、0.6 mm分別為24.8 ± 9.8%、40.9 ± 10.3%、36.8 ± 8.9%、33.1 ± 14.2%、25.1 ± 17.4%;而梯型螺紋則依序為45.8 ± 15.0%、59.2 ± 7.8%、64.7 ± 13.6%、48.3 ± 12.0%、35.9 ± 7.6%。在Masson Goldner染色下之BIC,方型螺紋依序為24.4 ± 13.6%、24.4 ± 15.7%、33.6 ± 13.6%、25.2 ± 18.0%、14.3 ± 10.9%;梯型螺紋為41.5 ± 10.3%、46.9 ± 15.1%、53.1 ± 8.4%、62.8 ± 7.5%、37.0 ± 13.3%。在16週組,SEM之結果,方型螺紋為32.4 ± 18.0%、35.2 ± 6.6%、58.9 ± 19.4%、42.6 ± 18.4%、38.0 ± 9.5%;梯型螺紋為45.6 ± 7.3%、53.9 ± 15.3%、61.9 ± 9.1%、69.2 ± 4.4%、61.4 ± 8.9%。在Masson Goldner染色組中,方型螺紋為37.2 ± 7.2%、44.1 ± 14.6%、55.4 ± 18.8% 、40.1 ± 12.5%、34.5 ± 9.5%;梯型螺紋為44.7 ± 13.5%、45.8 ± 13.4%、53.4 ± 8.5%、64.1 ± 10.8%、42.3 ± 11.7%。8週與16週的實驗均顯示,不論何種螺距,在BIC上梯型螺紋均優於方型螺紋,其中又以16週之0.8 mm螺距的梯型螺紋之BIC較多。檢測時間點上,大多數方型螺紋螺距在16週之骨生成量優於8週;而梯型螺紋則於8週與16週無統計學上顯著差異。免疫組織化學染色發現,BMP-2與OC在8週及16週皆出現在梯型與方型螺紋之骨組織中,但梯形螺紋之BMP-2及OC呈現較規則排列,且在16週時觀察到骨元現象,顯示梯型螺紋所產生骨組織較方型螺紋來得成熟。

結論:本研究顯示梯型螺紋為人工植牙較佳設計之螺紋,且其間距為0.8 mm時,比方型螺紋快速達到較好之骨整合效果。
英文摘要 Purpose: The objective of this study was to evaluate the efficacy of osteointegration for the implants with two different threads shape (trapezoidal and square) and different thread pitch (1.6 mm, 1.2 mm, 1.0 mm, 0.8 mm, 0.6 mm), implanted in mini-pig jaw, to assess the best combination of threads.

Method: Eight Lan-Yu mini-pigs were implanted with 2 different thread shape implants (trapezoidal and square) with five different thread pitchs (1.4 mm, 1.2 mm, 1.0 mm, 0.8 mm, 0.6 mm) into maxilla and mandible. Before implantation, the primary premolars and tooth buds of secondary premolar within maxilla and mandible in the same side were removed . After two months,all eight implants were placed within maxilla and mandible in each mini-pig. Four implants thread were trapezoidal shape and the others were square shape. The eight Lan-Yu mini-pigs were divided into 2 groups for sacrifice after implantation, for 8 weeks and 16 weeks. The hard and soft tissue between each threads was observed by the scanning electron microscope (SEM). The bone formation in the each threads after implantation was observed by the Masson Goldner’s stain. The bone formation and maturation was detected by immunohistochemistry stain with bone morphogenetic protein 2 (BMP-2) and osteocalcin (OC). The Bone-to-Implant contact (BIC) was collected under scanning electron microscope (SEM) and Masson Goldner’s stain. The data was expressed with mean ± standard deviation. The significant difference was ranged at P < 0.05. The different pitch in different thread implant was detected by one-way analysis of variance (ANOVA). The results of different thread shape in same pitch were compared by the t test.
Results:In the 8 weeks group, the BIC for square thread shape with each pitch from 1.4 mm to 0.6 mm were individually get 24.8 ± 9.8%、40.9 ± 10.3%、36.8 ± 8.9%、33.1 ± 14.2% and 25.1 ± 17.4% by SEM method. The group of trapezoidal thread shapes were individually get 45.8 ± 15.0%、59.2 ± 7.8%、64.7 ± 13.6%、48.3 ± 12.0% and 35.9 ± 7.6%. The square thread shapes were individually get 24.4 ± 13.6%、24.4 ± 15.7%、33.6 ± 13.6%、25.2 ± 18.0% and 14.3 ± 10.9% by Masson Goldner’s stain, the trapezoidal thread shapes were 41.5 ± 10.3%、46.9 ± 15.1%、53.1 ± 8.4%、62.8 ± 7.5% and 37.0 ± 13.3%. In the 16 weeks group, the BIC for the square thread shapes were individually get 45.6 ± 7.3%、53.9 ± 15.3%、61.9 ± 9.1%、69.2 ± 4.4% and 61.4 ± 8.9%, the trapezoidal thread shapes were individually get 45.6 ± 7.3%、53. 9± 15.3%、61.9 ± 9.1%、69.2 ± 4.4% and 61.4 ± 8.9% by SEM method. The square thread shapes were individually get 37.2 ± 7.2%、44.1 ± 14.6%、55.4 ± 18.8% 、40.1 ± 12.5% and 34.5 ± 9.5%, the trapezoidal thread shapes were individually get 44.7 ± 13.5%、45.8 ± 13.4%、53.4 ± 8.5%、64.1 ± 10.8% and 42.3 ± 11.7% by the Masson Goldner’s stain. In 8 weeks, the BIC in the implants of trapezoidal thread shape with 1.0 mm and 0.8 mm in pitch distance gained much more than the square thread shape. In 16 week group, the BIC in the implants with trapezoidal thread shape with 0.8 mm in pitch distance had the most value. Comparison between 8 and 16 week group, the BIC value in the 16 week group of square thread shapes was better than in 8 week group. The BIC value in the trapezoidal thread shape was no significant different between 8 and 16 week group. The bone morphogenetic protein 2 (BMP-2) and osteocalcin (OC) were appeared in both thread pattern. The BMP-2 and OC in trapezoidal thread was showed more regular than the square thread in arrangement. In the 16 weeks group, the osteon was appeared in trapezoidal thread pattern. The bone in the trapezoidal thread group was more mature than in the square thread pattern.

Conclusion: The obtained result from this study support that the implants of trapezoidal thread shape with 0.8 mm pitch distance which can achieve the best value of BIC and faster than square thread shape. The implant of trapezoidal thread shape with 0.8 mm pitch distance is the best combination for dental implant.
論文目次 標題......................................................i
審定書...................................................ii
論文書目同意公開申請書..................................iii
學位考試保密同意書暨簽到表...............................iv
碩士論文授權書............................................v
誌謝.....................................................vi
目錄....................................................vii
表目錄....................................................x
圖目錄...................................................xi
中文摘要................................................xiv
英文摘要...............................................xvii
第一章 緒論.............................................. 1
1.1.背景.............................................1
1.2. 文獻回顧.........................................4
1.2.1. 過去人工植體設計...........................4
1.2.2. 現今人工植體設計...........................5
1.2.3. 植體外型及咬合力之關係.....................8
1.2.4. 動物實驗..................................10
1.2.5. 掃描式電子顯微鏡..........................16
1.2.6. Masson Goldner染色........................17
1.2.7. 免疫組織化學法染色........................18
1.3. 研究目的........................................21
1.4. 研究假說........................................23
第二章 研究材料與方法....................................24
2.1. 研究對象........................................24
2.2. 材料............................................24
2.3. 麻醉............................................24
2.4. 手術............................................25
2.4.1. 第一階段手術..............................25
2.4.2. 第二階段手術..............................26
2.5. 犧牲............................................26
2.6. 標本製備........................................27
2.6.1. 電子顯微鏡之標本製備......................27
2.6.2. Masson Goldner染色之標本製備..............27
2.6.3. 免疫化學染色之標本製備....................29
2.7. 評估............................................30
2.8. 統計分析........................................31
第三章 結果..............................................32
第四章 討論..............................................37
第五章 結論與展望........................................41
第六章 參考文獻..........................................42
第七章 附錄..............................................49
7.1. 表.............................................53
7.2. 圖.............................................65
7.3.動物試驗許可證明...............................106

參考文獻 Adell R, Lekholm U, Rockler B, Branemark PI.A 15-year study of osseointegrated implants in the treatment of the edentulous jaw.Int J Oral Surg. 1981; Dec;10(6):387-416.

Aerssens J, Boonen S, Lowet G, Dequeker J Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology. 1998; 139: 663-670.

Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. 2007 Mar 2;13:1-10.

Albrektsson, T., Branemark, P.I., Hansson, H.A. & Lindstrom, J. Osseointegrated titanium implants. Requirements for ensuring a longlasting,direct bone-to-implant anchorage in man. Acta Orthop Scand. 1981;52(2):155-70.

An YH, Friedman RJ. Animal selections in orthopaedic research. In: Animal Models in Orthopaedic Research. CRC Press LLC, Boca Raton, FL,. 1999; pp 39-57

Baas J, Lamberg A, Jensen TB, Elmengaard B, Soballe K.. The bovine bone protein lyophilisate Colloss improves fixation of allografted implants—an experimental study in dogs. Acta Orthopaedica 2006; 77 (5): 791–798

Bodine, R.L., Yanase, R.T. & Bodine, A. Forty years of experience with subperiosteal implant dentures in 41 edentulous patients. J Prosthet Dent. 1996 Jan;75(1):33-44.

Boggan RS, Strong JT, Misch CE, Bidez MW. Influence of hex geometry and prosthetic table width on static and fatigue strength of dental implants. J Prosthet Dent. 1999 Oct;82(4):436-40.

Bolind PK, Johansson CB, Becker W, Langer L, Sevetz EB Jr, Albrektsson TO. A descriptive study on retrieved non-threaded and threaded implant designs. Clin Oral Implants Res. 2005 Aug;16(4):447-55.

Bonfante EA, Granato R, Marin C, Suzuki M, Oliveira SR, Giro G, Coelho PG. Early bone healing and biomechanical fixation of dual acid-etched and As-machined implants with healing chambers: An experimental study in dogs. Int J Oral Maxillofac Implants. 2011 Jan-Feb;26(1):75-82.

Bosker H : The transmandibular implant, academic thesis, The Netherlands, 1986, University if Utrecht.

Brunski JB. In vivo bone response to biomechanical loading at the bone/dental-implant interface. Adv Dent Res. 1999 Jun;13:99-119.

Bumgardner JD, Boring JG, Cooper RC Jr, Gao C, Givaruangsawat S, Gilbert JA, Misch CM, Steflik DE. Preliminary evaluation of a new dental implant design in canine models. Implant Dent. 2000;9(3):252-60.

Buchter A, Joos U, Wiesmann HP, Seper L, Meyer U. Biological and biomechanical evaluation of interface reaction at conical screw-type implants. Head Face Med. 2006 Feb 21;2:5.

Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res. 1991 Jul;25(7):889-902.

Castaneda S, Largo R, Calvo E, Rodriguez-Salvanes F, Marcos ME, Diaz-Curiel M, Herrero-Beaumont G. Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits. Skeletal Radiol. 2006 35: 34-41

Chun, H.J., Cheong, S.Y., Han, J.H., Heo, S.J., Chung, J.P., Rhyu, I.C., Choi, Y.C., Baik, H.K., Ku, Y. & Kim, M.H. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. Journal of Oral Rehabilitation. 2002, 29: 565–574.

Chung, S.H., Heo, S.J., Koak, J.Y., Kim, S.K., Lee, J.B., Han, J.S., Han, C.H., Rhyu, I.C. & Lee, S.J. Effects of implant geometry and surface treatment on osseointegration after functional loading: a dog study. Journal of Oral Rehabilitation. 2008, 35: 229–236.

Coons AH, Creech HJ, Jones RN: Immunological properties of an antibody containing a fluorescent group. Proc Soc Exp Biol Med 1941,47:200–202,

Coons AH, Kaplan MH: Localization of antigen in tissue cells. II. Improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med. 1950,91:1–13.

Coons AH, Leduc EH, Connolly JM: Studies on antibody production. I: A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. J Exp Med 1955, 102:49–60,

Cornelius von Wilmowsky, Sebastian Bauer, Stefanie Roedl. The diameter of anodic TiO2 nanotubes affects bone formation and correlates with the bone morphogenetic protein-2 expression in vivo. Article first published online: 28 Mar 2011.

Fernandez-Tresguerres-Hernandez-Gil I, Alobera-Gracia MA, del Canto Pingarron M, Jerez LB. Physiological bases of bone regeneration I. Histology and physiology of bone tissue. Med Oral Patol Oral Cir Bucal. 2006, 11: E47-E51

Frost, H.M. Skeletal structural adaptations to mechanical usage (satmu): edefining Wolff’s law: the bone modeling problem. Anatomical Record .1990, 226: 403–413.

Geng, J.P., Ma, Q.S., Xu, W., Tan, K.B. & Liu, G.R. Finite element analysis of four threadform configurations in a stepped screw implant. Journal of Oral Rehabilitation. 2004, 31: 233–239

Goiato MC, dos Santos DM, Monteiro DR Joint sounds in complete denture wearers. Literature review. N Y State Dent J. 2010 Jan;76(1):46-9.

Goldberg N.I. & Gershkoff A. The implant lower denture. Dental Digest.1949, 55:490-495

Goldner J. A modification of the Masson trichrome technique for routine laboratory purposes.

Goodacre, C.J., Bernal, G., Rungcharassaeng, K. & Kan, J.Y. Clinical complications with implants and implant prostheses. Journal of Prosthetic Dentistry. 2003, 90: 121–132.

Gruber H. Adaptations of Goldner’s Masson Trichrome Stain for the Study of Undecalcified Plastic Embedded Bone. Biotech. Histochem. 1992,(67):30-34.

Hansson, S. &Werke,M. The implant thread as a retention element in cortical bone: The effect of thread size and thread profile: a finite element study. Journal of Biomechanics.2003, 36: 1247–1258

Hazzard DG, Bronson RT, McClearn GE, Strong R Selection of an appropriate animal model to study aging processes with special emphasis on the use of rat strains. J Gerontol. 1992, 47: B63-B64.

Heba Abuhussein,Giorgio Pagni ,Alberto Rebaudi, Hom-Lay Wang, The effect of thread pattern upon implant osseointegration ,Clin. Oral Impl. Res. 21, 2010; 129–136

International Standard ISO 10993-6 (1994) Biological evaluation of medical devices - Part 6. 1-11.

Kim SW, Kwon YH, Chung JH, Shin SI, Herr Y. The effect of Er:YAG laser irradiation on the surface microstructure and roughness of Hydroxyapatite-coated implant. J Periodontal Implant Sci. 2010 Dec;40(6):276-82.

Kong, L., Liu, B.L., Hu, K.J., Li, D.H., Song, Y.L., Ma, P. & Yang, J. optimized thread pitch design and stress analysis of the cylinder screwed dental implant. Hua Xi Kou Qiang Yi Xue Za Zhi. 2006, 24: 509–512–515.

Kragstrup J, Richards A, Fejerskov O Effects of fluoride on cortical bone remodeling in the growing domestic pig. Bone .1989, 10: 421-424.

Kung S., Devlin H. The osteoinductive effect of chitosan-collagen composites around pure titanium implant surfaces in rats. J Periodontal Res. 2011 Feb;46(1):126-33.

Laiblin C, Jaeschke G Klinisch-chemische Untersuchungen des Knochen- und Muskelstoffwechsels unter Belastung bein Gottinger Miniaturschwein – eine experimentelle Studie ,Berl Munch Tierarztl Wschr. 1979;92: 124

Lemons, J. Biomaterials in Implant Dentistry Contemporary Implant Dentistry. St Louis: Mosby. 1993

Liebschner MA Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials. 2004;25: 1697-1714

Lian JB, Stein GS, Stein JL, van Wijnen AJ. Osteocalcin gene promoter: unlocking the secrets for regulation of osteoblast growth and differentiation. J Cell Biochem Suppl. 1998;30-31:62-72

Ma, P., Liu, H.C., Li, D.H., Lin, S., Shi, Z. & Peng, Q.J. influence of helix angle and density on primary stability of immediately loaded dental implants: Three-dimensional finite element analysis. Zhonghua Kou Qiang Yi Xue Za Zhi. 2007; 42: 618–62

Masson PJ. Some histological methods: trichrome stainings and their preliminary technique. Tech Methods 1929; 12:75-90.

Martini L, Fini M, Giavaresi G, Giardino R Sheep model in orthopedic research: a literature review. Comp Med. 2001; 51: 292-299

McCarthy DJ, Herzberg AJ, Saunders MM. The morphogenesis of common osseous pedal lesions. Part I: Scanning electron microscopic analysis. J Am Podiatry Assoc. 1983 Oct;73(10):497-509.

Misch, C.E., Bidez, M.W. & Sharawy, M. A bioengineered implant for a predetermined bone cellular response to loading forces. A literature review and case report. Journal of Periodontology. 2001; 72: 1276–1286

Misch, C. Contemporary Implant Dentistry. St Louis, MI: Elsevier. 2008

Nafei A, Danielsen CC, Linde F, Hvid I Properties of growing trabecular ovine bone. Part I: Mechanical and physical properties. J Bone Joint Surg Br. 2000; 82: 910-920.

Neyt JG, Buckwalter JA, Carroll NC. Use of animal models in musculoskeletal research. Iowa Orthop J. 1998; 18: 118-123.

Newman E, Turner AS, Wark JD The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone. 1995; 16: 277S-284S

Pierce AM, Lindskog S, Hammarstrom L. Osteoclasts: structure and function. Electron Microsc Rev. 1991;4(1):1-45.

Prendergast, P.J. & Huiskes, R. Microdamage and osteocyte-lacuna strain in bone: amicrostructural finite element analysis. Journal of Biomechanical Engineering. 1996; 118: 240–246

Puleo D.A.,Nanci A. Understanding and controlling the bone-implant interface. Biomaterials. 1999; 20: 2311-21

Ramos-Vara J. A. Technical Aspects of Immunohistochemistry. Vet Pathol. 2005; 42: 405-426

Robert Schenk, Buser. Healing Pattern of Bone Regeneration in
Membrane-Protected Defects: A Histologic Study in the
Canine Mandible. T Int J Oral Maxillofac Implants. 1994; Jan-Feb;9(1):13-29.

Schmidt C, Ignatius AA, Claes LE Proliferation and differentiation parameters of human osteoblasts on titanium and steel surfaces. J Biomed Mater Res. 2001; 54: 209-215.

Schimandle JH, Boden SD Spine update. The use of animal models to study spinal fusion. Spine. 1994; 19:1998-2006

Schlegel K, Thorwarth M, Plesinac A, Rupprecht S. Expression of bone matrix proteins during the osseus healing of topical conditioned implants: an experimental study, Clin. Oral Impl. Res. 2006; 17:666-672

Schwarz F, Herten M, Sager M, Wieland M, Dard M, Becker J. Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLAs titanium implants: preliminary results of a pilot study in dogs. Clin. Oral Impl. Res. 2007; 18: 481–488

Stadlinger, B.; Hennig, M.; Eckelt, U.; Kuhlisch, E.; Mai, R. Comparison of zirconia and titanium implants after a short healing period. A pilot study in minipig. Int. J. Oral Maxillofac. Surg. 2010; 39: 585–592

Stadlinger B, Bierbaum S, Grimmer S. Increased bone formation around coated implants. J Clin Periodontol. 2009; Aug;36(8):698-704.

Steflik DE, McKinney RV, Sisk AL, Parr GR, Koth DL. Scanning electron microscopic studies of the oral tissue responses to dental implants. Scanning Microsc. 1990; Dec;4(4):1021-37

Taylor CR, Shi S-R, Barr NJ, Wu N: Techniques of immunohistochemistry: principles, pitfalls, and standardization. In: Diagnostic Immunohistochemistry, ed. Dabbs DJ, pp. 3–43. Churchill Livingstone, New York, NY, 2002

Thorwarth M, Schultze-Mosgau S, Kessler P, Wiltfang J, Schlegel KA Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite. J Oral Maxillofac Surg. 2005; 63: 1626-1633.

Traini T, Neugebauer J, Thams U, Zoller JE, Caputi S, Piattelli A.i. Peri-Implant Bone Organization under Immediate Loading Conditions: Collagen Fiber Orientation and Mineral Density Analyses in the Minipig Model. Clinical Implant Dentistry and Related Research, Volume 11, Number 1, 2009 Mar;11(1):41-51.

Wang X, Mabrey JD, Agrawal CM (An interspecies comparison of bone fracture properties. Biomed Mater Eng. 1998; 8: 1-9.

Wolff, J.(1892) The laws of bone remodeling. Berlin: Springer

論文全文使用權限
  • 同意授權瀏覽/列印電子全文服務,於2011-08-18起公開。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446