進階搜尋


  查詢北醫館藏
系統識別號 U0007-2807201013572600
論文名稱(中文) 紅景天之抗老化成分
論文名稱(英文) Anti-aging Constituents of Rhodiola rosea
校院名稱 臺北醫學大學
系所名稱(中) 生藥學研究所
系所名稱(英) Graduate Institute of Pharmacognosy
學年度 98
學期 2
出版年 99
研究生(中文) 徐婕之
研究生(英文) Chieh-Chih Hsu
學號 M303097011
學位類別 碩士
語文別 中文
口試日期 2010-06-30
論文頁數 126頁
口試委員 指導教授-李慶國
共同指導教授-蕭哲志
委員-莊聲宏
委員-盧重光
委員-李宗徽
中文關鍵字 紅景天  抗老化 
英文關鍵字 Anti-aging 
學科別分類
中文摘要 皮膚老化是一個複雜的生化現象包括了兩種因素,分別為內在因素老化與外在因素老化。但是其共同特點皆牽涉到基質金屬蛋白酶 (Matrix Metalloproteinases; MMPs) 的表現量增加。 MMPs是一種鋅離子依賴內胜肽酵素的家族,負責降解皮膚的細胞外基質 (Extracellular matrix; ECM),MMPs在抗老化機制上扮演著重要的角色,當皮膚一旦接受到外來的刺激,例如長期接受UV的照射,會促使 MMPs的表現量增加,進而過度分解 ECM造成皮膚產生皺紋、鬆弛現象與失去彈性等。而若能抑制 MMPs的活性,對於減少皮膚皺紋並且延緩皮膚老化應該有所幫助,因此選 MMPs做為篩選天然物中抗老化之活性成分的平台。
本實驗利用紅景天以乙醇浸泡萃取之後,利用人類纖維母細胞瘤 (Human fibrosarcoma cell),簡稱HT-1080,所分泌的MMP-2和MMP-9之表現量當作活性追蹤的依據,發現紅景天萃取液在濃度100 μg/ml對MMP-2和MMP-9有明顯抑制效果。再經由水、乙酸乙酯以及正丁醇作分配萃取。取此三層作活性追蹤發現乙酸乙酯層在濃度50 μg/ml對MMP-2和MMP-9有明顯抑制效果。於是取乙酸乙酯層之濃縮液利用矽膠管柱層析、全自動色層分析儀等各種層析方法進行分離與純化,並且根據化合物之核磁共振與物理數據等光譜數據,鑑定出二十八個化合物,其中有 3個新化合物,這些化合物分成六大類,其中包括了四個Tannin類化合物、十二個 Phenolic acid類化合物、四個 Glycoside類化合物、四個 Flavonoid類化合物、一個 Steroid類化合物、三個 Allylic alcohol類化合物。
在抗老化活性篩選實驗中,RR4與新化合物 RR5對於 MMP-2的抑制效果最明顯,其中 RR4抑制 MMP-2的 IC50 為 2.65 ± 0.27 μM;抑制 MMP-9的 IC50為 23.96 ± 1.83 μΜ。而新化合物RR5對於抑制 MMP-2具有專一性,其 IC50為 16.27 ± 1.63 μΜ。而 RR3抑制膠原蛋白酶的能力最好,其抑制率在濃度 20 μΜ下為 52.12 %。因此,認為 RR3、RR4與 RR5能運用在化妝品原料,對於皮膚有抗老化效果,可達到利用天然物開發抗老化化妝保養品的目標。
英文摘要 Cutaneous aging is a complex biological phenomenon consisting of two components, intrinsic aging and extrinsic aging. Both these two components are related to matrix metalloproteinases (MMPs). MMPs are a family of zinc-dependent endopeptidases. The matrix metalloproteinases (MMPs) which degrade macromolecules of the extracellular matrix (ECM) play an important role in the anti-aging process, to increase the happenings of wrinkling, sagging and laxity.
It was also reported that inhibiting the activity of MMP-2 and MMP-9 could slow down the aging process of the skin. So, we examined the activity of MMP-2 and MMP-9 that can degrade collagen and com- ponents of the elastic network as the factor in photoaging process.
In this study, the ethanol extract of dried roots of Rhodiola rosea was analysed for the effect of anti-aging by inhibiting MMP-2 and MMP-9 activity. The results demonstrated that the ethanol extract of dried roots of R. rosea could inhibit the activity of MMP-2 and MMP-9 with 100 μg/ml. Then, the ethanol extract of dried roots of R. rosea was concentrated to give a residue which was partitioned with water, ethyl acetate, and butanol. The ethyl acetate layer of R. rosea has the best activity of MMP-2 and MMP-9 at 50 μg/ml. It was separated by column chromatography and high performance flash chromatography to afford twenty-eight compounds including four tannin compounds, twelve phenolic acid compounds, four glycoside compounds, four flavonoid compounds, one steroid compound, and three allylic alcohol compounds. Among them, *RR5, RR18, RR28 are new compounds.
In the results of anti-aging effect, it is indicated that RR4 and *RR5 could supress the activity of MMP-2 and have no cytotoxicity on HT-1080 cells. RR4 could inhibit the activity of MMP-2 with IC50 2.65 ± 0.27 μM and the activity of MMP-9 with IC50 23.96±1.83 μΜ. *RR5 could selectively inhibit the activity of MMP-2 with IC50 16.27±1.63 μM. On the experiment of collagenase inhibition assay, RR3 had the best inhibitory effects compare to that of RR4 and *RR5.The inhibition rate is 52.12 % on the 20 μΜ.
Therefore, RR3, RR4 and *RR5 could be employed as anti-aging cosmetic ingredients.
論文目次 目錄(Contents)
中文摘要 (Abstract in Chinese) --------------------------------------------- I
英文摘要 (Abstract in English) --------------------------------------------- III
目錄 (Contents) ---------------------------------------------------------------- V
圖目錄 (Figure Contents) -------------------------------------------------- VIII
表目錄 (Table Contents) --------------------------------------------------- XIII
縮寫表 (Abbreviations) ---------------------------------------------------- XV
第一章 緒論 (Introduction)
第一節、研究背景與動機 ---------------------------------------------------- 1
(1) 全球保養品市場 ----------------------------------------------------------- 1
(2) 皮膚老化的探討 ----------------------------------------------------------- 5
Ι、皮膚構造 -------------------------------------------------------------------- 5
II、皮膚老化機制 -------------------------------------------------------------- 7
(3) 基質金屬蛋白酶的簡介 ------------------------------------------------ 11
第二節、紅景天植物之簡介 ------------------------------------------------ 17
(1) 植物分布與簡介 --------------------------------------------------------- 17
(2) 文獻回顧 ------------------------------------------------------------------ 19
第二章 實驗結果 (Results) ------------------------------------------------- 27
第一節、紅景天抗老化成份的實驗流程大綱 --------------------------- 27
第二節、植物分配萃取與成分分離流程 --------------------------------- 29
第三節、化合物之結構解析 ------------------------------------------------- 37
(1) 1,2,6-tri-O-galloyl-β-D-glucopyranoside (RR2), 1,2,3,6-tetra-O-galloyl-β-D-glucopyranoside (RR3), 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranoside (RR4)之結構解析------------------------------------------------------------------------------------- 37
(2) 1,2,3,6-tetra-O-galloyl-4-O-p-hydroxybenzoyl-β- D-glucopyranoside * (RR5) 之結構解析 -------------------------------------------------------------------------- 45
(3) (E)-Creoside I *(RR18) 之結構解析 --------------------------------- 53
(4) (Z)-creoside I (RR19) 之結構解析 ----------------------------------- 61
(5) (Z)-2-methyl-2- hepten-1,6-diol * (RR28) 之結構解析 ---------- 67
第四節、化合物之物理和光譜數據總整理 ----------------------------- 73
第五節、抗老化活性之探討 ----------------------------------------------- 89
(1) HT-1080細胞實驗 ------------------------------------------------------- 89
I. Tannin類化合物 (RR2~RR5) 和Phenolic類化合物 (RR1、RR8~RR11) 對MMP-2和MMP-9的酵素表現抑制分析 ---------- 89
II. Phenolic類化合物 (RR1) 與Tannin類化合物 (RR2~RR5) 對人類纖維母細胞瘤HT-1080存活率之影響 ----------------------------------- 94
(2) 抑制膠原蛋白脢之實驗 ------------------------------------------------ 96

第三章 實驗材料與方法 (Materials and Methods) --------------------- 98
第一節、抗老化活性篩選部分 -------------------------------------------- 98
(1) 實驗藥品試劑 ----------------------------------------------------------- 100
(2) 實驗設備 ----------------------------------------------------------------- 100
(3) 實驗方法 ----------------------------------------------------------------- 101
I. 細胞培養 (Cell Culture) ------------------------------------------------- 101
II. 細胞存活試驗 (MTT cell viability assay) --------------------------- 102
III. 電泳酵素分析法 (Zymography) ------------------------------------- 103
IV. 抑制膠原蛋白脢之分析 ---------------------------------------------- 105
V. 統計分析 (Statistical analysis) ---------------------------------------- 106
第二節、 萃取與分離純化部分
(1) 分析儀器 ----------------------------------------------------------------- 106
(2) 溶媒試劑 ----------------------------------------------------------------- 108
(3) 氘化溶媒 ----------------------------------------------------------------- 108
(4) 實驗方法 ----------------------------------------------------------------- 109
第四章 討論 (Discussion) ------------------------------------------------- 117
第五章 參考文獻 (References) ------------------------------------------- 120

圖目錄 (Figure Contents)
圖 1-1.皮膚的組成以及分布 ------------------------------------------------- 5
圖1-2.人類基質金屬蛋白酶家族結構與組成圖示
------------------------------------------------------------------------------------- 13
圖1-3.紅景天全株與根部圖片 --------------------------------------------- 18
圖2-1. 紅景天抗老化成份的實驗流程
------------------------------------------------------------------------------------- 26
圖2-2.紅景天Crude、EA、BuOH與H2O層對MMP-2和MMP-9酵素活性之影響 ----------------------------------------------------------------- 28
圖2-3.紅景天分離後之收集液對MMP-2和MMP-9酵素活性之影響
------------------------------------------------------------------------------------- 28
圖2-4:紅景天 (Rhodiola rosea) 乾燥根部之分離流程圖
------------------------------------------------------------------------------------- 31
圖2-5. 1,2,3,6-tetra-O-galloyl-β-D-glucopyranoside (RR3) 之ESI-MS圖譜---------------------------------------------------------------------------------- 41
圖2-6. 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranoside (RR4) 之ESI-MS圖譜 ----------------------------------------------------------------------------- 41
圖2-7. 1,2,3,6-tetra-O-galloyl-β-D-glucopyranoside (RR3) 之IR圖譜 ------------------------------------------------------------------------------------- 42
圖2-8. 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranoside (RR4) 之 IR圖譜 -------------------------------------------------------------------------------- 42
圖2-9. 1,2,6-tri-O-galloyl-β-D-glucopyranoside (RR2) 之1H-NMR圖譜, CD3OD, 500 MHz ------------------------------------------------------------------------------------- 43
圖2-10. 1,2,3,6-tetra-O-galloyl-β-D-glucopyranoside (RR3) 之1H-NMR圖譜, CD3OD, 500 MHz ------------------------------------------------------------------------------------- 44
圖2-11. 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranoside (RR4) 之1H-NMR圖譜, CD3OD, 500 MHz ------------------------------------------- 44
圖2-12. 1,2,3,6-tetra-O-galloyl-4-O-p-hydroxybenzoyl-β- D-glucopyranoside * (RR5)之ESI-MS光譜 ------------------------------------------------------------------------------------- 49
圖2-13. 1,2,3,6-tetra-O-galloyl-4-O-p-hydroxybenzoyl-β- D-glucopyranoside * (RR5)之IR光譜 ------------------------------------------------------------------------------------- 49
圖2-14. 1,2,3,6-tetra-O-galloyl-4-O-p-hydroxybenzoyl-β- D-glucopyranoside * (RR5)之1H-NMR光譜 (CD3OD, 500 MHz) ------------------------------------------------------------------------------------- 50
圖2-15. 1,2,3,6-tetra-O-galloyl-4-O-p-hydroxybenzoyl-β- D-glucopyranoside * (RR5)之13C-NMR光譜 (CD3OD, 125 MHz) ------------------------------------------------------------------------------------- 50
圖2-16. 1,2,3,6-tetra-O-galloyl-4-O-p-hydroxybenzoyl-β- D-glucopyranoside * (RR5)之HMQC光譜 (CD3OD) ------------------------------------------------------------------------------------- 51
圖2-17. 1,2,3,6-tetra-O-galloyl-4-O-p-hydroxybenzoyl-β- D-glucopyranoside * (RR5)之HMBC光譜 (CD3OD) ------------------------------------------------------------------------------------- 51
圖2-18. 1,2,3,6-tetra-O-galloyl-4-O-p-hydroxybenzoyl-β- D-glucopyranoside * (RR5)之COSY光譜 (CD3OD) ------------------------------------------------------------------------------------- 52
圖2-19. (E)-Creoside I* (RR18) 之ESI-MS光譜 ----------------------- 57
圖2-20. (E)-Creoside I* (RR18) 之IR光譜 ------------------------------ 57
圖2-21. (E)-Creoside I* (RR18) 之1H-NMR光譜 (CD3OD, 500 MHz)
------------------------------------------------------------------------------------- 58
圖2-22. (E)-Creoside I* (RR18) 之13C-NMR光譜 (CD3OD, 125 MHz)
------------------------------------------------------------------------------------- 58圖2-23. (E)-Creoside I* (RR18) 之HMQC光譜 (CD3OD)
------------------------------------------------------------------------------------- 59
圖2-24. (E)-Creoside I* (RR18) 之HMBC光譜 (CD3OD) ------------------------------------------------------------------------------------- 59圖2-25. (E)-Creoside I* (RR18) 之COSY光譜 (CD3OD)
------------------------------------------------------------------------------------- 60
圖2-26. (Z)-Creoside I (RR19) 之1H-NMR光譜 (CD3OD, 500 MHz) ------------------------------------------------------------------------------------- 64
圖2-27. (Z)-Creoside I (RR19) 之13C-NMR光譜 (CD3OD, 125 MHz) ------------------------------------------------------------------------------------- 64
圖2-28. (Z)-Creoside I (RR19) 之HMQC光譜 (CD3OD) ------------------------------------------------------------------------------------- 65
圖2-29. (Z)-Creoside I (RR19) 之HMBC光譜 (CD3OD) ------------------------------------------------------------------------------------- 65
圖2-30. (Z)-Creoside I (RR19) 之COSY光譜 (CD3OD) ------------------------------------------------------------------------------------- 66
圖2-31. (Z)-Creoside I (RR19) 之IR光譜 (CD3OD) ------------------------------------------------------------------------------------- 66
圖2-32. (Z)-2-methyl-2- hepten-1,6-diol * (RR28) 1H-NMR光譜 (CD3OD, 500 MHz) ------------------------------------------------------------ 70
圖2-33. (Z)-2-methyl-2- hepten-1,6-diol * (RR28) 1H-NMR光譜 (CD3OD, 500 MHz) ------------------------------------------------------------ 70
圖2-34. (Z)-2-methyl-2- hepten-1,6-diol * (RR28) 之HMQC光譜 (CD3OD) ------------------------------------------------------------------------- 71
圖2-35. (Z)-2-methyl-2- hepten-1,6-diol * (RR28) 之HMBC光譜 (CD3OD) ------------------------------------------------------------------------- 71
圖2-36. (Z)-2-methyl-2- hepten-1,6-diol * (RR28) 之COSY光譜 (CD3OD, 500 MHz) ------------------------------------------------------------ 72
圖2-37. (Z)-2-methyl-2- hepten-1,6-diol * (RR28) 之NOE光譜 (CD3OD, 500 MHz) ------------------------------------------------------------ 72
圖2-38. Tannin 類化合物 (RR4) 抑制MMP-2與MMP-9酵素之表現
------------------------------------------------------------------------------------- 91
圖2-39. Phenolic類化合物 (RR1) 與Tannin類化合物 (RR2~RR5) 抑制MMP-2與MMP-9酵素之表現 --------------------------------------- 92
圖2 -40. Phenolic類化合物 (RR8~RR11) 抑制MMP-2與MMP-9酵素之表現 ----------------------------------------------------------------------- 93
圖2-41. 不同濃度之Phenolic類化合物 (RR1) 與Tannin類 (RR2~RR5) 對人類纖維母細胞瘤 HT-1080的影響
------------------------------------------------------------------------------------- 94
圖2-42. 不同濃度之Phenolic類化合物 (RR1)與Tannin類 (RR2~RR5) 對膠原蛋白脢之抑制能力
------------------------------------------------------------------------------------- 96




表目錄 (Table Contents)
表1-1: 中草藥在化妝品保養之應用 -------------------------------------- 2
表1-2: 天然物在化妝保養品之應用 -------------------------------------- 3
表1-3: 皮膚老化的特徵 ----------------------------------------------------- 8
表1-4: 基質金屬蛋白酶的分類與其受質及功能
------------------------------------------------------------------------------------- 16
表2-1: 紅景天 (Rhodiola rosea) 乾燥根部分離出的化合物
------------------------------------------------------------------------------------- 32
表2-2: NMR data of RR2, RR3, RR4 (CD3OD), 500 MHz for 1H
------------------------------------------------------------------------------------- 40
表2-3: NMR data of *RR5 (CD3OD), 500 MHz for 1H and 125 MHz for 13C -------------------------------------------------------------------------------- 48
表2-4: 1.(Z)-Creoside I 與2.(E)-Creoside II之13C-NMR (125 MHz, CD3OD) ------------------------------------------------------------------------- 56
表2-5: NMR data of RR18 (CD3OD), 500 MHz for 1H and 125 MHz for 13C -------------------------------------------------------------------------------- 56
表2-6: NMR data of RR19 (CD3OD), 500 MHz for 1H and 125 MHz for 13C -------------------------------------------------------------------------------- 63
表2-7: NMR data of *RR28 (CD3OD), 500 MHz for 1H and 125 MHz for 13C ---------------------------------------------------------------------------- 69

表2-8: RR1、RR2、RR3、RR4與*RR5抑制MMP-2和MMP-9的IC50 (μΜ) ------------------------------------------------------------------------ 89

參考文獻 第五章 參考文獻 (References)

1. 鄭晴文, 日本抗老化市場發展現況及趨勢. 工業技術研究院2008
2. 徐雅芬, 羅淑慧, 天然萃取物應用在保健品, IT IS 2006, 第四章.
3. 羅淑慧, 藥妝品之發展趨勢, ITIS 2003, 第四章.
4. 李美賢, 中草藥功能性化妝品之應用開發, Yearbook of Chinese Medicine and Pharmacy 2007, 25, 147-180.
5. Scharffetter-Kochanek, K.; Brenneisen, P.; Wenk, J.; Herrmann, G.; Weijan Ma, L. K.; and C.W. Meewes, M., Photoaging of the skin from phenotype to mechanisms. Experimental Gerontology 2000, 35, 307-316.
6. Gilchrest, B., Skin aging and photoaging: an overview. Journal of the American Academy of Dermatology 1989, 21, 610-613.
7. Rittié, L.; Fisher, G. J., UV-light-induced signal cascades and skin aging. Ageing Research Reviews 2002, 1, 705-720.
8. Fisher, G.J.; Kang, S.; Varani, J.; Bata-Csorgo, Z.; Wan, Y.; Datta, S.; Voorhees, J. J., Mechanisms of photoaging and chronological skin aging. Archives of Dermatology 2002, 138, 1462-1470.
9. Grittiths, C. E. M., The role og retinoids in the prevention and repair of aged and phtoaged skin. Clinical and Experimental Dermatology 2001, 26, 613-618.
10. Emerit, I., Free radicals and aging of the skin. EXS 1992, 62, 328-341.
11. Anthony V. Benedetto, D., The environment and skin aging. Clinics in Dermatology, 1998, 16, 129-139.
12. Pugliese, P.T., The skin's antioxidant systems. Dermatology Nursing 1998, 10, 401-416.
13. Chung, J.H.; Seo., J. Y.; Choi, H. R.; Lee, M. K.; Youn, C. S.; Gi-eun Rhie; Cho, K. H.; Kim, K. H.; Park, K. C.; Eun, H. C., Modulation of Skin Collagen Metabolism in aged and photoaged human skin in vivo. The Journal of Investigative Dermatology 2001, 117, 1218-1224.
14. JuttaWenk; Brenneisen, P. M., C.; Wlaschek, M.; Peters, T.; Blaudschun, R.; Ma, W.; and L.S. Kuhr, L.; Scharffetter-Kochanek, K., UV-induced oxidative stress and photoaging. Current Problems in Dermatology 2001, 29, 8394.
15. 光井武夫, 新化妝品學. 合記圖書出版社 1992, 13-46.
16. Philips, N.; Smith, J.; Keller, T.; Gonzalez, S., Predominant effects of Polypodium leucotomos on membrane integrity, lipid peroxidation, and expression of elastin and matrixmetalloproteinase-1 in ultraviolet radiation exposed fibroblasts, and keratinocytes. Journal of Dermatological Science 2003, 32, 1-9.
17. Gilchrest, B.; Yaar, M., Aging and photoaging of the skin: observations at the cellular and molecular level. The British Journal of Dermatology, 1992, 127, 25-35.
18. Bernstein, E. F.; Uitto, J., The effect of photodamage on dermal extracellular matrix. Clinics in Dermatology 1996, 14, 143-151.
19. Jenkins, R.R., Free radical chemistry:relationship to exercise. Sports medicine 1988, 5, 156-170.
20. Kähäri, V. M.; Kere, U. S., Matrix metalloproteinases in skin. Experimental Dermatology 1997, 6, 199-213.
21. Robert, C.; Robert, A. M.; Robert, L., Effect of a preparation containing a fucose-rich polysaccharide on periorbital wrinkles of human voluntaries. Skin research and technology 2005, 11, 47-52.
22. Sternlicht, M.D.Z., How matrix metalloproteinases regulate cell behavior. Annual review of cell and developmental biology 2001, 17, 463-516.
23. Nagase, H.; Jr., J. F. W., Matrix metalloproteinases. Journal of Biological Chemistry 1999, 274, 21491-21494.
24. Cury, P. R.; Araύjo, V. C. d.; Canavez, F.; Furuse, C.; Leite, K. R. M.; Araújo, N. S. , The effect of epidermal growth factor on matrix metalloproteinases and tissue inhibitors of metalloproteinase gene expression in cultured human gingival fibroblasts. Archives of Oral Biology 2007, 52, 585-590.
25. Greenlee, K. J.; Werb, Z.; Kheradmand, F., Matrix Metalloproteinases in Lung: Multiple, Multifarious, and Multifaceted. Physiological Reviews, 2007, 87, 69-98.
26. Gross, J.; Lapiere, C. M., Collagenolytic activity in amphibian tissues: a tissue culture assay. Proceedings of the National Academy of Sciences 1962, 48, 1014-1022.
27. Visse, R.; Nagase, H., Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases:Structure, Function, and Biochemistry. Circulation Research 2003, 92, 827-839.
28. Overall, C.M.; Lόpez-Otin, C., Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature Reviews Cancer 2002, 2, 657-672.
29. Puente, X.S.; Pendàs, A. M.; Llano, E.; Velasco, G.; López-Otín, C., Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma. Cancer Research 1996, 56, 944-949.
30. Marc A. L.; Madeleine M. H.; Dylan R. E., Structure-dependent subgrouping of the matrix metalloproteinases (MMPs). Expert Reviews in Molecular Medicine 2003, 5, 1-2.
31. Hotary, K.B.; Allen, E. D.; Brooks, P. C.; Datta, N. S.; Long, M. W.; Weiss, S. J., Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 2003, 114, 33-45.
32. 龔云, 紅景天與運動疲勞. 西北師範大學學報(自然科學版) 2001, 37, 110-114.
33. 蔡繡春、莊美華, 紅景天(Rhodiola rosea)綜論.
34. Brekhman II.; Dardymov IV., New substances of plant origin which increase nonspecific resistance. Ann Rev Pharmacol 1969, 9, 419-430.
35. Richard P.; Brown, M. D.; Patricia L.; Gerbarg, M. D.; Zakir R., Rhodiola rosea: A Phytomedicinal Overview. HerbalGram 2002, 56, 40-52.
36. Gregory S.; Kelly, N. D., Rhodiola rosea: A possible plant adaptogen. Altern Med Rev 2001, 6, 293-302.
37. Inhee MOOK-JUNG; Hee KIM; Wenzhe FAN; Yasuhiro TEZUKA;
Shigetoshi KADOTA; Hisao NISHIJO; Min Whan JUNG*, Neuroprotective Effects of Constituents of the Oriental Crude Drugs, Rhodiola sacra, R. sachalinensis and Tokaku-joki-to, against Beta-amyloid Toxicity, Oxidative Stress and Apoptosis. Biol. Pharm. Bull. 2002, 25, 1101-1104.
38. Wenzhe FAN; Y. T.; Khin May NI; Shigetoshi KADOTA, Prolyl Endopeptidase Inhibitors from the Underground Part of Rhodiola sachalinensis, Chem. Pharm. Bull. 2001, 49, 396-401.
39. 陳亞東、曹秀蘭、田長有、王洪生、張紅英, 高山紅景天對小鼠耐缺氧、抗疲勞及低溫作用的影響。中國中醫藥科技 2002, 9, 157-158.
40. Boon-Niermeijer EK; van den B. A.; Wikman G; Wiegant FA., Phyto-adaptogens protect against environmental stress-induced death of embryos from the freshwater snail Lymnaea stagnalis. Phytomedicine 2000,. 7, 389-399.
41. Azizov A. P. ; Seĭfulla R. D.,The effect of elton, leveton, fitoton and adapton on the work capacity of experimental animals. Eksp Klin Farmakol 1998, 61, 61-63.
42. A. A. Spasov; G. K. Wikman; V. B. Mandrikov; I. A. Mironova; V.V. Neumoin, A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue of students caused by stress during an examination period with a repeated low-dose regimen. Phytomedicine 2000, 7, 85-89.
43. 張慧、沈俊、王昊、汪家春, 紅景天對急性低壓缺氧大鼠內皮素分泌的干預。航空航天醫藥 2001, 12, 125-127.
44. Udintsev S. N.; Shakhov V. P., The role of humoral factors of regenerating liver in the development of experimental tumors and the effect of Rhodiola rosea extract on this process. Neoplasma 1991, 38, 323-331.
45. Guoying Zuoa; Z. L.; Lirong Chena; Xiaojie Xua, Activity of compounds from Chinese herbal medicine Rhodiola kirilowii (Regel) Maxim against HCV NS3 serine protease. Antiviral Research 2007, 76, 86-92.
46. Eun-Kyung Song; Jung-Hwan Kim; Jung-Sik Kim; Hyun Cho; Ji-Xing Nan; Dong-Hwan Sohn; Gun-II Ko; Hyuncheol Oh; Youn-Chul Kim, Hepatoprotective Phenolic Constituents of Rhodiola sachalinensis on Tacrine-induced Cytotoxicity in Hep G2 Cells. Phytother. Res. 2003, 17, 563-565.
47. 金永日、雎大員、于曉風、呂忠智、王黎, 紅景天莖葉提取物的抗衰老作用研究。中國老年學雜誌 2001, 21, 228-229.
48. 姜文華、孟曉婷、郝利銘、崔麗、董智勇、王淑蘭, 紅景天素抗老化和抗癡呆效應的實驗研究。 白求恩醫科大學學報 2001, 27, 127-129.
49. Maslova L.V.; Kondrat'ev BIu; Maslov L. N.; Lishmanov IuB, The cardioprotective and antiadrenergic activity of an extract of Rhodiola rosea in stress. Eksp Klin Farmakol 1994, 57, 61-63.
50. Mizue Ohsugi; Wenzhe Fan; Koji Hase; Quanbo Xiong; Yasuhiro Tezuka; Katsuko Komatsu; Tsuneo Namba; Tomohiro Saitoh; Kenji Tazawa; Shigetoshi Kadota, Activeoxygen scavenging activity of traditional nourishing-tonic herbal medicines and active constituents of Rhodiola sacra., J. Ethnopharmacol 1999, 67, 111-119.
51. Stancheva S.L.; Mosharrof A., Effect of the extract of Rhodiola rosea L. on the content of the brain biogenic monamines. Med Physiol 1987, 40, 85-87.
52. Lee M.W.; Lee Y.A.; Park H.M.; Toh S.H.; Lee E.J.; Jang H.D.; Kim Y. H., Antioxidative phenolic compounds from the roots of Rhodiola sachalinensis A. Bor. Arch Pharm Res 2000, 23, 455-458.
53. Linh P.T.; Kim Y.H.; Hong S.P.; Jian J.J.; Kang J.S., Quantitative determination of salidroside and tyrosol from the underground part of Rhodiola rosea by high performance liquid chromatography. Arch Pharm Res 2000, 23, 349-352.
54. Perfumi M; Mattioli L., Adaptogenic and Central Nervous System Effects of Single Doses of 3% Rosavin and 1% Salidroside Rhodiola rosea L. Extract in Mice. Phytother. Res. 2007, 21, 37-43.
55. Lishmanov IuB; Trifonova ZhV; Tsibin A.N.; Maslova L.V.; Dement'eva L. A., Plasma beta-endorphin and stress hormones in stress and adaptation. Biull Eksp Biol Med 1987, 103, 422-424.
56. Haibo W. Y.; Jun Zhou; Xiaoli Sun; SiwangWang, The in vitro and in vivo antiviral effects of salidroside from Rhodiola rosea L. against coxsac - kievirus B3. Phytomedicine 2009, 16, 146-155.
57. Cai H.; Hudson E. A.; Mann P.; Verschoyle R. D.; Greaves P.; Manson M.M.; Steward W.P.; Gescher A.J., Growth-inhibitory and cell cycle-arresting properties of the rice bran constituent tricin in human-derived breast cancer cells in vitro and in nude mice in vivo. British Journal of Cancer 2004, 91, 364-1371.
58. Yong C.; Mingfu W.; Robert T. R. ; Chi-Tang Ho, 2,2-Diphenyl-1-picrylhydrazyl Radical-Scavenging Active Components from Polygonum multiflorum Thunb. J. Agric. Food Chem. 1999, 47, 2226-2228.
59. Owen R.W.; Haubner R.; Hull W. E.; Erben G.; Spiegelhalder B.; Bartsch H.; Haber B., Isolation and structure elucidation of the major individual polyphenols in carob fibre. Food and Chemical Toxicol 2003, 41, 1727-1738.
60. Ren Y.; Himmeldirk K.; Chen X., Synthesis and Structure−Activity Relationship Study of Antidiabetic Penta-O-galloyl-d-glucopyranose and Its Analogues. J. Med. Chem. 2006, 46, 2829-2837.
61. Chan W. L.; Eun M. S.; Han S. K.; Pan X.; Tuyagerel B.; Burm J. L.; Kyung A. K., Synthetic tyrosyl gallate derivatives as potent melanin formation inhibitors. Bioorg Med Chem Lett. 2007 , 17, 5462-5464.
62. Falk R.; Timm A.; Olov S., Secondary metabolites from a Gloeophyllum species. Phytochemistry 2000, 54, 511-516.
63. Glenne P.; Rodericke W., A carbon-13 CP/MAS nuclear magnetic resonance study of several 1,4-disubstituted benzenes in the solid state. Nan. J. Chem. 1989, 67, 525.
64. Meunier S. J.; Wu Q.; Wang S.-N.; Roy R., Synthesis of hyperbranched glycodendrimers incorporating α-thiosialosides based on a gallic acid core. Can. J. Chem. 1997, 75, 1472-1482.
65. Della G. M.; Monaco P.; Pinto G.; Pollio A.; Previtera L.; Temussi F., Phytotoxicity of low-molecular-weight phenols from olive mill waste waters. Bull Environ Contam Toxicol 2002, 67, 352-359.
66. Pettit G. R.; Jiang Du; Pettit R. K.; Knight J. C.; Doubek D. L., Antineoplastic agents. 575. The fungus Aspergillus phoenicis1. Heterocycles 2009, 79, 909-916.
67. Wilfried S.; Peter S., Aryl beta-d-glucosides from Carica papaya fruit. Phytochemistry 1988, 27, 1813-1816.
68. Toshio M.; Akira U.; Nobuo T.; Hiromi K.; Hiroko O., Ionone and lignan glycosides from Epimedium diphyllum. Phytochemistry 1989, 28, 3483-3485
69. Ahmed A. A.; Mohamed H. Abd El-Razek; Effat A. Abu Mostafa; Howard J. W.; A. Ian Scott; Joseph H.; Tom J. M., A New Derivative of Glucose and 2-C-Methyl-d-erythritol from Ferula sinaica. J. Nat. Prod. 1996, 56, 1171-1173.
70. Tram N. L.; Ryo Y.; Makoto S.; Koji K., Isolation and structural elucidation of some glycosides from the rhizomes of smaller galanga (Alpinia officinarum Hance). J Agric Food Chem. 2002, 50, 4919-4924.
71. Nonaka G.; Nishimura H.; Nishioka I., Tannins and Related Compounds. IV. Seven New Phenol Glucoside Gallates from Quercus stenophylla MAKINO (1). Chemical & pharmaceutical bulletin 1982, 30, 2061-2067.
72. Seikou N.; Hisashi M.; Masayuki Y., Bioactive Constituents from Chinese Natural Medicines. XXVIII. Chemical Structures of Acyclic Alcohol Glycosides from the Roots of Rhodiola crenulata. Chem. Pharm. Bull. 2008, 56, 536-540.
73. Jeannette M.; Anna R. B.; Ivano M., Phytochemical investigations of Licania genus. Flavonoids and triterpenoids from Licania pittieri. Pharmaceutica Acta Helvetiae 1995,.70, 223-226(4).
74. Beate B.; Peter W., Isolation and characterization of novel benzoates, cinnamates, flavonoids, and lignans from Riesling wine and screening for antioxidant activity. J Agric Food Chem. 2001, 49, 2788-2798.
75. Adrienne L. D.; Ya C., Alan P. D.; J. R. Lewis,1H and 13C NMR Assignments of Some Green Tea Polyphenols. Magnetic Resonance in Chemistry 1998, 45, 887 - 890.
76. Seto R.; Nakamura H.; Nanjo F.; Hara Y., Preparation of epimers of tea catechins by heat treatment. Bioscience, biotechnology, and biochemistry 1997, 61, 1434-1439.
77. A. K. Jamal; W. A. Jaacob; Laily B. Din, A Chemical Study on Phyllanthus Columnaris. European Journal of Scientific Research 2009, 28, 76-81.
78. J. L. C. Wright; A. G. Mcinnes; Shimizu S.; Smith, D. G.; Walter, J. A., Identification of C-24 alkyl epimers of marine sterols by 13C nuclear magnetic resonance spectroscopy. Canadian Journal of Chemistry 1978, 56, 1898-1903.
79. Ahmed A. A.; Mohamed-Elamir F. H.; Nahed M. H.; Malgorzata W.; Joe K.; Paul W. P.; Tom J. M., Constituents of Chrysothamnus viscidiflorus. Phytochemistry 2006, 67, 1547-1553
80. Wesleyg T.; Ronaldt C., Preparation of two metabolites of isometheptene. Can. J. Chem 1979, 57, 2103.


論文全文使用權限
  • 同意授權瀏覽/列印電子全文服務,於2013-08-05起公開。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446