進階搜尋


  查詢北醫館藏
系統識別號 U0007-2407201123455100
論文名稱(中文) 乳酸葡萄糖酸鈣對於三氧礦聚合物性質之影響
論文名稱(英文) The effects of calcium lactate gluconate to the properties of mineral trioxide aggregate
校院名稱 臺北醫學大學
系所名稱(中) 牙醫學系碩博士班
系所名稱(英) School of Dentistry
學年度 99
學期 2
出版年 100
研究生(中文) 林昱辰
研究生(英文) Yu-Chen Lin
學號 M204097005
學位類別 碩士
語文別 中文
口試日期 2011-07-15
論文頁數 155頁
口試委員 委員-周賢鎧
指導教授-謝松志
委員-鄧乃嘉
中文關鍵字 三氧礦聚合物  乳酸葡萄糖酸鈣 
英文關鍵字 White mineral trioxide aggregate (WMTA)  Calcium lactate gluconate 
學科別分類
中文摘要 以「封閉根管系統與根尖或牙周組織間通道」為前提而研發的三氧礦聚合物(Mineral Trioxide Aggregate),簡稱MTA,在各種封閉能力評估的實驗模型以及非活體(in vitro)與活體(in vivo)的研究結果,皆證實比amalgam,IRM及Super EBA等牙科材料具有較佳的封閉能力與生物相容性。因此,近年來,MTA已經成為一種理想的根尖逆向充填以及修補根叉穿孔之牙科材料,不過,MTA在牙科臨床運用上仍然具有一些潛在性之缺點,由於材料混合調拌時操作性不佳以及長達三至四小時之硬化時間之緣故,MTA容易受到手術區域的組織液和血液的沖刷流失,影響預期之治療效果。為了改善MTA材料之臨床操作性質以及縮短材料過長的硬化時間,本研究利用一種嶄新的含鈣化合物(calcium compound):乳酸葡萄糖酸鈣(calcium lactate gluconate),簡稱CLG之水溶液的添加,來同時達到縮短MTA材料硬化時間之目的並且增加材料混合後的黏稠性(viscosity),改善原有以去離子水(deionized water)調拌MTA粉末之臨床操作性,然而,添加CLG水溶液於MTA材料中,不知道是否會影響材料其他之物理化學性質(physico-chemical properties),如材料封閉性,酸鹼值,鈣離子釋放量,壓縮式直徑抗張強度(diametral tensile strength, DTS)以及材料表面形態,結晶性和晶體結構等等。有鑑於此,本研究的目的主要在評估添加CLG水溶液後,對MTA材料性質所造成的影響。將乳酸(lactic acid)與glucono delta lactone以及氧化鈣(calcium oxide)分別加入去離子水中,經過充分地混合、攪拌均勻且完全溶解,即製備成乳酸葡萄糖酸鈣水溶液。CLG粉末藉由X光晶體繞射分析(x-ray diffraction analysis)來決定粉末之結晶狀態。選用市售商品white MTA粉末,以粉/水比=4:1之比例,分別用去離子水及23.1 wt%之CLG溶液和white MTA粉末混合調拌。分別以維克針(Vicat needle),雙盲試驗(double-blind method),染劑滲透(dye penetration),酸鹼值測量儀,o-Cresolphthalein complexion (OCPC)法,壓縮式直徑抗張強度之測試與掃描式電子顯微鏡(scanning electron microscopy, SEM),來探討white MTA之初始及完全硬化時間,臨床操作性,封閉性(sealing ability),pH值,鈣離子釋放量,壓縮式直徑抗張強度以及材料表面形態,結晶性和晶體結構。結果顯示去離子水組與CLG水溶液組之white MTA的初始/完全硬化時間分別為144.2±7.4/210.8±6.6分鐘及23.3±2.6/66.7±4.1分鐘;操作性質方面,white MTA和去離子水混合調拌後,材料會呈現顆粒砂狀,為臨床操作性質不佳之結果,而white MTA和23.1 wt% CLG水溶液混合調拌後,材料容易聚集且可以塑型,操作性質類似典型的牙科暫時填補材料:IRM;去離子水組以及CLG水溶液組之染劑滲透平均深度分別為0.26±0.06及0.04±0.02 mm;而72小時後的pH值分別為12.29±0.02及11.81±0.04;在所有測量之時間點內可以發現,CLG水溶液組之鈣離子釋放量都明顯地比去離子水組高;然而,材料之壓縮式直徑抗張強度數值卻呈現相反的趨勢且改變材料表面之結晶型態。因此,利用CLG水溶液與MTA粉末混合可以:1.降低材料之硬化時間,2.加強材料封閉性,3.改善材料之臨床操作性,4.增加鈣離子之釋放量,5.維持材料之高pH值,6. 改變材料表面形態,結晶性和晶體結構,但是會對7. 材料的壓縮式直徑抗張強度有負面之影響。
英文摘要 Mineral Trioxide Aggregate (MTA) is a material designed to seal off the pathways of communication between the root canal system and the periodontium. Several in vitro and in vivo studies have demonstrated that the sealing ability and biocompatibility of MTA are superior to those of amalgam, IRM and Super EBA. Recently, MTA has become an ideal root end filling material and repair material for furcal perforation. However, its handling characteristics and long setting time make itself susceptible to be washout by the surrounding blood or tissue fluid, leading to the limitation of the expected prognosis. To improve the poor handling properties and shorten long setting time of MTA, a novel calcium compound, calcium lactate gluconate (CLG) aqueous solution was used to decrease the setting time and enhance the paste viscosity. Nevertheless, it is not known if adding CLG solution would not influence the other physico-chemical properties of the material, i.e. sealing ability, pH value, calcium release, diametral tensile strength (DTS) and surface morphological characteristics, which are essential for the suitable behavior of the material. Taking these things into consideration, the purpose of this study was to evaluate the effects of adding CLG solution on the physico-chemical properties of commercially available MTA materials. CLG solution was prepared by mixing lactic acid, glucono delta lactone, and calcium oxide by wet process. The crystalline property of the CLG powder was characterized by x-ray diffraction analysis. The ProRoot white MTA powder (Dentsply Tulsa Dental, Tulsa, OK) was used. 23.1 wt% CLG aqueous solutions were used as a hydration liquid and was compared to deionized water (DDW). When the powder is mixed with liquid under a powder-to-liquid ratio of 4 g/mL, the effects on initial/final setting time, handling properties, microleakage, pH value, calcium ion release, diametral tensile strength (DTS) and surface microstructure were investigated by Vicat needle, questionnaire of operational hand feeling, dye penetration, pH meter, o-Cresolphthalein complexion (OCPC) method, diametral tensile testing and scanning electron microscopy (SEM), respectively. The results showed that using 23.1wt% CLG solutions as a liquid phase, the initial and final setting time of white MTA was significantly decreased from 144.2±7.4 to 23.3±2.6 minutes and from 210.8±6.6 to 66.7±4.1 minutes, respectively. The handling property of the white MTA mixed with deionized water was grainy and sandy.The mixture of white MTA powder with 23.1 wt% CLG solution had handling properties similar to typical IRM (intermediate restorative material). Average dye penetration depths with liquid phase of 23.1 wt% CLG solution and deionized water were 0.04±0.02 and 0.26±0.06 mm, respectively. The pH values for hydrated white MTA with deionized water and 23.1 wt% CLG solutions were 12.29±0.02 and 11.81±0.04 at 72 hours. In all periods, CLG solution mixing with White MTA presented higher calcium ion release, but got lower diametral tensile strength. After 28 days of hydration, MTA mixing with deionized water had better crystallization than in the 23.1 wt% CLG group. Therefore, the addition of amorphous CLG-based liquid phase provides decrease in setting time and improvement in sealing ability as well as clinical manageability of MTA. Furthermore, CLG solution mixing with MTA may not adversely affect its physico-chemical properties, except for DTS value and surface characteristics of MTA.
論文目次 致謝 Ⅰ
中文摘要 Ⅱ
英文摘要 Abstract Ⅴ
目錄 Ⅸ
第一章 前言 1
第二章 文獻回顧 5
2.1 Mineral trioxide aggregate(MTA)之材料背景 5
2.2 MTA組成成分與化學性質 5
2.3 MTA之物理性質 8
2.3.1 硬化時間 8
2.3.2 溶解度 9
2.3.3 抗壓強度 10
2.3.4 酸鹼值 11
2.3.5 放射線不透性 12
2.3.6 粒子大小 12
2.3.7 微硬度 13
2.4 MTA之抗菌性 14
2.5 MTA之材料封閉性 15
2.5.1 染劑滲透法 16
2.5.2 液體滲透法 18
2.5.3 細菌滲漏法 19
2.6 MTA之生物相容性 21
2.6.1 體外實驗 22
2.6.2 活體實驗 25
2.7 MTA之臨床應用 26
2.7.1 活髓治療 27
2.7.1.1 直接覆髓治療 28
2.7.1.2 斷髓治療 31
2.7.2 根尖逆充填 34
2.7.3 牙根及根叉穿孔之修補 37
2.7.4 開放性牙根尖之根尖屏障形成 39
2.8 MTA之作用機制 41
2.9 MTA之材料缺點 43
2.10 過去研究對於MTA缺點之改善 44
2.11乳酸葡萄糖酸鈣之材料背景 48
第三章 研究動機、目的與假說 51
3.1 研究動機 51
3.2 研究目的 55
3.3 研究假說 55
第四章 材料與方法 56
4.1 乳酸葡萄糖酸鈣水溶液製備 56
4.2 初始硬化時間 56
4.3 完全硬化時間 57
4.4 操作性質 58
4.5 微滲漏試驗:染劑滲漏 59
4.6 酸鹼值 62
4.7 鈣離子釋放 63
4.8 壓縮式直徑抗張強度 64
4.9 掃描式電子顯微鏡觀察實驗(SEM) 65
4.10 統計分析 67
第五章 實驗結果 68
5.1 初始硬化時間之測試結果 68
5.2 完全硬化時間之測試結果 68
5.3 操作性質之結果 68
5.4 微滲漏試驗:染劑滲漏之測試結果 69
5.5 酸鹼值之測試結果 69
5.6 鈣離子釋放量之測量結果 70
5.7 壓縮式直徑抗張強度之測量結果 70
5.8 掃描式電子顯微鏡觀察實驗(SEM)結果 71
第六章 討論 73
第七章 結論與未來研究方向 93
圖表 95
圖 2-1 CLG化學結構式 95
圖 4-1染劑滲透平均深度計算方式 96
圖 5-1a 維克針(Vicat needle)測試樣本所得之壓跡 97
圖 5-1b WMTA+DDW及WMTA+CLG之初始硬化時間 98
圖 5-2 WMTA+DDW及WMTA+CLG之完全硬化時間 99
圖 5-3a India ink染劑滲透樣本之範圍 100
圖 5-3b WMTA+DDW及WMTA+CLG之平均染劑滲透深度 101
圖 5-4 WMTA+DDW及WMTA+CLG於不同時間點之酸鹼值 102
圖 5-5 WMTA+DDW及WMTA+CLG於不同時間點之鈣離子釋放量 103
圖 5-6 WMTA+DDW及WMTA+CLG於不同時間點之DTS數值 104
圖 5-7a WMTA+DDW水合28天試片SEM觀察圖片(100X) 105
圖 5-7b WMTA+DDW水合28天試片SEM觀察圖片(500X) 106
圖 5-7c WMTA+DDW水合28天試片SEM觀察圖片(1000X) 107
圖 5-7d WMTA+DDW水合28天試片SEM觀察圖片(3000X) 108
圖 5-8a WMTA+CLG水合28天試片SEM觀察圖片(100X) 109
圖 5-8b WMTA+CLG水合28天試片SEM觀察圖片(500X) 110
圖 5-8c WMTA+CLG水合28天試片SEM觀察圖片(1000X) 111
圖 5-8d WMTA+CLG水合28天試片SEM觀察圖片(3000X) 112
圖 6-1 CG2,CL2,CLG之XRD圖譜 113
表2-1 MTA組成比例 114
表2-2 GMTA與WMTA組成比例 115
表2-3 CLG之對水溶解度 116
表 5-1 WMTA+DDW及WMTA+CLG之初始硬化時間測量 117
表 5-2 WMTA+DDW及WMTA+CLG之完全硬化時間測量 118
表 5-3 WMTA+DDW及WMTA+CLG之平均染劑滲透深度測量 119
表 5-4 WMTA+DDW及WMTA+CLG於不同時間點之酸鹼值測量 120
表 5-5 材料於不同時間點之鈣離子釋放量測量 121
表 5-6 WMTA+DDW及WMTA+CLG於不同時間之DTS數值測量 122
參考書目 123
參考文獻 1.Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod 1993;19:541-4.
2.Schmitt D, Bogen G. Multifaceted use of ProRoot MTA root canal repair material. Pediatr Dent 2001;23:326-30.
3.Saunders WP. A prospective clinical study of periradicular surgery using mineral trioxide aggregate as a root-end filling. J Endod 2008;34:660–5.
4.Ford TR, Torabinejad M, McKendry DJ, Hong CU, Kariyawasam SP. Use of mineral trioxide aggregate for repair of furcal perforations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1995;79:756–63.
5.Holland R, Filho JA, de Souza V, Nery MJ, Bernabé PF, Junior ED. Mineral trioxide aggregate repair of lateral root perforations. J Endod 2001;27:281–4.
6.Thibodeau B, Trope M. Pulp revascularization of a necrotic infected immature permanent tooth: case report and review of the literature. Pediatr Dent 2007;29:47–50.
7.Witherspoon DE. Vital pulp therapy with new materials: new directions and treatment perspectives–permanent teeth. Pediatr Dent 2008;30:220–4.
8.Fuks AB. Vital pulp therapy with new materials for primary teeth: new directions and treatment perspectives. J Endod 2008;34(Suppl):S18–24.
9.Sarkar NK, Caidedo R, Tirwik P, Moiseyeva R, Kawashima I. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod 2005;31:97-100.
10.Camilleri J, Montesin FE, Brady K, Sweeney R, Curtis RV, Pitt Ford TR. The constitution of mineral trioxide aggregate. Dent Mater 2005;21:297-303.
11.Dammaschke T, Gerth HUV, Züchner H, Schäfer E. Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dent Mater 2005;21:731-8.
12.Song JS, Mante FK, Romanow WJ, Kim S. Chemical analysis of powder and set forms of Portland cement, gray ProRoot MTA, white ProRoot MTA, and gray MTA-Angelus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:809–15.
13.Islam I, Chng HK, Yap AU. X-ray diffraction analysis of mineral trioxide aggregate and Portland cement. Int Endod J 2006;39:220–5.
14.Asgary S, Parirokh M, Eghbal MJ, Brink F. Chemical differences between white and gray mineral trioxide aggregate. J Endod 2005;31:101–3.
15.Asgary S, Parirokh M, Eghbal MJ, Stowe S, Brink F. A qualitative X-ray analysis of white and grey mineral trioxide aggregate using compositional imaging. J Mater Sci Mater Med 2006;17:187–91.
16.Asgary S, Eghbal MJ, Parirokh M, Ghoddusi J, Kheirieh S, Brink F. Comparison of mineral trioxide aggregate’s composition with Portland cements and a new endodontic cement. J Endod 2009;35:243–50.
17.Camilleri J. Characterization of hydration products of mineral trioxide aggregate. Int Endod J 2008;41:408–17.
18.Camilleri J. Hydration mechanisms of mineral trioxide aggregate. Int Endod J 2007;40:462–70.
19.Camilleri J, Montesin FE, Papaioannou S, McDonald F, Pitt Ford TR. Biocompatibility of two commercial forms of mineral trioxide aggregate. Int Endod J 2004;37: 699–704.
20.Lee YL, Lee BS, Lin FH, Yun Lin A, Lan WH, Lin CP. Effects of physiological environments on the hydration behavior of mineral trioxide aggregate. Biomaterials 2004;25:787–93.
21.Watts JD, Holt DM, Beeson TJ, Kirkpatrick TC, Rutledge RE. Effects of pH and mixing agents on the temporal setting of tooth-colored and gray mineral trioxide aggregate. J Endod 2007;33:970–3.
22.Ozdemir HO, Ozcęlik B, Karabucak B, Cehreli ZC. Calcium ion diffusion from mineral trioxide aggregate through simulated root resorption defects. Dent Traumatol 2008;24:70–3.
23.Antunes Bortoluzzi E, Juárez Broon N, Antonio Hungaro Duarte M, de Oliveira Demarchi AC, Monteiro Bramante C. The use of a setting accelerator and its effect on pH and calcium ion release of mineral trioxide aggregate and white Portland cement. J Endod 2006;32:1194–7.
24.Coomaraswamy KS, Lumley PJ, Hofmann MP. Effect of bismuth oxide radioopacifier content on the material properties of an endodontic Portland cement-based (MTA-like) system. J Endod 2007;33:295–8.
25.Storm B, Eichmiller FC, Tordik PA, Goodell GG. Setting expansion of gray and white mineral trioxide aggregate and Portland cement. J Endod 2008;34:80–2.
26.Kogan P, He J, Glickman GN, Watanabe I. The effects of various additives on setting properties of MTA. J Endod 2006;32:569–72.
27.Torabinejad M, Watson TF, Pitt Ford TR. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod 1993;19:591–5.
28.Sluyk SR, Moon PC, Hartwell GR. Evaluation of setting properties and retention characteristics of mineral trioxide aggregate when used as a furcation perforation repair material. J Endod 1998;24:768–71.
29.Hachmeister DR, Schindler WG, Walker WA 3rd, Thomas DD. The sealing ability and retention characteristics of mineral trioxide aggregate in a model of apexification. J Endod 2002;28:386–90.
30.Fridland M, Rosado R. Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. J Endod 2003;29:814–7.
31.Aminoshariae A, Hartwell GR, Moon PC. Placement of mineral trioxide aggregate using two different techniques. J Endod 2003;29:679–82.
32.Matt GD, Thorpe JR, Strother JM, McClanahan SB. Comparative study of white and gray mineral trioxide aggregate (MTA) simulating a one- or two-step apical barrier technique. J Endod 2004;30:876–9.
33.Chng HK, Islam I, Yap AU, Tong YW, Koh ET. Properties of a new root-end filling material. J Endod 2005;31:665–8.
34.Islam I, Chng HK, Yap AU. Comparison of the physical and mechanical properties of MTA and Portland cement. J Endod 2006;32:193–7.
35.Walker MP, Diliberto A, Lee C. Effect of setting conditions on mineral trioxide aggregate flexural strength. J Endod 2006;32:334–6.
36.Gancedo-Caravia L, Garcia-Barbero E. Influence of humidity and setting time on the push-out strength of mineral trioxide aggregate obturations. J Endod 2006; 32:894–6.
37.Danesh G, Dammaschke T, Gerth HU, Zandbiglari T, Schäfer E. A comparative study of selected properties of ProRoot mineral trioxide aggregate and two Portland cements. Int Endod J 2006;39:213–9.
38.Chogle S, Mickel AK, Chan DM, Huffaker K, Jones JJ. Intracanal assessment of mineral trioxide aggregate setting and sealing properties. Gen Dent 2007;55: 306–11.
39.Nekoofar MH, Adusei G, Sheykhrezae MS, Hayes SJ, Bryant ST, Dummer PM. The effect of condensation pressure on selected physical properties of mineral trioxide aggregate. Int Endod J 2007;40:453–61.
40.Holt DM, Watts JD, Beeson TJ, Kirkpatrick TC, Rutledge RE. The anti-microbial effect against enterococcus faecalis and the compressive strength of two types of mineral trioxide aggregate mixed with sterile water or 2% chlorhexidine liquid. J Endod 2007;33:844–7.
41.Smith JB, Loushine RJ, Weller RN, et al. Metrologic evaluation of the surface of white MTA after the use of two endodontic irrigants. J Endod 2007;33:463–7.
42.Namazikhah MS, Nekoofar MH, Sheykhrezae MS, et al. The effect of pH on surface hardness and microstructure of mineral trioxide aggregate. Int Endod J 2008;41:108–16.
43.Saghiri MA, Lotfi M, Saghiri AM, et al. Effect of pH on sealing ability of white mineral trioxide aggregate as a root-end filling material. J Endod 2008;34:1226–9.
44.Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod 1995;21:349–53.
45.Nandini S, Ballal S, Kandaswamy D. Influence of glass-ionomer cement on the interface and setting reaction of mineral trioxide aggregate when used as a furcal repair material using laser Raman spectroscopic analysis. J Endod 2007;33:167–72.
46.Ballal S, Venkateshbabu N, Nandini S, Kandaswamy D. An in vitro study to assess the setting and surface crazing of conventional glass ionomer cement when layered over partially set mineral trioxide aggregate. J Endod 2008;34:478–80.
47.Fridland M, Rosado R. MTA solubility: a long term study. J Endod 2005;31:376–9.
48.Poggio C, Lombardini M, Alessandro C, Simonetta R. Solubility of root-end-filling materials: a comparative study. J Endod 2007;33:1094–7.
49.Shie MY, Huang TH, Kao CT, Huang CH, Ding SJ. The effect of a physiologic solution pH on properties of white mineral trioxide aggregate. J Endod 2009;35:98–101.
50.Kayahan MB, Nekoofar MH, Kazandag M, et al. Effect of acid-etching procedure on selected physical properties of mineral trioxide aggregate. Int Endod J 2009;42:1004–14.
51.Shah PM, Chong BS, Sidhu SK, Ford TR. Radiopacity of potential root-end filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996;81:476–9.
52.Torabinejad M, White DJ. Tooth filling material and use. US Patent number 5,769,638; May 1995.
53.ProRootMTA safety data sheet. Available at: http://store.maillefer.com/lit2/pdfs/MTA-MSDS-W_01-02C.pdf. Accessed November 27, 2009.
54.Komabayashi T, Spångberg LS. Comparative analysis of the particle size and shape of commercially available mineral trioxide aggregates and Portland cement: a study with a flow particle image analyzer. J Endod 2008;34:94–8.
55.Lee YL, Lin FH, Wang WH, Ritchie HH, Lan WH, Lin CP. Effects of EDTA on the hydration mechanism of mineral trioxide aggregate. J Dent Res 2007;86:534–8.
56.Stowe TJ, Sedgley CM, Stowe B, Fenno JC. The effects of chlorhexidine gluconate (0.12%) on the antimicrobial properties of tooth-colored ProRoot mineral trioxide aggregate. J Endod 2004;30:429–31.
57.Estrela C, Bammann LL, Estrela CR, Silva RS, Pe´cora JD. Antimicrobial and chemical study of MTA, Portland cement, calcium hydroxide paste, Sealapex and Dycal. Braz Dent J 2000;11:3–9.
58.Torabinejad M, Hong CU, Pitt Ford TR, Kettering JD. Antibacterial effects of some root end filling materials. J Endod 1995;21:403–6.
59.Al-Nazhan S, Al-Judai A. Evaluation of antifungal activity of mineral trioxide aggregate. J Endod 2003;29:826–7.
60.Miyagak DC, de Carvalho EM, Robazza CR, Chavasco JK, Levorato GL. In vitro evaluation of the antimicrobial activity of endodontic sealers. Braz Oral Res 2006;20:303–6.
61.Al-Hezaimi K, Al-Hamdan K, Naghshbandi J, Oglesby S, Simon JH, Rotstein I. Effect of white-colored mineral trioxide aggregate in different concentrations on Candida albicans in vitro. J Endod 2005;31:684–6.
62.Al-Hezaimi K, Naghshbandi J, Oglesby S, Simon JH, Rotstein I. Comparison of antifungal activity of white-colored and gray-colored mineral trioxide aggregate (MTA) at similar concentrations against Candida albicans. J Endod 2006;32:365–7.
63.Al-Hezaimi K, Al-Shalan TA, Naghshbandi J, Oglesby S, Simon JH, Rotstein I. Antibacterial effect of two mineral trioxide aggregate (MTA) preparations against Enterococcus faecalis and Streptococcus sanguis in vitro. J Endod 2006;32:1053–6.
64.Mohammadi Z, Modaresi J, Yazdizadeh M. Evaluation of the antifungal effects of mineral trioxide aggregate materials. Aust Endod J 2006;32:120–2.
65.Eldeniz AU, Hadimli HH, Ataoglu H, Orstavik D. Antibacterial effect of selected root-end filling materials. J Endod 2006;32:345–9.
66.Yasuda Y, Kamaguchi A, Saito T. In vitro evaluation of the antimicrobial activity of a new resin-based endodontic sealer against endodontic pathogens. J Oral Sci 2008;50:309–13.
67.Tanomaru-Filho M, Tanomaru JM, Barros DB, Watanabe E, Ito IY. In vitro antimicrobial activity of endodontic sealers, MTA-based cements and Portland cement. J Oral Sci 2007;49:41–5.
68.Asgary S, Kamrani FA. Antibacterial effects of five different root canal sealing materials. J Oral Sci 2008;50:469–74.
69.Zhang H, Pappen FG, Haapasalo M. Dentin enhances the antibacterial effect of mineral trioxide aggregate and bioaggregate. J Endod 2009;35:221–4.
70.Kakehashi S, Stanley HR, Fitzgerald RJ. The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surg 1965;20:340-8.
71.Sundqvist G. Microbiology in endodontics. J Endod 1992;18:427.
72.Ng YL, Mann V, Rahbaran S, Lewsey J, Gulabivala K. Outcome of primary root canal treatment: systematic review of the literature—part 2: influence of clinical factors. Int Endod J 2008;41:6–31.
73.Torabinejad M, Pitt Ford TR. Root end filling materials. a review. Endod Dent Traumatol 1996;12:161–78.
74.Torabinejad M, Higa RK, McKendry DJ, Pitt Ford TR. Dye leakage of four root end filling materials: effects of blood contamination. J Endod 1994;20:159–63.
75.Aqrabawi J. Sealing ability of amalgam, super EBA cement, and MTA when used as retrograde filling materials. Br Dent J 2000;188:266–8.
76.Martell B, Chandler NP. Electrical and dye leakage comparison of three root-end restorative materials. Quintessence Int 2002;33:30–4.
77.Andelin WE, Browning DF, Hsu GH, Roland DD, Torabinejad M. Microleakage of resected MTA. J Endod 2002;28:573–4.
78.Davis JL, Jeansonne BG, Davenport WD, Gardiner D. The effect of irrigation with doxycycline or citric acid on leakage and osseous wound healing. J Endod 2003;29:31–5.
79.Pereira CL, Cenci MS, Demarco FF. Sealing ability of MTA, Super EBA, Vitremer and amalgam as root-end filling materials. Braz Oral Res 2004;18:317–21.
80.Asgary S, Eghbal MJ, Parirokh M. Sealing ability of a novel endodontic cement as a root-end filling material. J Biomed Mater Res 2008;87A:706–9.
81.Tanomaru Filho M, Figueiredo FA, Tanomaru JM. Effect of different dye solutions on the evaluation of the sealing ability of mineral trioxide aggregate. Braz Oral Res 2005;19:119–22.
82.Kubo CH, Gomes AP, Mancini MN. In vitro evaluation of apical sealing in root apex treated with demineralization agents and retrofiled with mineral trioxide aggregate through marginal dye leakage. Braz Dent J 2005;16:187–91.
83.Vogt BF, Xavier CB, Demarco FF, Padilha MS. Dentin penetrability evaluation of three different dyes in root-end cavities filled with mineral trioxide aggregate (MTA). Braz Oral Res 2006;20:132–6.
84.Pichardo MR, George SW, Bergeron BE, Jeansonne BG, Rutledge R. Apical leakage of root-end placed SuperEBA, MTA, and Geristore restorations in human teeth previously stored in 10% formalin. J Endod 2006;32:956–9.
85.Tobón-Arroyave SI, Restrepo-Pé rez MM, Arismendi-Echavarría JA, Velásquez-Restrepo Z, Marín-Botero ML, García-Dorado EC. Ex vivo microscopic assessment of factors affecting the quality of apical seal created by root-end fillings. Int Endod J 2007;40:590–602.
86.Gondim E Jr, Kim S, de Souza-Filho FJ. An investigation of microleakage from root end fillings in ultrasonic retrograde cavities with or without finishing: a quantitative analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;99:755–60.
87.Abedi HR, Van Mierlo BL, Wilder-Smith P, Torabinejad M. Effects of ultrasonic root-end cavity preparation on the root apex. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1995;80:207–13.
88.Roy CO, Jeansonne BG, Gerrets TF. Effect of an acid environment on leakage of root-end filling materials. J Endod 2001;27:7–8.
89.Wu MK, Kontakiotis EG, Wesselink PR. Decoloration of 1% methylene blue solution in contact with dental filling materials. J Dent 1998;26:585–9.
90.Camilleri J, Pitt Ford TR. Evaluation of the effect of tracer pH on the sealing ability of glass ionomer cement and mineral trioxide aggregate. J Mater Sci Mater Med 2008;19:2941–8.
91.Bates CF, Carnes DL, del Rio CE. Longitudinal sealing ability of mineral trioxide aggregate as a root-end filling material. J Endod 1996;22:575–8.
92.Yatsushiro JD, Baumgartner JC, Tinkle JS. Longitudinal study of the microleakage of two root-end filling materials using a fluid conductive system. J Endod 1998;24:716–9.
93.Wu MK, Kontakiotis EG, Wesselink PR. Long-term seal provided by some root-end filling materials. J Endod 1998;24:557–60.
94.Fogel HM, Peikoff MD. Microleakage of root-end filling materials. J Endod 2001;27:456–8. Erratum in: J Endod 2001;27:634.
95.Karlovic Z, Pezelj-Ribaric S, Miletic I, Jukic S, Grgurevic J, Anic I. Erbium:YAG laser versus ultrasonic in preparation of root-end cavities. J Endod 2005;31:821–3.
96.Lamb EL, Loushine RJ, Weller RN, Kimbrough WF, Pashley DH. Effect of root resection on the apical sealing ability of mineral trioxide aggregate. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;95:732–5.
97.De Bruyne MA, De Bruyne RJ, Rosiers L, De Moor RJ. Longitudinal study on microleakage of three root-end filling materials by the fluid transport method and by capillary flow porometry. Int Endod J 2005;38:129–36.
98.De Bruyne MA, De Bruyne RJ, De Moor RJ. Capillary flow porometry to assess the seal provided by root-end filling materials in a standardized and reproducible way. J Endod 2006;32:206–9.
99.Nakamichi I, Iwaku M, Fusayama T. Bovine teeth as possible substitutes in the adhesion test. J Dent Res 1983;62:1076–81.
100.Valois CR, Costa ED Jr. Influence of the thickness of mineral trioxide aggregate on sealing ability of root-end fillings in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004;97:108–11.
101.Saghiri MA, Lotfi M, Saghiri AM, Vosoughhosseini S, Fatemi A, Shiezadeh V, Ranjkesh B. Effect of pH on sealing ability of white mineral trioxide aggregate as a root-end filling material. J Endod 2008;34:1226–9.
102.Torabinejad M, Rastegar AF, Kettering JD, Pitt Ford TR. Bacterial leakage of mineral trioxide aggregate as a root-end filling material. J Endod 1995;21:109–12.
103.Fischer EJ, Arens DE, Miller CH. Bacterial leakage of mineral trioxide aggregate as compared with zinc-free amalgam, intermediate restorative material, and Super-EBA as a root-end filling material. J Endod 1998;24:176–9.
104.Adamo HL, Buruiana R, Schertzer L, Boylan RJ. A comparison of MTA, Super-EBA, composite and amalgam as root-end filling materials using a bacterial microleakage model. Int Endod J 1999;32:197–203.
105.Scheerer SQ, Steiman HR, Cohen J. A comparative evaluation of three root-end filling materials: an in vitro leakage study using Prevotella nigrescens. J Endod 2001;27:40–2.
106.Mangin C, Yesilsoy C, Nissan R, Stevens R. The comparative sealing ability of hydroxyapatite cement, mineral trioxide aggregate, and super ethoxybenzoic acid as root-end filling materials. J Endod 2003;29:261–4.
107.Maltezos C, Glickman GN, Ezzo P, He J. Comparison of the sealing of Resilon, ProRoot MTA, and Super-EBA as root-end filling materials: a bacterial leakage study. J Endod 2006;32:324–7.
108.Montellano AM, Schwartz SA, Beeson TJ. Contamination of tooth-colored mineral trioxide aggregate used as a root-end filling material: a bacterial leakage study. J Endod 2006;32:452–5.
109.Ferk Luketić S, Malcić A, Jukić S, Anić I, Segović S, Kalenić S. Coronal microleakage of two root-end filling materials using a polymicrobial marker. J Endod 2008;34:201–3.
110.Tang HM, Torabinejad M, Kettering JD. Leakage evaluation of root end filling materials using endotoxin. J Endod 2002;28:5–7.
111.Torabinejad M, Ung B, Kettering JD. In vitro bacterial penetration of coronally unsealed endodontically treated teeth. J Endod 1990;16:566–9.
112.Parirokh M, Askarifard S, Mansouri S, Haghdoost AA, Raoof M, Torabinejad M. Effect of phosphate buffer saline on coronal leakage of mineral trioxide aggregate. J Oral Sci 2009;51:187–91.
113.Fernández-Yáñ ez Sánchez A, Leco-Berrocal MI, Martínez-Gonzá lez JM. Meta-analysis of filler materials in periapical surgery. Med Oral Patol Oral Cir Bucal 2008;13:E180–5.
114.Bryan EB, Woollard G, Mitchell WC. Nonsurgical repair of furcal perforations:a literature review. Gen Dent 1999;47:274–8.
115.Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod 1993;19:541–4.
116.Nakata TT, Bae KS, Baumgartner JC. Perforation repair comparing mineral trioxide aggregate and amalgam using an anaerobic bacterial leakage model. J Endod 1998;24:184–6.
117.Daoudi MF, Saunders WP. In vitro evaluation of furcal perforation repair using mineral trioxide aggregate or resin modified glass ionomer cement with and without the use of the operating microscope. J Endod 2002;28:512–5.
118.Weldon JK Jr, Pashley DH, Loushine RJ, Weller RN, Kimbrough WF. Sealing ability of mineral trioxide aggregate and super-EBA when used as furcation repair materials:a longitudinal study. J Endod 2002;28:467–70.
119.Hardy I, Liewehr FR, Joyce AP, Agee K, Pashley DH. Sealing ability of One-Up Bond and MTA with and without a secondary seal as furcation perforation repair materials. J Endod 2004;30:658–61.
120.Ferris DM, Baumgartner JC. Perforation repair comparing two types of mineral trioxide aggregate. J Endod 2004;30:422–4.
121.Tsatsas DV, Meliou HA, Kerezoudis NP. Sealing effectiveness of materials used in furcation perforation in vitro. Int Dent J 2005;55:133–41.
122.Hamad HA, Tordik PA, McClanahan SB. Furcation perforation repair comparing gray and white MTA: a dye extraction study. J Endod 2006;32:337–40.
123.De-Deus G, Petruccelli V, Gurgel-Filho E, Coutinho-Filho T. MTA versus Portland cement as repair material for furcal perforations: a laboratory study using a polymicrobial leakage model. Int Endod J 2006;39:293–8.
124.Hashem AA, Hassanien EE, ProRoot MTA. MTA-Angelus and IRM used to repair large furcation perforations: sealability study. J Endod 2008;34:59–61.
125.Zou L, Liu J, Yin S, Li W, Xie J. In vitro evaluation of the sealing ability of MTA used for the repair of furcation perforations with and without the use of an internal matrix. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;105:e61–5.
126.Shemesh H, Souza EM, Wu MK, Wesselink PR. Glucose reactivity with filling materials as a limitation for using the glucose leakage model. Int Endod J 2008;41:869–72.
127.Tselnik M, Baumgartner JC, Marshall JG. Bacterial leakage with mineral trioxide aggregate or a resin-modified glass ionomer used as a coronal barrier. J Endod 2004;30:782–4.
128.John AD, Webb TD, Imamura G, Goodell GG. Fluid flow evaluation of Fuji Triage and gray and white ProRoot mineral trioxide aggregate intraorifice barriers. J Endod 2008;34:830–2.
129.Barrieshi-Nusair KM, Hammad HM. Intracoronal sealing comparison of mineral trioxide aggregate and glass ionomer. Quintessence Int 2005;36:539–45.
130.Jenkins S, Kulild J, Williams K, Lyons W, Lee C. Sealing ability of three materials in the orifice of root canal systems obturated with gutta-percha. J Endod 2006;32:225–7.
131.Zakizadeh P, Marshall SJ, Hoover CI, et al. A novel approach in assessment of coronal leakage of intraorifice barriers: a saliva leakage and micro-computed tomographic evaluation. J Endod 2008;34:871–5.
132.Stefopoulos S, Tsatsas DV, Kerezoudis NP, Eliades G. Comparative in vitro study of the sealing efficiency of white vs grey ProRoot mineral trioxide aggregate formulas as apical barriers. Dent Traumatol 2008;24:207–13.
133.Martin RL, Monticelli F, Brackett WW, et al. Sealing properties of mineral trioxide aggregate orthograde apical plugs and root fillings in an in vitro apexification model. J Endod 2007;33:272–5.
134.de Leimburg ML, Angeretti A, Ceruti P, Lendini M, Pasqualini D, Berutti E. MTA obturation of pulpless teeth with open apices: bacterial leakage as detected by polymerase chain reaction assay. J Endod 2004;30:883–6.
135.Al-Kahtani A, Shostad S, Schifferle R, Bhambhani S. In-vitro evaluation of microleakage of an orthograde apical plug of mineral trioxide aggregate in permanent teeth with simulated immature apices. J Endod 2005;31:117–9.
136.Vizgirda PJ, Liewehr FR, Patton WR, McPherson JC, Buxton TB. A comparison of laterally condensed gutta-percha, thermoplasticized gutta-percha, and mineral trioxide aggregate as root canal filling materials. J Endod 2004;30:103–6.
137.Al-Hezaimi K, Naghshbandi J, Oglesby S, Simon JH, Rotstein I. Human saliva penetration of root canals obturated with two types of mineral trioxide aggregate cements. J Endod 2005;31:453–6.
138.Bogen G. A comparison of laterally condensed gutta-percha, thermoplasticized gutta-percha, and mineral trioxide aggregate as root canal filling materials. J Endod 2004;30:826. author reply 826.
139.Abuabara A, Santos AJ, Aguiar FH, Lovadino JR. Evaluation of microleakage in human, bovine and swine enamels. Braz Oral Res 2004;18:312–6.
140.Camargo CH, Siviero M, Camargo SE, de Oliveira SH, Carvalho CA, Valera MC. Topographical, diametral, and quantitative analysis of dentin tubules in the root canals of human and bovine teeth. J Endod 2007;33:4226.
141.Camargo CH, Bernardineli N, Valera MC, et al. Vehicle influence on calcium hydroxide pastes diffusion in human and bovine teeth. Dent Traumatol 2006;22:302–6.
142.Camargo SE, Valera MC, Camargo CH, Gasparoto Mancini MN, Menezes MM. Penetration of 38% hydrogen peroxide into the pulp chamber in bovine and human teeth submitted to office bleach technique. J Endod 2007;33:1074–7.
143.Torabinejad M, Smith PW, Kettering JD, Pitt Ford TR. Comparative investigation of marginal adaptation of mineral trioxide aggregate and other commonly used root end filling materials. J Endod 1995;21:295–9.
144.Gondim E, Zaia AA, Gomes BP, Ferraz CC, Teixeira FB, Souza-Filho FJ. Investigation of the marginal adaptation of root-end filling materials in root-end cavities prepared with ultrasonic tips. Int Endod J 2003;36:491–9.
145.Shipper G, Grossman ES, Botha AJ, Cleaton-Jones PE. Marginal adaptation of mineral trioxide aggregate (MTA) compared with amalgam as a root-end filling material: a low-vacuum (LV) versus high-vacuum (HV) SEM study. Int Endod J 2004;37:325–36.
146.Peters CI, Peters OA. Occlusal loading of EBA and MTA root-end fillings in a computer-controlled masticator: a scanning electron microscopic study. Int Endod J 2002;35:22–9.
147.Gandolfi MG, Sauro S, Mannocci F, et al. New tetrasilicate cements as retrograde filling material: an in vitro study on fluid penetration. J Endod 2007;33:742–5.
148.Xavier CB, Weismann R, de Oliveira MG, Demarco FF, Pozza DH. Root-end filling materials: apical microleakage and marginal adaptation. J Endod 2005;31:539–42.
149.de Souza EB, de Amorim CV, Marques JL. Effect of diode laser irradiation on the apical sealing of MTA retrofillings. Braz Oral Res 2006;20:231–4.
150.Winik R, Araki AT, Negraõ JA, Bello-Silva MS, Lage-Marques JL. Sealer penetration and marginal permeability after apicoectomy varying retrocavity preparation and retrofilling material. Braz Dent J 2006;17:323–7.
151.Shemesh H. To the editor: Hashem and Hassanien ‘‘ProRoot MTA, MTA-Angelus, and IRM used to repair large furcation perforations: sealability study’’. J Endod 2008;34:512. author reply 512–3.
152.Pelliccioni GA, Vellani CP, Gatto MR, Gandolfi MG, Marchetti C, Prati C. Proroot mineral trioxide aggregate cement used as a retrograde filling without addition of water: an in vitro evaluation of its microleakage. J Endod 2007;33:1082–5.
153.Shahi S, Rahimi S, Yavari HR, Shakouie S, Nezafati S, Abdolrahimi M. Sealing ability of white and gray mineral trioxide aggregate mixed with distilled water and 0.12% chlorhexidine gluconate when used as root-end filling materials. J Endod 2007;33:1429–32.
154.Rahimi S, Shahi S, Lotfi M, Yavari HR, Charehjoo ME. Comparison of microleakage with three different thicknesses of mineral trioxide aggregate as root-end filling material. J Oral Sci 2008;50:273–7.
155.Matt GD, Thorpe JR, Strother JM, McClanahan SB. Comparative study of white and gray mineral trioxide aggregate (MTA) simulating a one- or two-step apical barrier technique. J Endod 2004;30:876–9.
156.Uyanik MO, Nagas E, Sahin C, Dagli F, Cehreli ZC. Effects of different irrigation regimens on the sealing properties of repaired furcal perforations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:e91–5.
157.Asgary S, Eghbal MJ, Parirokh M, Ghoddusi J. Effect of two storage solutions on surface topography of two root-end fillings. Aust Endod J (in press).
158.Bozeman TB, Lemon RR, Eleazer PD. Elemental analysis of crystal precipitate from gray and white MTA. J Endod 2006;32:425–8.
159.Alhadainy HA. Root perforations. A review of literature. Oral Surg Oral Med Oral Pathol 1994; 78:368–74.
160.Himel VT, Brady J, Weir J. Evaluation of mechanical perforations of the pulp chamber floor using biodegradable tricalcium phosphate or calcium hydroxide. J Endod 1985;11:161-165.
161.Kettering JD, Torabinejad M. Investigation of mutagenicity of mineral trioxide aggregate and other commonly used root-end filling materials. J Endod 1995;21:537–9.
162.Braz MG, Camargo EA, Salvadori DMF, Marques MEA, Ribeiro DA. Evaluation of genetic damage in human peripheral lymphocytes exposed to mineral trioxide aggregate and Portland cement. J Oral Rehab 2006;33:234–9.
163.Riberio DA, Duarte MAH, Matsumoto MA, Marques MEA, Salvidori DMF. Biocompatibility in vitro tests of mineral trioxide aggregate and regular and white Portland cements. J Endod 2005;31:605–7.
164.Riberio DA, Sugui MM, Matsumoto MA, Duarte MAH, Marques MEA, Salvidori DMF. Genotoxicity and cytotoxicity of mineral trioxide aggregate and regular and white Portland cements on Chinese hamster ovary (CHO) cells in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101:258–61.
165.Torabinejad M, Hong CU, Pitt Ford TR, Kettering JD. Cytotoxicity of four root end filling materials. J Endod 1995;21:489–92.
166.Keiser K, Johnson CC, Tipton DA. Cytotoxicity of mineral trioxide aggregate using human periodontal ligament fibroblasts. J Endod 2000;26:288–91.
167.Balto HA. Attachment and morphological behavior of human periodontal ligament fibroblasts to mineral trioxide aggregate: a scanning electron microscope study. J Endod 2003;30:25–8.
168.Pistorius A, Willershausen B, Marroquin BB. Effect of apical root-end filling materials on gingival fibroblasts. Int Endod J 2003;36:610–5.
169.Osorio RM, Hefti A, Vertucci FJ, Shawley AL. Cytotoxicity of endodontic materials. J Endod 1998;24:91–6.
170.Lin CP, Chen YJ, Lee YL, Want JS, Chang MC, Lan WH, et al. Effects of root-end filling materials and eugenol on mitochondrial dehydrogenase activity and cytotoxicity to human periodontal ligament fibroblasts. J Biomed Mater Res Part B Appl Biomater 2004;71B:429–40.
171.Fayad MI, Hawkinson R, Daniel J, Hao J. The effect of CO2 laser irradiation on PDL cell attachment to resected root surfaces. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004;97:518–23.
172.Bonson S, Jeansonne BG, Lallier TE. Root-end filling materials alter fibroblast differentiation. J Dent Res 2004;83:408–13.
173.Haglund R, He J, Safavi KE, Spangberg LSW, Zhu Q. Effects of root-end filling materials on fibroblasts and macrophages in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;95:739–45.
174.Hernandez EP, Botero TM, Mantellini MG, McDonald NJ, Nör JE. Effect of ProRoot MTA mixed with chlorihexidine on apoptosis and cell cycle of fibroblasts and macrophages in vitro. Int Endod J 2005;38:137–43.
175.Melegari KK, Botero TM, Holland GR. Prostaglandin E2 production and viability of cells cultured in contact with freshly mixed endodontic materials. Int Endod J 2006;39:357–62.
176.Koh ET, Torabinejad M, Pitt Ford TR, Brady K, McDonald F. Mineral trioxide aggregate stimulates a biological response in human osteoblasts. J Biomed Res 1997;37:432–9.
177.Mitchell PJC, Pitt Ford TR, Torabinejad M, McDonald F. Osteoblast biocompatibility of mineral trioxide aggregate. Biomaterials 1999;20:167–73.
178.Zhu Q, Haglund R, Safavi KE, Spangberg LS. Adhesion of human osteoblasts on root-end filling materials. J Endod 2000;26:404–6.
179.Huang TH, Ding SJ, Hsu TC, Kao CT. Effects of mineral trioxide aggregate (MTA) extracts on mitogen-activated protein kinase activity in human osteosarcoma cell line (U2OS). Biomaterials 2003;24:3909–13.
180.Pellicioni GA, Ciapeti G, Cenni E, Granchi D, Nanni M, Pagani S, et al. Evaluation of osteoblast-like cell response to ProRoot MTA (mineral trioxide aggregate). J Mater Sci Mater Med 2004;15:167–73.
181.Huang TH, Yang CC, Ding SJ, Meng Y, Kao CT, Chou MY. Inflammatory cytokines reaction elicited by root-end filling materials. J Biomed Mater Res Part B Appl Biomater 2005;73:123–8.
182.Asrari M, Lobner D. In vitro neurotoxic evaluation of root-end filing materials. J Endod 2003;29:743–6.
183.Thomson TS, Berry JE, Somerman MJ, Kirkwood KL. Cementoblasts maintain expression of osteocalcin in the presence of mineral trioxide aggregate. J Endod 2003;29:407–12.
184.Moghaddame-Jafari S, Mantellini MG, Botero TM, McDonald NJ, Nör JE. Effect of ProRoot MTA on pulp cell apoptosis and proliferation in vitro. J Endod 2005;31:387–91.
185.Takita T, Hayashi M, Takeichi O, Ogiso B, Suzuki N, Otsuka K, et al. Effect of mineral trioxide aggregate on proliferation of cultured human dental pulp cells. Int Endod J 2006;39:415–22.
186.Oviir T, Pagoria D, Ibarra G, Geurtsen W. Effects of gray and white mineral trioxide aggregate on the proliferation of oral keratinocytes and cementoblasts. J Endod 2006;32:21–13.
187.Torabinejad M, Hong CU, Pitt Ford TR, Kariyawasam SP. Tissue reaction to implanted Super-EBA and mineral trioxide aggregate in the mandible of guinea pigs: a preliminary report. J Endod 1995;21:569–71.
188.Saidon J, He J, Zhu Q, Safavi K, Spangberg LSW. Cell and tissue reactions to mineral trioxide aggregate and Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;95:483–9.
189.de Morais CAH, Bernardineli N, Garcia RB, Duarte AH, Guerisoli DMZ. Evaluation of tissue response to MTA and Portland cement with iodoform. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:417–21.
190.Torabinejad M, Pitt Ford TR, Abedi HR, Kariyawasam SP, Tang HM. Tissue reaction to implanted root-end filling materials in the tibia and mandible of guinea pigs. J Endod 1998;24:468–71.
191.Cintra LTA, de Moraes IG, Estrada BPF, Gomes-Filho JE, Bramante CM, Garcia RB, et al. Evaluation of the tissue response to MTA and MBPC: microscopic analysis of implants in alveolar bone of rats. J Endod 2006;32:556–9.
192.Yaltirik M, Ozbas H, Bilgic B, Issever H. Reactions of connective tissue to mineral trioxide aggregate and amalgam. J Endod 2004;30:95–9.
193.Shahi S, Rahini S, Lotfi M, Yavari HR, Gaderian AR. A comparative study of the biocompatibility of three root-end filling materials in rat connective tissue. J Endod 2006;32:776–80.
194.Masuda EL, Wang X, Hossain M, Unno A, Jayawardena JA, Saito K, et al. Evaluation of biocompatibility of mineral trioxide aggregate with an improved rabbit ear chamber. J Oral Rehab 2005;32:145–50.
195.Torabinejad M, Hong CU, Lee SJ, Monsef M, Pitt Ford TR. Investigation of mineral trioxide aggregate for root-end filling in dogs. J Endod 1995;21:603–8.
196.Regan JD, Gutmann JL, Witherspoon DE. Comparison of Diaket and MTA when used as root-end filling materials to support regeneration of the periradicular tissues. Int Endod J 2002;35:840–7.
197.Economides N, Pantelidou O, Tziafas K, Tziafas D. Short-term periradicular tissue response to mineral trioxide aggregate (MTA) as root-end filling material. Int Endod J 2003;36:44–8.
198.Baek S-H, Plenk Jr H, Kim S. Periapical tissue responses and cementum regeneration with amalgam, SuperEBA, and MTA as root-end filling materials. J Endod 2005;31:444–9.
199.Apaydin ES, Shabahang S, Torabenijad M. Hard-tissue healing after application of fresh or set MTA as root-end-filling material. J Endod 2003;30:21–4.
200.Apaydin ES, Torabinejad M. The effect of calcium sulfate on hard-tissue healing after periradicular surgery. J Endod 2004;30:17–20.
201.Torabinejad M, Pitt Ford TR, McKendry DJ, Abedi HR, Miller DA, Kariyawasam SP. Histologic assessment of mineral trioxide aggregate as a root-end filling in monkeys. J Endod 1997;23:225–8.
202.Holland R, de Souza V, Nery MJ, Filho JAO, Bernabe PFE, Dezan E. Reaction of dog’s teeth to root canal filling with mineral trioxide aggregate or a glass-ionomer sealer. J Endod 1999;25:728–30.
203.Pitt Ford TR, Torabinejad M, Abedi HR, Bakland LK, Kariyawasam SP. Using mineral trioxide aggregate as a pulp-capping material. Journal of the American Dental Association, 127:1491-1494, 1996
204.Camilleri J, Pitt Ford TR. Mineral trioxide aggregate: a review of the constituents and biological properties of the material. Int Endod J 2006;39:747–54.
205.Roberts HW, Toth JM, Berzins DW, Charlton DG. Mineral trioxide aggregate material use in endodontic treatment: a review of the literature. Dent Mater 2008;24:149–64.
206.Webber RT. Apexogenesis versus apexification. Dent Clin North Am 1984;28(4):669-697.
207.Stanley HR. Pulp capping : conserving the dental pulp - can it be done? Is it worth it? Oral Surg Oral Med Oral Pathol 1989;68(5):628–639.
208.Schroder U, Granath LE. Early reaction of intact human teeth to calcium hydroxide following experimental pulpotomy and its significance to the development of hard tissue barrier. Odontol Revy 1971;22(4):379-395
209.Cox CF, Subay RK, Ostro E, Suzuki S, Suzuki SH. Tunnel defects in dentin bridges : their formation following direct pulp capping. Oper Dent 1996;21(1):4-11
210.Faraco IM Jr., Holland R. Response of the pulp of dogs to capping with mineral trioxide aggregate or a calcium hydroxide cement. Dent Traumatol 2001;17:163–6.
211.Tziafas D, Pantelidou O, Alvanou A, Belibasakis G, Papadimitriou S. The dentinogenic effect of mineral trioxide aggregate (MTA) in short-term capping experiments. Int Endod J 2002;35:245–54.
212.Dominguez MS, Witherspoon DE, Gutmann JL, Opperman LA. Histological and scanning electron microscopy assessment of various vital pulp-therapy materials. J Endod 2003;29:324–33.
213.Parirokh M, Asgary S, Eghbal MJ, et al. A comparative study of white and grey mineral trioxide aggregate as pulp capping agents in dog’s teeth. Dent Traumatol 2005;21:150–4.
214.Briso AL, Rahal V, Mestrener SR, Dezan Junior E. Biological response of pulps submitted to different capping materials. Braz Oral Res 2006;20:219–25.
215.Asgary S, Eghbal MJ, Parirokh M, Ghanavati F, Rahimi H. A comparative study of histologic response to different pulp capping materials and a novel endodontic cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:609–14.
216.Faraco Junior IM, Holland R. Histomorphological response of dogs’ dental pulp capped with white mineral trioxide aggregate. Braz Dent J 2004;15:104–8.
217.Simon S, Cooper P, Smith A, Picard B, Ifi CN, Berdal A. Evaluation of a new laboratory model for pulp healing: preliminary study. Int Endod J 2008;4:781–90.
218.Hasheminia SM, Feizi G, Razavi SM, Feizianfard M, Gutknecht N, Mir M. A comparative study of three treatment methods of direct pulp capping in canine teeth of cats: a histologic evaluation. Lasers Med Sci (in press).
219.Bodem O, Blumenshine S, Zeh D, Koch MJ. Direct pulp capping with mineral trioxide aggregate in a primary molar: a case report. Int J Paediatr Dent 2004;14:376–9.
220.Caicedo R, Abbott PV, Alongi DJ, Alarcon MY. Clinical, radiographic and histological analysis of the effects of mineral trioxide aggregate used in direct pulp capping and pulpotomies of primary teeth. Aust Dent J 2006;51:297–305.
221.Tuna D, Olmez A. Clinical long-term evaluation of MTA as a direct pulp capping material in primary teeth. Int Endod J 2008;41:273–8.
222.Nair PN, Duncan HF, Pitt Ford TR, Luder HU. Histological, ultrastructural and quantitative investigations on the response of healthy human pulps to experimental capping with mineral trioxide aggregate: a randomized controlled trial. Int Endod J 2008;41:128–50.
223.Kim E, Jou YT. A supernumerary tooth fused to the facial surface of a maxillary permanent central incisor: case report. J Endod 2000;26:45–8.
224.Aeinehchi M, Eslami B, Ghanbariha M, Saffar AS. Mineral trioxide aggregate (MTA) and calcium hydroxide as pulp-capping agents in human teeth: a preliminary report. Int Endod J 2003;36:225–31.
225.Patel R, Cohenca N. Maturogenesis of a cariously exposed immature permanent tooth using MTA for direct pulp capping: a case report. Dent Traumatol 2006;22:328–33.
226.Hong HH, Tsai AI, Liang CH, et al. Preserving pulpal health of a geminated maxillary lateral incisor through multidisciplinary care. Int Endod J 2006;39:730–7.
227.Iwamoto CE, Adachi E, Pameijer CH, Barnes D, Romberg EE, Jefferies S. Clinical and histological evaluation of white ProRoot MTA in direct pulp capping. Am J Dent 2006;19:85–90.
228.Farsi N, Alamoudi N, Balto K, Al Mushayt A. Clinical assessment of mineral trioxide aggregate (MTA) as direct pulp capping in young permanent teeth. J Clin Pediatr Dent 2006;31:72–6.
229.Bogen G, Kim JS, Bakland LK. Direct pulp capping with mineral trioxide aggregate: an observational study. J Am Dent Assoc 2008;139:305–15.
230.Sawicki L, Pameijer CH, Emerich K, Adamowicz-Klepalska B. Histological evaluation of mineral trioxide aggregate and calcium hydroxide in direct pulp capping of human immature permanent teeth. Am J Dent 2008;21:262–6.
231.Min KS, Park HJ, Lee SK, et al. Effect of mineral trioxide aggregate on dentin bridge formation and expression of dentin sialoprotein and heme oxygenase-1 in human dental pulp. J Endod 2008;34:666–70.
232.Holland R, de Souza V, Murata SS, et al. Healing process of dog dental pulp after pulpotomy and pulp covering with mineral trioxide aggregate or Portland cement. Braz Dent J 2001;12:109–13.
233.Menezes R, Bramante CM, Letra A, Carvalho VG, Garcia RB. Histologic evaluation of pulpotomies in dog using two types of mineral trioxide aggregate and regular and white Portland cements as wound dressings. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004;98:376–9.
234.de Souza Costa CA, Duarte PT, de Souza PP, Giro EM, Hebling J. Cytotoxic effects and pulpal response caused by a mineral trioxide aggregate formulation and calcium hydroxide. Am J Dent 2008;21:255–61.
235.Salako N, Joseph B, Ritwik P, Salonen J, John P, Junaid TA. Comparison of bioactive glass, mineral trioxide aggregate, ferric sulfate, and formocresol as pulpotomy agents in rat molar. Dent Traumatol 2003;19:314–20.
236.Cannon M, Cernigliaro J, Vieira A, Percinoto C, Jurado R. Effects of antibacterial agents on dental pulps of monkeys mechanically exposed and contaminated. J Clin Pediatr Dent 2008;33:21–8.
237.Eidelman E, Holan G, Fuks AB. Mineral trioxide aggregate vs formocresol in pulpotomized primary molars: a preliminary report. Pediatr Dent 2001;23:15–8.
238.Agamy HA, Bakry NS, Mounir MM, Avery DR. Comparison of mineral trioxide aggregate and formocresol as pulp-capping agents in pulpotomized primary teeth. Pediatr Dent 2004;26:302–9.
239.Saltzman B, Sigal M, Clokie C, Rukavina J, Titley K, Kulkarni GV. Assessment of a novel alternative to conventional formocresol-zinc oxide eugenol pulpotomy for the treatment of pulpally involved human primary teeth: diode laser-mineral trioxide aggregate pulpotomy. Int J Paediatr Dent 2005;15:437–47.
240.Naik S, Hegde AM. Mineral trioxide aggregate as a pulpotomy agent in primary molars: an in vivo study. J Indian Soc Pedod Prev Dent 2005;23:13–6.
241.Farsi N, Alamoudi N, Balto K, Mushayt A. Success of mineral trioxide aggregate in pulpotomized primary molars. J Clin Pediatr Dent 2005;29:307–11.
242.Holan G, Eidelman E, Fuks AB. Long-term evaluation of pulpotomy in primary molars using mineral trioxide aggregate or formocresol. Pediatr Dent 2005;27:129–36.
243.Maroto M, Barberıá E, Planells P, Garcıá Godoy F. Dentin bridge formation after mineral trioxide aggregate (MTA) pulpotomies in primary teeth. Am J Dent 2005;18:151–4.
244.Maroto M, Barberıá E, Vera V, García-Godoy F. Dentin bridge formation after white mineral trioxide aggregate (white MTA) pulpotomies in primary molars. Am J Dent 2006;19:75–9.
245.Percinoto C, de Castro AM, Pinto LM. Clinical and radiographic evaluation of pulpotomies employing calcium hydroxide and trioxide mineral aggregate. Gen Dent 2006;54:258–61.
246.Maroto M, Barberıá E, Vera V, Garcıá-Godoy F. Mineral trioxide aggregate as pulp dressing agent in pulpotomy treatment of primary molars: 42-month clinical study. Am J Dent 2007;20:283–6.
247.Moretti AB, Oliveira TM, Sakai VT, Santos CF, Machado MA, Abdo RC. Mineral trioxide aggregate pulpotomy of a primary second molar in a patient with agenesis of the permanent successor. Int Endod J 2007;40:738–45.
248.Aeinehchi M, Dadvand S, Fayazi S, Bayat-Movahed S. Randomized controlled trial of mineral trioxide aggregate and formocresol for pulpotomy in primary molar teeth. Int Endod J 2007;40:261–7.
249.Noorollahian H. Comparison of mineral trioxide aggregate and formocresol as pulp medicaments for pulpotomies in primary molars. Br Dent J 2008;204:E20.
250.Moretti AB, Sakai VT, Oliveira TM, et al. The effectiveness of mineral trioxide aggregate, calcium hydroxide and formocresol for pulpotomies in primary teeth. Int Endod J 2008;4:547–55.
251.Sonmez D, Sari S, Cetinbas x T. A comparison of four pulpotomy techniques in primary molars: a long-term follow-up. J Endod 2008;34:950–5.
252.Peng L, Ye L, Tan H, Zhou X. Evaluation of the formocresol versus mineral trioxide aggregate primary molar pulpotomy: a meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:e40–4.
253.Ng FK, Messer LB. Mineral trioxide aggregate as a pulpotomy medicament: an evidence-based assessment. Eur Arch Paediatr Dent 2008;9:58–73.
254.Karabucak B, Li D, Lim J, Iqbal M. Vital pulp therapy with mineral trioxide aggregate. Dent Traumatol 2005;21:240–3.
255.Belobrov I, Weis MV, Parashos P. Conservative treatment of a cervical horizontal root fracture and a complicated crown fracture: a case report. Aust Dent J 2008;53:260–4.
256.Barrieshi-Nusair KM, Qudeimat MA. A prospective clinical study of mineral trioxide aggregate for partial pulpotomy in cariously exposed permanent teeth. J Endod 2006;32:731–5.
257.Qudeimat MA, Barrieshi-Nusair KM, Owais AI. Calcium hydroxide vs mineral trioxide aggregates for partial pulpotomy of permanent molars with deep caries. Eur Arch Paediatr Dent 2007;8:99–104.
258.Koh ET, Ford TR, Kariyawasam SP, Chen NN, Torabinejad M. Prophylactic treatment of dens evaginatus using mineral trioxide aggregate. J Endod 2001;27:540–2.
259.Witherspoon DE, Small JC, Harris GZ. Mineral trioxide aggregate pulpotomies: a case series outcomes assessment. J Am Dent Assoc 2006;137:610–8.
260.Chacko V, Kurikose S. Human pulpal response to mineral trioxide aggregate (MTA): a histologic study. J Clin Pediatr Dent 2006;30:203–9.
261.El-Meligy OA, Avery DR. Comparison of mineral trioxide aggregate and calcium hydroxide as pulpotomy agents in young permanent teeth (apexogenesis). Pediatr Dent 2006;28:399–404.
262.Eghbal MJ, Asgary S, Baglue RA, Parirokh M, Ghoddusi J. MTA pulpotomy of human permanent molars with irreversible pulpitis. Aust Endod J 2009;35:4–8.
263.Weiger R, Axmann-Krcmar D, Löst C. Prognosis of conventional root canal treatment reconsidered. Endod Dent Traumatol, 14: 1-9, 1998.
264.Ingle JI. Endodontics. 3rd ed. Philadelphia: Lea & Febiger, pp35-37, 1985.
265.Fuss Z, Trope M. Root perforations: classification and treatment choices based on prognostic factors. Endod Dent Traumatol, 12: 255-264,1996.
266.Walton RE, Torabinejad M. Principles and practice of endodontics. W.B. Saunders Company. 2nd edi. pp401-422, 1996.
267.Firedman S. Retrograde approaches in endodontic therapy. Endod Dent Traumatol, 7: 97-107, 1991.
268.Johnson BR. Considerations in the selection of a root-end filling material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 87:398-404,1999.]
269.Jou YT, Pertl C. Is there a best retrograde filling material ? Dent Clin North Am, 41: 555-561, 1997.
270.Bernabé PF, Gomes-Filho JE, Rocha WC, Nery MJ, Otoboni-Filho JA, Dezan-Jú nior E. Histological evaluation of MTA as a root-end filling material. Int Endod J 2007;40:758–65.
271.Favieri A, Campos LC, Burity VH, Santa Cecı´lia M, Abad Eda C. Use of biomaterials in periradicular surgery: a case report. J Endod 2008;34:490–4.
272.Kahn S, Egreja AM, Barceleiro Mde O. Subepithelial connective tissue graft associated with apicoectomy and root-end fillings in the treatment of deep localized gingival recession with apex root exposure: case report. Int J Periodontics Restorative Dent 2009;29:445–9.
273.Chong BS, Pitt Ford TR, Hudson MB. A prospective clinical study of mineral trioxide aggregate and IRM when used as root-end filling materials in endodontic surgery. Int Endod J 2003;36:520–6.
274.Lindeboom JA, Frenken JW, Kroon FH, van den Akker HP. A comparative prospective randomized clinical study of MTA and IRM as root-end filling materials in single-rooted teeth in endodontic surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;100:495–500.
275.Saunders WP. A prospective clinical study of periradicular surgery using mineral trioxide aggregate as a root-end filling. J Endod 2008;34:660–5.
276.Kim S, Kratchman S. Modern endodontic surgery concepts and practice: a review. J Endod 2006;32:601–23.
277.Barnes IE. Surgical Endodontics: Colour Manual. Wright, pp69-76, 1991.
278.Al-Daafas A, Al-Nazhan S. Histological evaluation of contaminated furcal perforation in dogs’ teeth repaired by MTA with or without internal matrix. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;103:e92–9.
279.Yildirim T, Gençoğ lu N, Firat I, Perk C, Guzel O. Histologic study of furcation perforations treated with MTA or Super EBA in dogs’ teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;100:120–4.
280.Noetzel J, Ozer K, Reisshauer BH, et al. Tissue responses to an experimental calcium phosphate cement and mineral trioxide aggregate as materials for furcation perforation repair: a histological study in dogs. Clin Oral Investig 2006;10:77–83.
281.Holland R, Bisco Ferreira L, de Souza V, Otoboni Filho JA, Murata SS, Dezan E Jr. Reaction of the lateral periodontium of dogs’ teeth to contaminated and noncontaminated perforations filled with mineral trioxide aggregate. J Endod 2007;33:1192–7.
282.Arens DE, Torabinejad M. Repair of furcal perforations with mineral trioxide aggregate: two case reports. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996;82:84–8.
283.Schwartz RS, Mauger M, Clement DJ, Walker WA 3rd. Mineral trioxide aggregate:a new material for endodontics. J Am Dent Assoc 1999;130:967–75.
284.Tsai YL, Lan WH, Jeng JH. Treatment of pulp floor and stripping perforation by mineral trioxide aggregate. J Formos Med Assoc 2006;105:522–6.
285.Ibarrola JL, Biggs SG, Beeson TJ. Repair of a large furcation perforation: a fouryear follow-up. J Endod 2008;34:617–9.
286.Ghoddusi J, Sanaan A, Shahrami F. Clinical and radiographic evaluation of root perforation repair using MTA. N Y State Dent J 2007;73:46–9.
287.Pace R, Giuliani V, Pagavino G. Mineral trioxide aggregate as repair material for furcal perforation: case series. J Endod 2008;34:1130–3.
288.Hembrough MW, Meares WA, Cohen J, Steiman HR. Non-surgical post perforation repair with mineral trioxide aggregate: a case report. J Mich Dent Assoc 2003;85:36–8.
289.Menezes R, da Silva Neto UX, Carneiro E, Letra A, Bramante CM, Bernadinelli N. MTA repair of a supracrestal perforation: a case report. J Endod 2005;31:212–4.
290.Bargholz C. Perforation repair with mineral trioxide aggregate: a modified matrix concept. Int Endod J 2005;38:59–69.
291.Tanalp J, Dikbas I, Delilbasi C, Bayirli G, Calikkocaoglu S. Persistent sinus tract formation 1 year following cast post-and-core replacements: a case report. Quintessence Int 2006;37:545–50.
292.Yildirim G, Dalci K. Treatment of lateral root perforation with mineral trioxide aggregate: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:e55–8.
293.Young GR. Contemporary management of lateral root perforation diagnosed with the aid of dental computed tomography. Aust Endod J 2007;33:112–8.
294.Friend LA. The root treatment of teeth with open apices. Proc R Soc Med 1966;59(10):1035-1036
295.Friend LA. The treatment of immature teeth with non-vital pulps. J Br Endod Soc 1967;1(2):28-33
296.Rafter M. Apexification: a review. Dent Traumatol 2005;21:1–8.
297.Hatibović-Kofman S, Raimundo L, Zheng L, Chong L, Friedman M, Andreasen JO. Fracture resistance and histological findings of immature teeth treated with mineral trioxide aggregate. Dent Traumatol 2008;24:272–6.
298.Andreasen JO, Farik B, Munksgaard EC. Long-term calcium hydroxide as a root canal dressing may increase risk of root fracture. Dent Traumatol 2002;18:134–7.
299.Levenstein H. Obturating teeth with wide open apices using mineral trioxide aggregate:a case report. SADJ 2002;57:270–3.
300.Park JB, Lee JH. Use of mineral trioxide aggregate in the open apex of a maxillary first premolar. J Oral Sci 2008;50:355–406.
301.Witherspoon DE, Ham K. One-visit apexification: technique for inducing rootend barrier formation in apical closures. Pract Proced Aesthet Dent 2001;13:455–60.
302.Steinig TH, Regan JD, Gutmann JL. The use and predictable placement of Mineral Trioxide Aggregate in one-visit apexification cases. Aust Endod J 2003;29:34–42.
303.Ling J, Xu Q, Wei X. Microscopic management of teeth with open apices using mineral trioxide aggregate. Pract Proced Aesthet Dent 2008;20:49–51.
304.Mooney GC, North S. The current opinions and use of MTA for apical barrier formation of non-vital immature permanent incisors by consultants in paediatric dentistry in the UK. Dent Traumatol 2008;24:65–9.
305.Shabahang S, Torabinejad M, Boyne PP, Abedi H, McMillan P. A comparative study of root-end induction using osteogenic protein-1, calcium hydroxide, and mineral trioxide aggregate in dogs. J Endod 1999;25:1–5.
306.Ham KA, Witherspoon DE, Gutmann JL, Ravindranath S, Gait TC, Opperman LA. Preliminary evaluation of BMP-2 expression and histological characteristics during apexification with calcium hydroxide and mineral trioxide aggregate. J Endod 2005;31:275–9.
307.Pradhan DP, Chawla HS, Gauba K, Goyal A. Comparative evaluation of endodontic management of teeth with unformed apices with mineral trioxide aggregate and calcium hydroxide. J Dent Child (Chic) 2006;73:79–85.
308.El-Meligy OA, Avery DR. Comparison of apexification with mineral trioxide aggregate and calcium hydroxide. Pediatr Dent 2006;28:248–53.
309.Pace R, Giuliani V, Pini Prato L, Baccetti T, Pagavino G. Apical plug technique using mineral trioxide aggregate: results from a case series. Int Endod J 2007;40:478–84.
310.Simon S, Rilliard F, Berdal A, Machtou P. The use of mineral trioxide aggregate in one-visit apexification treatment: a prospective study. Int Endod J 2007;40:186–97.
311.Holden DT, Schwartz SA, Kirkpatrick TC, Schindler WG. Clinical outcomes of artificial root-end barriers with mineral trioxide aggregate in teeth with immature apices. J Endod 2008;34:812–7.
312.Sarris S, Tahmassebi JF, Duggal MS, Cross IA. A clinical evaluation of mineral trioxide aggregate for root-end closure of non-vital immature permanent incisors in children: a pilot study. Dent Traumatol 2008;24:79–85.
313.Hench LL, Wilson J. Surface-active biomaterials. Science 1984;226:630–6.
314.Ducheyne P, El-Ghannam A, Shapiro IM. Effect of bioactive glass template on osteoblast proliferation and in vitro synthesis of bone-like tissue. J Cell Biochem 1994;56:162–7.
315.Gou Z, Chang J, Zhai W, Wang J. Study on the self-setting property and the in vitro bioactivity of beta-Ca2SiO4. J Biomed Mater Res B Appl Biomater 2005;73:244–51.
316.Zhao W, Wang J, Zhai W, Wang Z, Chang J. The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials 2005;26:6113–21.
317.Asgary S, Parirokh M, Eghbal MJ, Brink F. A comparative study of white mineral trioxide aggregate and white Portland cements using X-ray microanalysis. Aust Endod J 2004;30:89–92.
318.Enkel B, Dupas C, Armengol V, et al. Bioactive materials in endodontics. Expert Rev Med Devices 2008;5:475–94.
319.Baek SH, Plenk H Jr., Kim S. Periapical tissue responses and cementum regeneration with amalgam, SuperEBA, and MTA as root-end filling materials. J Endod 2005;31:444–9.
320.Kim EC, Lee BC, Chang HS, Lee W, Hong CU, Min KS. Evaluation of the radiopacity and cytotoxicity of Portland cements containing bismuth oxide. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;105:e54–7.
321.Pelliccioni GA, Ciapetti G, Cenni E, et al. Evaluation of osteoblast-like cell response to Proroot MTA (mineral trioxide aggregate) cement. J Mater Sci Mater Med 2004;15:167–73.
322.Tani-Ishii N, Hamada N, Watanabe K, Tujimoto Y, Teranaka T, Umemoto T. Expression of bone extracellular matrix proteins on osteoblast cells in the presence of mineral trioxide. J Endod 2007;33:836–9.
323.Yasuda Y, Ogawa M, Arakawa T, Kadowaki T, Saito T. The effect of mineral trioxide aggregate on the mineralization ability of rat dental pulp cells: an in vitro study. J Endod 2008;34:1057–60.
324.Holland R, de Souza V, Nery MJ, Otoboni Filho JA, Bernabé PF, Dezan Júnior E. Reaction of rat connective tissue to implanted dentin tubes filled with mineral trioxide aggregate or calcium hydroxide. J Endod 1999;25:161–6.
325.Moretton TR, Brown CE Jr., Legan JJ, Kafrawy AH. Tissue reactions after subcutaneous and intraosseous implantation of mineral trioxide aggregate and ethoxybenzoic acid cement. J Biomed Mater Res 2000;52:528–33.
326.Holland R, de Souza V, Nery MJ, et al. Reaction of rat connective tissue to implanted dentin tube filled with mineral trioxide aggregate, Portland cement or calcium hydroxide. Braz Dent J 2001;12:3–8.
327.Holland R, de Souza V, Nery MJ, et al. Calcium salts deposition in rat connective tissue after the implantation of calcium hydroxide-containing sealers. J Endod 2002;28:173–6.
328.Holland R, Souza V, Nery MJ, et al. Reaction of rat connective tissue to implanted dentin tubes filled with a white mineral trioxide aggregate. Braz Dent J 2002;13:23–6.
329.Asgary S, Parirokh M, Eghbal MJ, Ghoddusi J, Eskandarizadeh A. SEM evaluation of neodentinal bridging after direct pulp protection with mineral trioxide aggregate. Aust Endod J 2006;32:26–30.
330.Midy V, Dard M, Hollande E. Evaluation of the effect of three calcium phosphate powders on osteoblast cells. J Mater Sci Mater Med 2001;12:259–65.
331.Hakki SS, Bozkurt SB, Hakki EE, Belli S. Effects of mineral trioxide aggregate on cell survival, gene expression associated with mineralized tissues, and biomineralization of cementoblasts. J Endod 2009;35:513–9.
332.Kuratate M, Yoshiba K, Shigetani Y, Yoshiba N, Ohshima H, Okiji T. Immunohistochemical analysis of nestin, osteopontin, and proliferating cells in the reparative process of exposed dental pulp capped with mineral trioxide aggregate. J Endod 2008;34:970–4.
333.Téclès O, Laurent P, Aubut V, About I. Human tooth culture: a study model for reparative dentinogenesis and direct pulp capping materials biocompatibility. J Biomed Mater Res B Appl Biomater 2008;85:180–7.
334.Reyes-Carmona JF, Felippe MS, Felippe WT. Biomineralization ability and interaction of mineral trioxide aggregate and white portland cement with dentin in a phosphate-containing fluid. J Endod 2009;35:731–6.
335.Ni Chaollai A, Monteiro J, Duggal MS. The teaching of management of the pulp in primary molars in Europe: a preliminary investigation in Ireland and the UK. Eur Arch Paediatr Dent 2009;10:98–103.
336.Bogen G, Kuttler S. Mineral trioxide aggregate obturation: a review and case series. J Endod 2009;35:777–90.
337.Silveira CM, Sánchez-Ayala A, Lagravère MO, Pilatti GL, Gomes OM. Repair of furcal perforation with mineral trioxide aggregate: long-term follow-up of 2 cases. J Can Dent Assoc 2008;74:729–33.
338.Monteiro Bramante C, Demarchi AC, de Moraes IG, Bernadineli N, Garcia RB, Spångberg LS. Presence of arsenic in different types of MTA and white and gray Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:909-13.
339.Duarte MA, De Oliveira Demarchi AC, Yamashita JC, Kuga MC, De Campos Fraga S. Arsenic release provided by MTA and Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;99:648–50.
340.Srinivasan V, Patchett CL, Waterhouse PJ. Is there life after Buckley’s formocresol? part I: a narrative review of alternative interventions and materials. Int J Paediatr Dent 2006;16:117–27.
341.Boutsioukis C, Noula G, Lambrianidis T. Ex vivo study of the efficiency of two techniques for the removal of mineral trioxide aggregate used as a root canal filling material. J Endod 2008;34:1239–42.
342.Glickman GN, Koch KA. 21st-century endodontics. J Am Dent Assoc 2000;131(Suppl):39S–46.
343.De-Deus G, de Souza MC, Sergio Fidel RA, Fidel SR, de Campos RC, Luna AS. Negligible expression of arsenic in some commercially available brands of Portland cement and mineral trioxide aggregate. J Endod 2009;35:887–90.
344.Mishra D, Farrell J. Evaluation of mixed valent iron oxides as reactive adsorbents for arsenic removal. Environ Sci Technol 2005;39:9689–94.
345.Wiltbank KB, Schwartz SA, Schindler WG. Effect of selected accelerants on the physical properties of mineral trioxide aggregate and Portland cement. J Endod 2007;33:1235–8.
346.Ber BS, Hatton JF, Stewart GP. Chemical modification of ProRoot MTA to improve handling characteristics and decrease setting time. J Endod 2007;33:1231–4.
347.Huang TH, Shie MY, Kao CT, Ding SJ. The effect of setting accelerator on properties of mineral trioxide aggregate. J Endod 2008;34:590–3.
348.Ding SJ, Kao CT, Shie MY, Hung CJ, Huang TH. The physical and cytological properties of white MTA mixed with Na2HPO4 as an accelerant. J Endod 2008;34:748–51.
349.Hsieh SC, Teng NC, Lin YC, Lee PY, Ji DY, Chen CC, Ke ES, Lee, Yang JC. A novel accelerator for improving the handling properties of dental filling materials. J Endod 2009;35:1292–5.
350.Bortoluzzi EA, Broon NJ, Bramante CM, Felippe WT, Tanomaru Filho M, Esberard RM. The influence of calcium chloride on the setting time, solubility, disintegration, and pH of mineral trioxide aggregate and white Portland cement with a radiopacifier. J Endod 2009;35:550–4.
351.Bortoluzzi EA, Broon NJ, Bramante CM, Garcia RB, de Moraes IG, Bernardineli N. Sealing ability of MTA and radiopaque Portland cement with or without calcium chloride for root-end filling. J Endod 2006;32:897–900.
352.Hong ST, Bae KS, Baek SH, Kum KY, Lee W. Microleakage of accelerated mineral trioxide aggregate and Portland cement in an in vitro apexification model. J Endod 2008;34:56–8.
353.The Food Additives Market, Leatherhead International Ltd, Surrey (UK), May 2002.
354.National Research Council. Calcium, In: Recommended Dietary Allowances: 10th edition. Report of the Subcommittee on the Tenth Edition of the RDA. Food and Nutrition Board and the Commission of Life Sciences. Washington D.C. National Academy Press, 174-184 (1989).
355.Flynn A, Cashman K. Calcium. In: Hurrel, R.(ed.) The Mineral Fortification of Foods, Leatherhead International Ltd, Surrey, England 1999.
356.Jungbunzlauer GG. Calcium lactate gluconate-the innovative solution for extra calcium. Innovations in Food Technology 2002;16:1-3.
357.Tordoff MG. Some basic physophysics of calcium salt solutions. Chemical Senses 1996;21:417-424.
358.Engel KH. Technical University Munich - Weihenstephan, Germany, personal communication 2002.
359.Farzaneh M, Abitbol S, Friedman S. Treatment Outcome in Endodontics: The Toronto Study. Phases I and II: Orthograde Retreatment. J Endod 2004;30:627–33.
360.Cohen S, Burns RC. Pathways of the pulp. Mosby, pp608-656, pp827-829, 1998.
361.Lee ES. A new mineral trioxide aggregate root-end filling technique. J Endod 2000;26:764-5.
362.Marco M, Gilberto A, Tiziano C, Cella F and Bravo A. Tricalcium aluminate hydration in additivated systems. A crystallographic study by SR-XRPD. Cement and Concrete Research 2008;38(4):477-486.
363.American Society for Testing and Materials. Standard test method for time of setting of hydraulic cement by Vicat needle. ASTM C191 -04. West Conshohocken, PA: American Society for Testing and Materials; 2004.
364.American Society for Testing and Materials. Standard test method for time of setting of hydraulic-cement paste by Gillmore needles. ASTM C266 -03. West Conshohocken, PA: American Society for Testing and Materials; 2003.
365.International Organization for Standardization. Dental root canal sealing materials. ISO 6876:2001(E). Geneva, Switzerland: International Organization for Standardization; 2001.
366.Nawy EG. Concrete construction engineering handbook. New York: CRC Press, 1997.
367.Kosmatka S, Panarese W. Design and control of concrete mixtures. 13th ed. Skokie, IL: Portland Cement Association, 1988.
368.Hoen MM, Pink FE. Contemporary endodontic retreatments: an analysis based on clinical treatment findings. J Endod 2002;28:834–6.
369.Siqueira JF Jr, Rôças IN. Clinical implications and microbiology of bacterial persistence after treatment procedures. J Endod 2008;34:1291–301.
370.Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review—part II: leakage and biocompatibility investigations. J Endod 2010;36:190–202.
371.Chailertvanitkul P, Abbott PV, Riley TV, Sooksuntisakoonchai N. Bacterial and Dye Penetration through Interim Restorations Used During Endodontic Treatment of Molar Teeth. J Endod 2009;35:1017–22.
372.Olmez A, Tuna D, Ozdogan YT and Ulker AE. The effectiveness of different thickness of mineral trioxide aggregate on coronal leakage in endodontically treated deciduous teeth. J Dent Child (Chic), 2008; 75:260-263.
373.Bonesvoll P. Influence of ionic strength, calcium, sodium dodecyl sulphate and urea on the retention of chlorhexidine in the human mouth after mouth rinses. Arch Oral Biol 1977;22:273–9.
374.Siqueira JF Jr., de Uzeda M. Intracanal medicaments: evaluation of the antibacterial effects of chlorhexidine, metronidazole, and calcium hydroxide associated with three vehicles. J Endod 1997;23:167–9.
375.Duarte MA, Demarchi AC, Giaxa MH, et al. Evaluation of pH and calcium ion release of three root canal sealers. J Endod 2000;26:389–90.
376.Mjor IA, Dahl E, Cox CF. Healing of pulp exposures: an ultrastructural study. J Oral Pathol Med 1991;20(10):496-501.
377.Torneck CD, Moe H, Howley TP. The effect of calcium hydroxide on porcine pulp fibroblasts in vitro. J Endod 1983;9(4):131-6.
378.Kardos TB, Hunter AR, Hanlin SM, Kirk EE. Odontoblast differentiation: a response to environmental calcium ? Endod Dent Traumatol 1998;14(3):105-11.
379.Freeman K, Ludington TR Jr., Svec TA, Pinero GJ, Hoover J. Continuously infused calcium hydroxide: its influence on hard tissue repair. J Endod 1994;20:272-5.
380.Yoshiba K, Yoshiba N, Nakamura H, Iwaku M, Ozawa H. Immunolocalization of fibronectin during reparative dentinogenesis in human teeth after pulp capping with calcium hydroxide. J Dent Res 1996;75:1590-7.
381.Estrela C, Sydney GB, Bammann LL, Felipe O Jr. Mechanism of action of calcium and hydroxyl ions of calcium hydroxide on tissue and bacteria. Braz Dent J 1995;6:85-90.
382.Reddi AH. Bone morphogenetic proteins: an unconventional approach to isolation of first mammalian morphogens. Cytokine Growth Factor Rev 1997;8:11-20.
383.Gu K, Smoke RH, Rutherford RB. Expression of genes for bone morphogenetic proteins and receptors in human dental pulp. Arch Oral Biol 1996;41:919-23.
384.Saito T, Ogawa M, Hata Y, Bessho K. Acceleration effect of human recombinant bone morphogenetic protein-2 on differentiation of human pulp cells into odontoblasts. J Endod 2004;30:205–8.
385.Guven G, Cehreli ZC, Ural A, Serdar MA, Basak F. Effect of mineral trioxide aggregate cements on transforming growth factor β1 and bone morphogenetic protein production by human fibrlblasts in vitro. J Endod 2007;33:447–50.
386.Rashid F, Shiba H, Mizuno N, Mouri Y, Fujita T, Shinohara H, Ogawa T, Kawaguchi H, Kurihara H. The effect of extracellular calcium ion on gene expression of bone-related proteins in human pulp cells. J Endod 2003;29:104–7.
387.Buset M, Lipkin M, Winawer S, Swaroop S, Friedman E. Inhibition of human colonie epithelial cell proliferation in vivo and in vitro by calcium. Cancer Res 1986;46:5426–30.
388.ANSI/ADA (1993) Specification No. 27 Resin-Based Filling Materials. Chicago, USA: ANSI/ADA.
389.Loh IH. Poster : Setting properties of dental filling material. Research Week-International Symposium of College of Oral Medicine March 24~27, 2011.
論文全文使用權限
  • 同意授權瀏覽/列印電子全文服務,於2016-08-18起公開。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446