進階搜尋


  查詢北醫館藏
系統識別號 U0007-2407200911053400
論文名稱(中文) 低鈣狀態對於發育中大白鼠神經系統BDNF轉錄之影響
論文名稱(英文) The effect of hypocalcemia on the transcription of BDNF in the developing central nervous system of rat
校院名稱 臺北醫學大學
系所名稱(中) 臨床醫學研究所
系所名稱(英) Graduate Institute of Clinical Medicine
學年度 97
學期 2
出版年 98
研究生(中文) 李淑婷
研究生(英文) Shu-Ting Lee
學號 M118096006
學位類別 碩士
語文別 中文
口試日期 2009-07-07
論文頁數 54頁
口試委員 指導教授-葉健全
共同指導教授-洪焜隆
委員-陳景宗
委員-李怡萱
委員-沈芯?{
中文關鍵字 低血鈣  神經發育 
英文關鍵字 hypocalcemia  BDNF  neurodevelopment 
學科別分類
中文摘要 新生兒低血鈣是臨床上常見的現象,然而新生兒期暫時性低血鈣是否會造成未來神經發展的異常,鮮少有人探討。本實驗室的前趨研究發現,低鈣之培養液會造成大白鼠胚胎神經細胞明顯的死亡,鈣離子濃度越低,細胞死亡的情形越嚴重。表示低血鈣對於不成熟的神經系統可能具有神經毒性。
神經活動依賴之可塑性(activity-dependent neuronal plasticity) 亦即神經細胞的活動會造成本身及鄰近細胞功能及型態的長期性改變是神經細胞發展過程最重要的一環。近來的研究顯示,neuronal plasticity的形成與神經營養因子(neurotrophin)蛋白質有極密切的關係。其中之一便是BDNF(Brain-derived neurotrophic factor)。BDNF的基因含有8個5’端不轉譯的exon(exonI~VIII)及一個3’端的蛋白轉譯exon (exon IX)。BDNF的mRNA transcript一共有22種,exon IX BDNF mRNA為各transcript所共有,也是後來真正轉譯成蛋白質的部份,它的表現會隨著神經細胞的活動而增加,並且這種增加必須伴隨著細胞內鈣離子濃度的上升。Exon I-IX BDNF(BDNF-I) mRNA則為腦部所特有,在腦外組織表現量極少。過去研究發現,從不同鈣離子通道進入的鈣離子會活化不同的exon primer,而作出不同的BDNF mRNA transcript。因此,神經細胞外鈣離子降低有可能改變BDNF的表現量。為測試此假設我們使用大白鼠胚胎的大腦皮質細胞,作初級培養,並給予持續低鈣或暫時低鈣處理,觀察神經纖維的生長情形及total BDNF mRNA(exonIX)以及BDNF-I mRNA的表現量是否有所不同並且偵測其神經纖維生長狀況及粗細(活體外實驗)。另外我們也以短期產前皮下注射calcitonin導致初生幼鼠有短暫血鈣下降的動物模式,觀察出生後生長狀況,並偵測其海馬迴total BDNF mRNA及BDNF-I mRNA 表現量的變化。細胞模式實驗發現持續低鈣組在6天時,輕微低鈣(1.75mM)會使total BDNF mRNA下降,但嚴重低鈣(0.96m,0.31mM)反而會上升;BDNF-I mRNA則會下降。暫時低鈣組在12天時的total BDNF mRNA及BDNF-I mRNA均下降。持續低鈣0.31mM組在培養3天後神經纖維生長明顯比正常組短;培養到12天後,0.96m及0.31mM組的神經纖維直徑明顯較對照組細胞細。另一方面,我們將懷孕母鼠在產前連續二天給予calcitonin皮下注射使其產生血鈣降低(活體內實驗),其所生幼鼠於出生一天時有短暫性低血鈣,且發現低鈣母鼠所生之幼鼠在出生後7天內的身長體重明顯低於對照組。此外,低鈣組幼鼠其海馬迴之total BDNF mRNA表現量在出生後十四天時有下降的趨勢。
以上結果顯示細胞外鈣離子降低的確會影響BDNF轉譯以及神經纖維的生長,但是二者的變化是否有相關則有待未來繼續研究。
英文摘要 Hypocalcaemia is a common problem, yet the long-term sequels of transient hypocalcaemia in developing brain are not known and have not been carefully characterized. Our preliminary study revealed that reduced calcium concentration in the culture medium would lead to rat embryonic neuron death, and the proportion of neuron death is related to calcium concentration. These results suggest that hypocalcemia may be neurotoxic for immature neuron.
“Activity-dependent neuronal plasticity” is an important phenomenon during neuron development. One attractive molecular candidates for modulating synaptic plasticity are the member of neurotrophins (NTs) family, include BDNF(Brain-derived neurotrophic factor). BDNF gene includes eight 5’ noncoding exons (exonI~VIII) and one 3’ protein coding exon (exon IX).Rat BDNF mRNA contains 22 transcripts, and exon IX mRNA is common region for all transcripts, which could be up-regulated when neuron activity increase. Furthermore, the up-regulation should accompany with increased intracellular calcium concentration. Exon I-IX BDNF(BDNF-I) mRNA transcript is brain-specific. Extracellular calcium could enter into cell via different calcium channel, which has been shown to activate different exon primer and then induces transcription of BDNF mRNA. We proposed that reduction of extracellular calcilum level might alter the expression of BDNF in transcriptional level. To test this hypothesis, we determined the level of total BDNF and BDNF-I mRNA using Real-Time PCR in primary rat cortical neuron cell culture in present of low calcium medium. In addition, we also determined the BDNF transcript in the hippocampus of developing rats born to dam rats received 2-day injection of calcitonin before delivery.
Long-term incubation of cells in low calcium medium induces a transient decrease or increase in total BDNF mRNA and BDNF-1 mRNA, which dependent on the concentration of calcium and incubation period. On the other hand, transient low calcium incubation on Day in vitro 1(DIV 1) induced a delay-onset of reduction of total BDNF and BDNF-I mRNA determined on DV12. Incubation in very low extracellular calcium (0.31mM) medium induced a reduction in the neurite growth and the diameter. Rats born to calcitonin-injected dams rats had low serum calcium level, low body weight gain, and body length growth during the first postnatal week. In addition, total BDNF mRNA level has significant trend of decrease on post-natal day 14.
This result demonstrated that lower extracellular calcium level could affect the transcription of BDNF and neuronal growth. However, whether the reduction of BDNF expression is related to the abnormal neurite growth is required further investigation.
論文目次 中文摘要 IV
英文摘要 VI
第壹章 緒論 1
壹、低血鈣在臨床上的影響 2
貳、鈣與神經發育的關係 3
參、BDNF與神經發育的相關性 6
肆、實驗計劃目的 11
第貳章 實驗材料及方法 13
壹、實驗材料 14
貳、實驗方法 17
第參章 實驗結果 23
壹、初級培養之胚胎大腦皮質神經細胞低鈣培養下神經纖維的生長狀況 24
貳、初級培養之胚胎大腦皮質神經細胞低鈣培養下total BDNF mRNA及 BDNF-I mRNA的表現量 25
參、低鈣組與控制組之新生幼鼠的生長情況比較 26
肆、低鈣之新生幼鼠腦部的total BDNF mRNA及I BDNF-I mRNA的表現量 26
第肆章 實驗討論 27
參考文獻 35
圖表 41
參考文獻 Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T. (2007). "Mouse and rat BDNF gene structure and expression revisited." J Neurosci Res 85(3): 525-35.
Bading H, Ginty DD, Greenberg ME. (1993). "Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways." Science 260(5105): 181-6.
Balasubramanian S, Shivbalan S, Kumar PS. (2006). "Hypocalcemia due to vitamin D deficiency in exclusively breastfed infants." Indian Pediatr 43(3): 247-51.
Bhowmick SK. (2007). "A neonate with persistent twitching. Diagnosis: neonatal hypocalcemia." Clin Pediatr (Phila) 46(5): 459-61.
Bixby JL, Spitzer NC. (1984). "Early differentiation of vertebrate spinal neurons in the absence of voltage-dependent Ca2+ and Na+ influx." Dev Biol 106(1): 89-96.
Castrén E, Zafra F, Thoenen H, Lindholm D. (1992). "Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex." Proc Natl Acad Sci U S A 89(20): 9444-8.
Chen WG, West AE, Tao X, Corfas G, Szentirmay MN, Sawadogo M, Vinson C, Greenberg ME. (2003). "Upstream stimulatory factors are mediators of Ca2+-responsive transcription in neurons." J Neurosci 23(7): 2572-81.
Cockburn F, Brown JK, Belton NR, Forfar JO. (1973). "Neonatal convulsions associated with primary disturbance of calcium, phosphorus, and magnesium metabolism." Arch Dis Child 48(2): 99-108.
Cormier RJ, Greenwood AC, Connor JA. (2001). "Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold." J Neurophysiol 85(1): 399-406.
Ernfors P, Lee KF, Jaenisch R. (1994). "Mice lacking brain-derived neurotrophic factor develop with sensory deficits." Nature 368(6467): 147-50.
Ernfors P, Wetmore C, Olson L, Persson H. (1990). "Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family." Neuron 5(4): 511-26.
Figurov A, Pozzo-Miller LD, Olafsson P, Wang T, Lu B. (1996). "Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus." Nature 381(6584): 706-9.
Friedman WJ, Olson L, Persson H. (1991). "Cells that Express Brain-Derived Neurotrophic Factor mRNA in the Developing Postnatal Rat Brain." Eur J Neurosci 3(7): 688-697.
Ghosh A, Carnahan J, Greenberg ME. (1994). "Requirement for BDNF in activity-dependent survival of cortical neurons." Science 263(5153): 1618-23.
Gu X, Spitzer NC. (1995). "Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients." Nature 375(6534): 784-7.
Hansel C, Artola A, Singer W. (1997). "Relation between dendritic Ca2+ levels and the polarity of synaptic long-term modifications in rat visual cortex neurons." Eur J Neurosci 9(11): 2309-22.
Hebb.DO (1949). "The organization of behavior."
Holliday J, Spitzer NC. (1990). "Spontaneous calcium influx and its roles in differentiation of spinal neurons in culture." Dev Biol 141(1): 13-23.
Holliday J, Spitzer NC. (1993). "Calcium regulates neuronal differentiation both directly and via co-cultured myocytes." J Neurobiol 24(4): 506-14.
Jones KR, Fariñas I, Backus C, Reichardt LF. (1994). "Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development." Cell 76(6): 989-99.
Keen JH. (1969). "Significance of hypocalcaemia in neonatal convulsions." Arch Dis Child 44(235): 356-61.
Kingsbury TJ, Murray PD, Bambrick LL, Krueger BK. (2003). "Ca(2+)-dependent regulation of TrkB expression in neurons." J Biol Chem 278(42): 40744-8.
Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T. (1995). "Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor." Proc Natl Acad Sci U S A 92(19): 8856-60.
Lisman J. (1989). "A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory." Proc Natl Acad Sci U S A 86(23): 9574-8.
Liu QR, Walther D, Drgon T, Polesskaya O, Lesnick TG, Strain KJ, de Andrade M, Bower JH, Maraganore DM, Uhl GR. (2005). "Human brain derived neurotrophic factor (BDNF) genes, splicing patterns, and assessments of associations with substance abuse and Parkinson's Disease." Am J Med Genet B Neuropsychiatr Genet 134B(1): 93-103.
Lynch BJ, Rust RS. (1994). "Natural history and outcome of neonatal hypocalcemic and hypomagnesemic seizures." Pediatr Neurol 11(1): 23-7.
Magee JC, Johnston D. (1997). "A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons." Science 275(5297): 209-13.
McInerny TK, Schubert WK. (1969). "Prognosis of neonatal seizures." Am J Dis Child 117(3): 261-4.
Murphy TH, Worley PF, Baraban JM. (1991). "L-type voltage-sensitive calcium channels mediate synaptic activation of immediate early genes." Neuron 7(4): 625-35.
Neveu D, Zucker RS. (1996). "Postsynaptic levels of [Ca2+]i needed to trigger LTD and LTP." Neuron 16(3): 619-29.
Nishiyama M, Hong K, Mikoshiba K, Poo MM, Kato K. (2000). "Calcium stores regulate the polarity and input specificity of synaptic modification." Nature 408(6812): 584-8.
Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER. (1996). "Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice." Neuron 16(6): 1137-45.
Pozzo-Miller LD, Gottschalk W, Zhang L, McDermott K, Du J, Gopalakrishnan R, Oho C, Sheng ZH, Lu B. (1999). "Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice." J Neurosci 19(12): 4972-83.
Rose AL, Lombroso CT. (1970). "A study of clinical, pathological, and electroencephalographic features in 137 full-term babies with a long-term follow-up." Pediatrics 45(3): 404-25.
Sabatini BL, Maravall M, Svoboda K. (2001). "Ca(2+) signaling in dendritic spines." Curr Opin Neurobiol 11(3): 349-56.
Sanna B, Kramer D, Genazzani AA. (2002). "The expression of the PDZ protein MALS-1/velis is regulated by calcium and calcineurin in cerebellar granule cells." J Biol Chem 277(51): 49585-90.
Schiller J, Schiller Y, Clapham DE. (1998). "NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation." Nat Neurosci 1(2): 114-8.
Sheth DP. (1997). "Hypocalcemic seizures in neonates." Am J Emerg Med 15(7): 638-41.
Shieh PB, Hu SC, Bobb K, Timmusk T, Ghosh A. (1998). "Identification of a signaling pathway involved in calcium regulation of BDNF expression." Neuron 20(4): 727-40.
Spitzer NC. (2002). "Activity-dependent neuronal differentiation prior to synapse formation: the functions of calcium transients." J Physiol Paris 96(1-2): 73-80.
Spoerri PE, Dozier AK, Roisen FJ. (1990). "Calcium regulation of neuronal differentiation: the role of calcium in GM1-mediated neuritogenesis." Brain Res Dev Brain Res 56(2): 177-88.
Tabuchi A. (2008). "Synaptic plasticity-regulated gene expression: a key event in the long-lasting changes of neuronal function." Biol Pharm Bull 31(3): 327-35.
Tabuchi A, Nakaoka R, Amano K, Yukimine M, Andoh T, Kuraishi Y, Tsuda M. (2000). "Differential activation of brain-derived neurotrophic factor gene promoters I and III by Ca2+ signals evoked via L-type voltage-dependent and N-methyl-D-aspartate receptor Ca2+ channels." J Biol Chem 275(23): 17269-75.
Tabuchi A, Sakaya H, Kisukeda T, Fushiki H, Tsuda M. (2002). "Involvement of an upstream stimulatory factor as well as cAMP-responsive element-binding protein in the activation of brain-derived neurotrophic factor gene promoter I." J Biol Chem 277(39): 35920-31.
Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME. (1998). "Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism." Neuron 20(4): 709-26.
Tao X, West AE, Chen WG, Corfas G, Greenberg ME. "A calcium-responsive transcription factor, CaRF, that regulates neuronal activity-dependent expression of BDNF." Neuron 33(3): 383-95.
Thoenen H. (1995). "Neurotrophins and neuronal plasticity." Science 270(5236): 593-8.
Timmusk T, Palm K, Metsis M, Reintam T, Paalme V, Saarma M, Persson H. (1993). "Multiple promoters direct tissue-specific expression of the rat BDNF gene." Neuron 10(3): 475-89.
Yan Q, Rosenfeld RD, Matheson CR, Hawkins N, Lopez OT, Bennett L, Welcher AA. (1997). "Expression of brain-derived neurotrophic factor protein in the adult rat central nervous system." Neuroscience 78(2): 431-48.
Yang SN, Tang YG, Zucker RS. (1999). "Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation." J Neurophysiol 81(2): 781-7.
論文全文使用權限
  • 同意授權瀏覽/列印電子全文服務,於2011-07-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446