系統識別號 U0007-2107200921451500
論文名稱(中文) 原住民族群(Atayal ,泰雅)URAT1蛋白對應GENE SLC22A12上rs893006 SNP位點於高尿酸血症患者中之表現
論文名稱(英文) Association between rs893006 SNP of gene SLC22A12 encoding URAT1 (urate transporter protein) and the hyperuricemia in Taiwanese aborigines (Atayal)
校院名稱 臺北醫學大學
系所名稱(中) 臨床醫學研究所
系所名稱(英) Graduate Institute of Clinical Medicine
學年度 97
學期 2
出版年 98
研究生(中文) 石瑄
研究生(英文) Hsuan Shih
學號 M102092025
學位類別 碩士
語文別 中文
口試日期 2009-06-27
論文頁數 53頁
口試委員 委員-蔡清霖
中文關鍵字 痛風  尿酸  單核苷  酸多態性  台灣原住民 
英文關鍵字 gout  uric acid  single nucleotide polymorphism  taiwanese aborigines 
中文摘要 尿酸是人體嘌呤代謝後的最終產物(ATP, GTP & nucleic acid), 而人體的尿酸經由製造和排出維持一定的濃度.當尿酸在體內的濃度過高時, 會很容易累積在關節周圍, 刺激發炎,腫脹,發熱, 引起嚴重的疼痛, 甚至久了會形成痛風石, 破壞關節組織, 包括肌腱及骨頭部份.當疼痛發生時, 造成相當大的痛苦, 有人形容成風吹過也疼痛不已, 故也叫做痛風.
一直以來, 尿酸經由何種模式代謝, 其最終對人體是不是無任何幫助, 只會產生疾病, 尚未有定論. 但已知的是尿酸對人體而論, 似乎不是一無是處. 在一些特定情況下, 尿酸可以是一種強的抗氧化物,當缺乏鹽類時, 還可以經由血管收縮素做用, 扮演穩定血壓的重要角色.
近端腎小管頂點蛋白URAT1(coded by SLC22A12), 對尿酸經由腎臟的排出及再吸收所扮演的角色, 重要性似乎是愈來愈明顯, 而陸續有一些新的報告針對SLC22A12其核酸多樣性對尿酸代謝的影響關係被定性出來.經由326位日本人之SLC22A12 gene, 點rs893006單核苷酸多態性(single neucleotide polymorphism, SNP) (GG, GT and TT) 之分析, 發現血液中高尿酸值與SLC22A12 基因中之單核苷酸多態性有明顯相關.
在台灣原住民中, 有明顯的高尿酸血症之發生率. 我們採取368位志願者之血液, 包括175位男性受試者及193位女性受試者. 分別為原住民235位(泰雅族、布農族、排灣族)和平地人133位. 淋巴球純化出DNA, 檢視SLC22A12 gene點rs893006單核苷酸多態性(single neucleotide polymorphism, SNP)的基因表現型為何, 其不同基因型對於URAT1蛋白的功能影響與高尿酸血症有何影響, 其關係為何, 是否有意義?
另外, 我們也將同時比較血液樣本中之肌酸酐, 空腹血糖值, 三酸甘油脂, 胆固醇, 基礎體重值與高尿酸血症患者其SLC22A12 gene點rs893006單核苷酸多態性是否有任何相關性.
英文摘要 Serum uric acid is the degradation product of purines (ATP, GTP & nucleic acid). Serum uric acid level is maintained by urate synthesis and excretion. Whenever hyperurecemia happened, the joint inflammatory change, cause a lot of pain. The risk of deposition of uric acid around joints will increase, thus cause joint, tendon destruction and disability. The tophus formation and joint destructive process induce very severe pain and disability, which is known as gouty arthritis.
For a long time, uric acid metabolitic process is not been fully understood. Is it really the only final excretional product or if it still has some possible usefulness? The answer is quite clear, under some certain circumstances, it can be function similar to vitamin C, as a potent antioxidant. Also, urate can maintain blood pressure under low salt conditions via stimulation of the reninangiotensin system through a mechanism that is still poorly understood.
The renal tubule apical protein, URAT1 (coded by SLC22CA12) was recently proposed to be the major absorptive urate transporter protein in the kidney regulating blood urate levels. A study of the Janpanese genetic variations in SLC22A12 gene, rs893006 polymorphism (GG, GT and TT) in a total of 326 Japanese subjects was published. The significant correlation between single nucleotide polymorphism (SNP) in the urate transporter gene SLC22CA12 was found to be associated with the elevated serum uric acid levels.
In Taiwanese aborigines, has a remarkably high prevalence of hyperuricemia and gout. We collected 368 volunteers blood samples, which including 175 cases of male and 193 cases of female. (Ataya, Bunun, Paiwan, and general Taiwanese)(including 133 cases of general population of taiwanese as control group, 235 cases are the Taiwanese aborigines(Atayal),) The genomic DNA from peripheral blood lymphocytes will be collected, and use for genotyping of the rs893006 polymorphism in SLC22A12 gene, comparing the difference between Taiwanese aborigines and the general population.
Otherwise, we will also compare the difference between the plasma level of creatinine, fasting plasma glucose level, triglyceride, serum cholesterol, BMI and the serum uric acid level.
論文目次 誌謝 02
圖表目次 04
章節目錄 05
中文摘要 06
英文摘要 08
緒論 11
研究方法與材料 18
結果 24
討論 31
結論 37
参考文獻 38
參考文獻 1. Anzai N et al. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus.
J Biol Chem 279: 45942–45950
2. B Stibůrková Familial juvenile hyperuricemic nephropathy: Localization of the gene on chromosome 16p11.2—and evidence for genetic heterogeneity
Am. J. Hum. Genet. 66:1989–1994, 2000
3. Cappuccio, F.P Uric acid metabolism and tubular sodium handling.
JAMA 270, 354–359
4. Choi HK, Mount DB, Reginato AM Pathogenesis of gout.
Ann Intern Med 143: 499–516
5. C. T. CHOU The epidemiology of hyperuricemia and gout in Taiwan aborigines
British Journal of Rheumatology 1998;37:258–262
6. Dehghan A et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study.
Lancet 372: 1953–1961.
7. Doring A, Gieger C et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects.
Nat Genet 40: 430–436.
8. Endou, H Gene analysis of urate transporter gene, URAT1. Joint Research
Report in Kyorin University
9. Enomoto A, Kimura H et al Molecular identification of a renal urate anion exchanger that regulates blood urate levels.
Nature 417: 447–452, 2002
10. Fredriksson R The solute carrier (SLC) complement of the human genome: phylogenetic classification reveals four major families.
FEBS Lett 582: 3811–3816.
11. George Nuki and Peter A Simkin A concise history of gout and hyperuricemia and their treatment
Arthritis Research & Therapy 2006, 8(Suppl 1)
12. Horikawa, Y et al Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus.
Nature Genetics 26, 163–175.
13. Ichida, K. et al Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese.
Clin. Genet. 74: 243-251, 2008
14. Iwai, N., Mino, Y High prevalence of renal hypouricemia caused by inactive SLC22A12 in Japanese.
Kidney Int. 66, 935–944
15. Jang, Won Cheoul et al T6092C polymorphism of SLC22A12 gene is associated with serum uric acid concentrations in Korean male subjects
Clin Chim Acta. 2008 Dec:398(1-2):140-4. Epub 2008 Sep
16. Juergen Graessler Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population
Arthritis & rheumatism 2006 Jan;54(1):292-300
17. J Vázquez-Mellado Homozygous frameshift mutation in the SLC22A12 gene in a patient with primary gout and high levels of serum uric acid
Journal of Clinical Pathology 2007;60:947-948
18. Kagan, A Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California: demographic, physical, dietary and biochemical characteristics.
Journal of Chronic Diseases 27, 345–364.
19. Kikuchi Y et al Patients with renal hypouricemia
with exercise-induced acute renal failure and chronic
renal dysfunction.
Clin Nephrol 53:467–472, 2000
20. Kimiyoshi ichida, Makoto hosoyamada Clinical and molecular analysis of patients with renal hypouricemia in Japan-Influence of URAT1 gene on urinary urate excretion J Am Soc Nephrol 15: 164–173, 2004
21. Lesch, M., Nyhan, W.L., 1964. A family disorder of uric acid metabolism and central nervous system function.
American Journal of Medicine 36, 561–570.
22. Li Shu-Chuan Cheng Genomewide scan for gout in Taiwanese aborigines reveals linkage to chromosome 4q25 Am. J. Hum. Genet. 75:498–503, 2004
23. Matthias A Molecular physiology of urate transport Physiology. Volume 20, April 2005
24. M. Guan High-resolution melting analysis for the rapid detection of an intronic single nucleotide polymorphism in SLC22A12 in male patients with primary gout in China
Scandinavian journal of rheumatology, Volume 38, Issue 4 2009, pages 1-6
25. Melanie Kolz Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations
PLoS Genet. 2009 June; 5(6): e1000504
26. Michael H. Pillinger Hyperuricemia and gout Bulletin of the NYU Hospital for Joint Diseases 2007;65(3):215-21
27. Rosa J. Torres Hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome
Orphanet Journal of Rare Diseases 2007, 2:48 doi:10.1186/1750-1172-2-48
28. Siguang Li The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti Cohorts
PLoS Genet. 2007 November; 3(11): e194
29. S. Sutaria Effectiveness of interventions for the treatment of acute and prevention of recurrent gout—a systematic review
Rheumatology 2006;45:1422–1431
30. Taniguchi A, Kamatani N Control of renal uric acid excretion and gout.
Curr Opin Rheumatol 20: 192–197.
31. Tzovaras V et al Absence of SLC22A12 gene mutations in Greek Caucasian patients with primary renal hypouricaemia
Scand J Clin Lab Invest. 2007;67(6):589-95
32. Vázquez-Mellado J Molecular analysis of the SLC22A12 (URAT1) gene in patients with primary gout
Rheumatology 2007 Feb;46(2):215-9. Epub 2006 Jul 11
33. Whitfield JB, Martin NG Inheritance and alcohol as factors influencing plasma uric acid levels.
Acta Genet Med Gemellol (Roma ) 32: 117–126.
34. Yukio Shima a Association between intronic SNP in urate-anion exchanger gene, SLC22A12, and serum uric acid levels in Japanese
Life Sciences 79 (2006) 2234–2237
35. Zdenek Dvorak et al Cytotoxictiy of colchicines derivatives in primary cultures of human hepatocytes
Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2007, 151(1):47–52
  • 同意授權瀏覽/列印電子全文服務,於2009-08-10起公開。

  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446