進階搜尋


  查詢北醫館藏
系統識別號 U0007-2101200917245700
論文名稱(中文) 特選抗氧化配方之抗氧化能力及其加乘效果
論文名稱(英文) Antioxidative capacity and synergistic effect of selected antioxidant mixtures
校院名稱 臺北醫學大學
系所名稱(中) 生醫材料暨工程研究所
系所名稱(英) Institute of Biomedicac Materials Engineering
學年度 97
學期 1
出版年 98
研究生(中文) 陳怡嘉
研究生(英文) Yi-Chia Chen
學號 M212095005
學位類別 碩士
語文別 中文
口試日期 2008-12-26
論文頁數 102頁
口試委員 指導教授-蔡翠敏
委員-顏秀娟
委員-楊正昌
委員-鄭海倫
中文關鍵字 抗氧化  加乘效果  實驗設計法  DPPH試驗 
英文關鍵字 Antioxidant  Synergistic effect  Experimental design  DPPH assay 
學科別分類
中文摘要 過去雖然已有研究指出抗氧化物質的併用可有效增加自由基的清除效力,也可能具有加乘的效果,但尚無研究深入探討多項抗氧化成分的組合、濃度、及比例所提供之抗氧化能力及加乘作用的關係。目前市面上許多抗氧化及抗衰老產品,常混合添加抗氧化劑,但這些物質搭配的組成及濃度比例上尚有待確切研究以提供一套最好的抗氧化功效組成配方。本研究目的在於探討抗氧化配方所使用的成分組成、作用濃度、自由基清除力、與抗氧化加乘效果之間的關係。研究係以實驗設計法,結合體外的抗氧化能力化學檢測法,以及兩套加乘作用的運算模式,分別設計兩項、三項、以及四項抗氧化成分的併用配方,並改變單項抗氧化成分的濃度,利用1,1-diphenyl-2-picryl-hydrazyl (DPPH)自由基清除率化學測定法,評估其自由基清除效力,再以數學上的加乘效果計算方法評估抗氧化配方的自由基清除作用是否具加乘效果。本論文所選用之抗氧化物質為維生素E、維生素C、葉黃素/玉米黃素與綠茶多酚。研究發現包含維生素E、維生素C、以及綠茶多酚的任兩項,或三項組成配方具有抗氧化加乘效果,但四項組成配方則無加乘效果。
英文摘要 Although there were studies suggest that the combination of antioxidants may effectively enhance free radical scavenging efficacy and may exert some synergistic effect, there is still no in-depth research in this area regarding the relationship between the compositions of the ingredients, their concentrations and ratios, and whether they may result in synergistic antioxidative effect. Many commercial anti-aging and antioxidative products are mixtures of various antioxidants, but there is no study yet today to provide in which composition of the antioxidant mixtures is the most optimal formulation for antioxidant. The purpose of this study is to investigate the potential synergistic relationship between various combinations of the four antioxidants: vitamin E, vitamin C, lutein/zeaxanthin, and green tea polyphenol (EGCG). The antioxidative ability of the antioxidants was evaluated by the DPPH method. An experimental design software was introduced in this study to construct the conditions of the 2-component, 3-component, and 4-component antioxidant combinations. The synergistic effect of the antioxidant combination was evaluated mathematically using two calculation modes. Our results showed that the combination of vitamin E, vitamin C, and green tea polyphenol (2-component or 3-component) exerted synergistic antioxidative effect. However, the combination of all the 4 components did not provide synergistic antioxidative effect.
論文目次 致謝 i
中文摘要 i
英文摘要 iii
目錄 iv
表目錄 viii
圖目錄 ix
壹、 前言 1
1.1 人體氧化與抗氧化作用 1
1.2 活性含氧族群概述 4
1.3人體抗氧化防禦系統 8
1.4 抗氧化物質分類與防禦機制 11
1.4.1 維生素(Vitamins) 11
1.4.2 礦物質(Minerals) 13
1.4.3 內生性低分子量抗氧化成分(Low Molecular Mass Antioxidants) 14
1.4.4 類胡蘿蔔素(Carotenoids) 15
1.4.5 植物多酚類化合物(Polyphenols) 16
1.5 體外(in vitro)抗氧化能力測量方法概述 18
1.6 DPPH檢測法(1,1-diphenyl-2-picryl-hydrazyl radical scavenge capacity) 20
貳、文獻回顧 21
2.1維生素 E之抗氧化功效 21
2.3 葉黃素之抗氧化功效 21
2.4 綠茶多酚之抗氧化功效 22
2.4 抗氧化物質之併用 23
2.4.1 維生素E與維生素C 23
2.4.2 維生素E與類胡蘿蔔素 24
2.4.3 維生素E與綠茶多酚 24
2.4.4 維生素E、維生素C併用綠茶多酚 25
2.4.5維生素E、維生素C併用類胡蘿蔔素 26
2.4.6 多項抗氧化物併用與加乘效果研究 26
2.5 抗氧化物併用之加乘效果計算 29
参、研究動機與目的 31
3.1 研究動機 31
3.2 研究目的 31
肆、 材料與方法 32
4.1 抗氧化物及藥品 32
4.2 實驗方法 33
4.2.1 清除1,1-diphenyl-2-picryl-hydrazyl(DPPH)自由基能力 33
4.2.2 實驗設計法 35
4.2.3 加乘作用計算 40
4.2.3.1 加乘效果(SE)計算公式 40
4.2.3.2 加乘效能百分比(SE%)計算公式 45
4.3 SE與SE%公式之適用性評估 48
4.4 統計方法 49
伍、 結果與討論 50
5.1 抗氧化物配方混合DPPH前後光譜變化 50
5.2 單項抗氧化物的自由基清除能力 51
5.2.1 維生素E 51
5.2.2 維生素C 51
5.2.3 葉黃素卅玉米黃素 52
5.2.4 綠茶多酚 52
5.3 兩項抗氧化物併用 53
5.3.1 維生素E與其他抗氧化物併用效果 53
5.3.2 葉黃素/玉米黃素與其他抗氧化物併用效果 54
5.3.3 維生素E、維生素C與綠茶多酚併用之效果 54
5.4 三項抗氧化物併用 55
5.5 四項抗氧化物併用 56
5.6 加乘效果SE與加成效能百分比SE%之結果比較 58
5.7 SE與SE%公式之適用性評估 60
5.8 葉黃素/玉米黃素的抗氧化能力與DPPH檢測法 62
陸、結論 65
柒、參考文獻 66
捌、附錄 101

參考文獻 1. Hoang, E.M., et al., The thermo-oxidative degradation of metallocene polyethylenes: Part 2: Thermal oxidation in the melt state. Polymer Degradation and Stability, 2006. 91(6): p. 1363-1372.
2. Gutteridge, B.h.a.J.M.C., Free radicals in biology and medicine. 3rd ed. ed. 1999, New York City: Oxford : Clarendon Press New York Oxford University Press.
3. Sies, H., Role of reactive oxygen species in biological processes. Klinische Wochenschrift, 1991. 69(21-23): p. 965-968.
4. Espin, J.C., C. Soler-Rivas, and H.J. Wichers, Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2,2-diphellyl-1-picrylhydrazyl radical. Journal of Agricultural and Food Chemistry, 2000. 48(3): p. 648-656.
5. Ratnam, D.V., et al., Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. Journal of Controlled Release, 2006. 113(3): p. 189-207.
6. Shapiro, S.S. and C. Saliou, Role of vitamins in skin care. Nutrition, 2001. 17(10): p. 839-844.
7. Pinnell, S.R., Cutaneous photodamage, oxidative stress, and topical antioxidant protection. Journal of the American Academy of Dermatology, 2003. 48(1): p. 1-19.
8. Krinsky, N.I., Antioxidant functions of carotenoids. Free Radical Biology and Medicine, 1989. 7(6): p. 617-635.
9. Liu, Z.Q., et al., Antioxidative effects of green tea polyphenols on free radical initiated and photosensitized peroxidation of human low density lipoprotein. Chemistry and Physics of Lipids, 2000. 106(1): p. 53-63.
10. Zulueta, A., M.J. Esteve, and A. Frigola, ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chemistry, 2008.
11. Huang, D., O.U. Boxin, and R.L. Prior, The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 2005. 53(6): p. 1841-1856.
12. Foti, M.C., C. Daquino, and C. Geraci, Electron-Transfer Reaction of Cinnamic Acids and Their Methyl Esters with the DPPH. Radical in Alcoholic Solutions. Journal of Organic Chemistry, 2004. 69(7): p. 2309-2314.
13. Carr, A.C., B.Z. Zhu, and B. Frei, Potential antiatherogenic mechanisms of ascorbate (vitamin C) and α-tocopherol (vitamin E). Circulation Research, 2000. 87(5): p. 349-354.
14. Morganti, P., et al., Role of topical and nutritional supplement to modify the oxidative stress. International Journal of Cosmetic Science, 2002. 24(6): p. 331-339.
15. Lee, E.H., et al., Dietary Lutein Reduces Ultraviolet Radiation-Induced Inflammation and Immunosuppression. Journal of Investigative Dermatology, 2004. 122(2): p. 510-517.
16. Astner, S., et al., Dietary lutein/zeaxanthin partially reduces photoaging and photocarcinogenesis in chronically UVB-irradiated Skh-1 hairless mice. Skin Pharmacology and Physiology, 2007. 20(6): p. 283-291.
17. Elmets, C.A., et al., Cutaneous photoprotection from ultraviolet injury by green tea polyphenols. Journal of the American Academy of Dermatology, 2001. 44(3): p. 425-432.
18. Wang, Z.Y., et al., Protection against polycyclic aromatic hydrocarbon-induced skin tumor initiation in mice by green tea polyphenols. Carcinogenesis, 1989. 10(2): p. 411-415.
19. Wang, Z.Y., et al., Protection against ultraviolet B radiation-induced photocarcinogenesis in hairless mice by green tea polyphenols. Carcinogenesis, 1991. 12(8): p. 1527-1530.
20. Hsu, S., et al., Inhibition of autoantigen expression by (-)-epigallocatechin-3-gallate (the major constituent of green tea) in normal human cells. Journal of Pharmacology and Experimental Therapeutics, 2005. 315(2): p. 805-811.
21. Katiyar, S.K., et al., Polyphenolic Antioxidant (-)-Epigallocatechin-3-Gallate from Green Tea Reduces UVB-Induced Inflammatory Responses and Infiltration of Leukocytes in Human Skin. Photochemistry and Photobiology, 1999. 69(2): p. 148-153.
22. Katiyar, S.K., et al., Inhibition of UVB-Induced Oxidative Stress-Mediated Phosphorylation of Mitogen-Activated Protein Kinase Signaling Pathways in Cultured Human Epidermal Keratinocytes by Green Tea Polyphenol (-)-Epigallocatechin-3-gallate. Toxicology and Applied Pharmacology, 2001. 176(2): p. 110-117.
23. Hsu, S., et al., Green tea polyphenols induce differentiation and proliferation in epidermal keratinocytes. Journal of Pharmacology and Experimental Therapeutics, 2003. 306(1): p. 29-34.
24. Öllinger, C.D.a.K., Protection by α -Tocopherol but not Ascorbic Acid from Hydrogen Peroxide Induced Cell Death in Normal Human Breast Epithelial Cells in Culture. Free Rad. Res., 1998. 29: p. 227-234.
25. Lin, J.Y., et al., UV photoprotection by combination topical antioxidants vitamin C and vitamin E. Journal of the American Academy of Dermatology, 2003. 48(6): p. 866-874.
26. Xie, W.L. and J.M. Ji, Antioxidant activities of vitamins e and C in a novel liposome system. Journal of Food Biochemistry, 2008. 32(6): p. 766-781.
27. Palozza, P. and N.I. Krinsky, β-Carotene and α-tocopherol are synergistic antioxidants. Archives of Biochemistry and Biophysics, 1992. 297(1): p. 184-187.
28. Wrona, M., et al., Cooperation of antioxidants in protection against photosensitized oxidation. Free Radical Biology and Medicine, 2003. 35(10): p. 1319-1329.
29. Zhou, B., et al., Evidence for α-tocopherol regeneration reaction of green tea polyphenols in SDS micelles. Free Radical Biology and Medicine, 2005. 38(1): p. 78-84.
30. Wei, Q.Y., et al., Synergistic effect of green tea polyphenols with trolox on free radical-induced oxidative DNA damage. Food Chemistry, 2006. 96(1): p. 90-95.
31. Intra, J. and S.M. Kuo, Physiological levels of tea catechins increase cellular lipid antioxidant activity of vitamin C and vitamin E in human intestinal Caco-2 cells. Chemico-Biological Interactions, 2007. 169(2): p. 91-99.
32. Dai, F., W.F. Chen, and B. Zhou, Antioxidant synergism of green tea polyphenols with α-tocopherol and l-ascorbic acid in SDS micelles. Biochimie, 2008. 90(10): p. 1499-1505.
33. Bohm, F., et al., β-Carotene with vitamins E and C offers synergistic cell protection against NO(x). FEBS Letters, 1998. 436(3): p. 387-389.
34. Wrona, M., M. Rozanowska, and T. Sarna, Zeaxanthin in combination with ascorbic acid or α-tocopherol protects ARPE-19 cells against photosensitized peroxidation of lipids. Free Radical Biology and Medicine, 2004. 36(9): p. 1094-1101.
35. Fuhrman, B., et al., Lycopene synergistically inhibits LDL oxidation in combination with vitamin E, glabridin, rosmarinic acid, carnosic acid, or garlic. Antioxidants and Redox Signaling, 2000. 2(3): p. 491-506.
36. Milde, J., E.F. Elstner, and J. Gramann, Synergistic inhibition of low-density lipoprotein oxidation by rutin, γ-terpinene, and ascorbic acid. Phytomedicine, 2004. 11(2-3): p. 105-113.
37. Cirico, T.L. and S.T. Omaye, Additive or synergetic effects of phenolic compounds on human low density lipoprotein oxidation. Food and Chemical Toxicology, 2006. 44(4): p. 510-516.
38. Liu, D., et al., The scavenging capacity and synergistic effects of lycopene, vitamin E, vitamin C, and β-carotene mixtures on the DPPH free radical. LWT - Food Science and Technology, 2008. 41(7): p. 1344-1349.
39. Shimada, K., et al., ANTIOXIDATIVE PROPERTIES OF XANTHAN ON THE AUTOXIDATION OF SOYBEAN OIL IN CYCLODEXTRIN EMULSION. Journal of Agricultural and Food Chemistry, 1992. 40(6): p. 945-948.
40. Locatelli, M., et al., Study of the DPPH {radical dot} -scavenging activity: Development of a free software for the correct interpretation of data. Food Chemistry, 2008.
41. Moore, J., et al., Carotenoid, tocopherol, phenolic acid, and antioxidant properties of Maryland-grown soft wheat. Journal of Agricultural and Food Chemistry, 2005. 53(17): p. 6649-6657.
42. Sanchez-Moreno, C., et al., Nutritional characterisation of commercial traditional pasteurised tomato juices: carotenoids, vitamin C and radical-scavenging capacity. Food Chemistry, 2006. 98(4): p. 749-756.
43. Wang, S.Y. and H. Jiao, Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radical's, and singlet oxygen. Journal of Agricultural and Food Chemistry, 2000. 48(11): p. 5677-5684.
論文全文使用權限
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 沈佩芳
    臺北市信義區吳興街 250 號
    E-mail:peifang@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2502
    Fax:(02) 2737-5446