進階搜尋


  查詢北醫館藏
系統識別號 U0007-2006201717201400
論文名稱(中文) 麩醯胺及魚油乳劑對小鼠後肢缺血再灌流所造成肌肉及遠端器官損傷的保護作用
論文名稱(英文) The protective effect of glutamine and fish oil-based lipid emulsion on skeletal muscle and remote organ injury in a mouse hind limb ischemia/reperfusion model
校院名稱 臺北醫學大學
系所名稱(中) 保健營養學研究所
系所名稱(英) Graduate Institute of Nutrition and Health
學年度 105
學期 2
出版年 106
研究生(中文) 施耀明
研究生(英文) Yao-Ming Shih
學號 D507102004
學位類別 博士
語文別 英文
口試日期 2017-06-02
論文頁數 111頁
口試委員 委員-許瑞芬
委員-蔡帛蓉
委員-黃士懿
委員-陳玉華
指導教授-葉松鈴
中文關鍵字 缺血再灌流  麩醯胺  魚油乳劑  肺組織損傷  發炎介質 
英文關鍵字 ischemia reperfusion injury  glutamine  fish oil lipid emulsion  remote lung 
學科別分類
中文摘要 急性肢體缺血常發生於創傷或肢體重建手術,缺血的組織再重新獲得血液灌流是維持組織生理功能所必需,但當缺血組織再灌流血液時會引致大量自由基產生,自由基及其引發的免疫細胞活化,會造成細胞膜損傷、細胞凋亡、組織壞死、並使器官組織喪失其功能,通常也伴隨全身性的發炎反應,並造成遠端器官的傷害。營養支持對肢體缺血再灌流的重症病人非常重要,但理想的營養素配方組成目前仍有待研發。本研究介入兩種特殊營養素,來探討這些營養素對缺血再灌流引致的白血球活化及缺血肌肉與遠端器關損傷的影響。本研究共分為兩個部分,第一部分以尾靜脈注射之方式在小鼠後肢缺血90分鐘,血液再灌流之前注入麩醯胺 (glutamine, GLN),在灌流4及24小時後觀察血液及組織的變化。結果顯示,GLN的給予可在再灌流的早期和晚期低肌肉發炎反應介質基因表現、血中巨噬細胞比例及血中Interleukin-6 的濃度,肺的組織切片也顯示其受損較為輕微。此結果顯示在缺血組織再灌流之前立即給予GLN,可降低缺血再灌流引致的發炎反應,並減輕局部和遠端器官的損傷。第二部分則是在小鼠後肢缺血再灌流之前給予富含n-3多元不飽和脂肪酸(PUFA)的魚油脂肪乳劑,來探討n-3 PUFA對缺血再灌流引致的細胞激素分泌及白血球活化的影響,希望能了解魚油乳劑介入對再灌流後血中各不同白血球的分佈,以及巨噬細胞極化轉變(polarization switch)的影響。結果顯示,在再灌流後24小時,在魚油給予的組別局部和全身性發炎反應介質的表現量較低,同時血中發炎性Ly6ChiCCR2hi單核球的百分比,及肌肉中M1/M2的比例均較生理食鹽水組為低,顯示魚油給予的組別發炎反應較為減輕。這兩個實驗的結果可提供臨床上肢體缺血病人利用GLN和n-3 PUFA做為營養支持的重要參考依據。
英文摘要 Acute ischemia of limb is a frequent clinical entity that may be encountered in the practice of traumatic surgery or reconstructive. Ischemic reperfusion (IR) injury often occurs in trauma patients suffering from critical limb ischemia. Re-establishment of blood flow to ischemic
tissue is necessary to maintain metabolic requirements of the tissue; however, the reperfusionof oxygenated blood to ischemic tissue may induce local tissue and remote organ injury. For critical patients with IR injury, nutrition support is essential and the optimal formulation is still being investigated. In this study, we administered 2 specific nutrients to investigate the possible protective effect of the nutrients on IR-induced leukocyte activation and the affected muscle as well as distant organ injury. There are 2 parts in this study. The first part involves
administering intravenous glutamine (GLN) to C57BL6 mice after 90 minutes of ischemia just before reperfusion in a murine unilateral hind limb IR model. The results showed that IRinduced muscle inflammatory mediator expression, blood macrophage percentage, and plasma interleukin-6 levels all declined at either early or late phases of reperfusion when GLN was administered. These findings suggest that GLN administration immediately after sublethal limb ischemia reduces the inflammatory response and offer tissue protection both locally and systemically. The second part of this study investigated the effects of an n-3 polyunsaturated fatty acid (PUFA) containing fish oil (FO) lipid emulsion on the modulation of cytokine/chemokine expressions and alteration of leukocytes activation in order to understand the recruitment pattern of various leukocyte subpopulations and the status of macrophage polarization switch during the period after reperfusion. The results showed FO pretreatment suppressed the local and systemic expression of several IR-induced proinflammatory
mediators. Additionally, FO-pretreated group had lower blood Ly6ChiCCR2hi monocyte percentage and muscle M1/M2 ratio than the saline group at 24 h after reperfusion.
The results of these 2 experiments may provide some evidence for the clinical application of GLN and n-3 PUFA in patients with critical limb ischemia.
論文目次 中文摘要
Abstract
Chapter 1 Acute Limb Ischemia 7
Acute Limb Ischemia 7
1.1 Ischemia reperfusion injury 7
Figure 1.1 Scheme of biochemical events involved in ischemia and reperfusion 8
1.2 Therapeutic strategies for acute limb ischemia 10
Figure 1.2 Selective management of acute ischemic limb 11
Table 1.2 Intervention strategies to reduce postischemic skeletal muscle injury 12
Chapter 2 Reperfusion injury and Inflammation 14
2.1 Innate immunity 14
Figure 2.1-1 Hematopoietic stem cell-derived lineages 15
Figure 2.1-2 Interactions between leukocyte and endothelium in skeletal ischemia
reperfusion injury 17
Figure 2.1-3 Leukocyte Rolling, Adhesion, Diapedesis, and Migration 18
Table 2.1-1 Common adhesion molecules involved in leukocyte-endothelial interaction 19
Table 2.1-2 Chemokines 21
Table 2.1-3 Chemokine receptors 23
Table 2.1-4 Summary of main sources and effects of cytokines 25
2.2 Inflammatory cascades in reperfusion injury 27
Figure 2.2-1 Endothelium-dependent mechanisms of IR injury 29
Figure 2.2-2 The role of CXC chemokines in ischemic tissues 31
Figure 2.2-3 The role of CC chemokines in ischemic tissues 33
Figure 2.2-4 Mechanisms underlying the development of remote organ injury 36
2.3 Glutamine and inflammation 37
2.4 Fish-oil containing lipid emulsion and inflammation 40
Chapter 3 Objective of the Experiment 44
Purpose of Study 44
3.1 Effect of IV GLN administration on inflammatory reaction and organ protection after sublethal unilateral limb IR injury 44
3.2 Effect of IP Fish oil-based lipid emulsion pretreatment on muscle leukocyte chemotaxis and blood leukocyte distribution after sublethal unilateral limb IR injury 45
Chapter 4 Effect of Intravenous Glutamine Administration on the Inflammatory Reaction and Organ Protection after sublethal unilateral limb ischemia in a murine model of sublethal ischemia-reperfusion injury 47
4.1 Materials and Methods 47
4.2 Results 56
Table 4.2-1 Sequences of oligonucleotide primers used in PCR amplification 59
Table 4.2-2 Concentration of IL-6 in plasma 60
Table 4.2-3 Thiobarbituric acid reactive substance (TBARS) levels in muscle tissues 60
Figure 4.2-1 Blood leukocyte distribution and expression of adhesion molecules and chemokine receptors by leukocytes 61
Figure 4.2-2 mRNA expressions of inflammatory genes in muscle tissues 62
Figure 4.2-3 Percentage of leukocytes in bronch-oalveolar lavage fluid 63
Figure 4.2-4 Histology of muscle tissue 64
Figure 4.2-5 Histology of the lung tissue 65
4.3 Discussion 66
4.4 Conclusion 73
Chapter 5 Effect of Intraperitoneal Fish oil-Based Lipid Emulsion Pretreatment on muscle leukocyte chemotaxis and blood leukocyte distribution in a murine model of
sublethal ischemia-reperfusion injury 74
5.1 Materials and Methods 74
5.2 Results 81
Table 5.2-1 Primer sequences used in the qRT-PCR assay 84
Table 5.2-2 Plasma concentrations of the cytokines 85
Figure 5.2-1 Distribution of blood leukocytes 86
Figure 5.2-2 Expression of anti- and pro-inflammatory cytokines and chemokines in muscle tissues 87
Figure 5.2-3 Distribution of leukocytes and M1 to M2 ratio in muscle 88
Figure 5.2-4 Expression of Pro-inflammatory and Anti-inflammatory mediator mRNAs in lung tissue 89
5.3 Discussion 90
5.4 Conclusion 94
Chapter 6 Summary 95
References 96
Publications 111
參考文獻 1. Defraigne JO, and Pincemail J. Local and systemic consequences of severe ischemia and reperfusion of the skeletal muscle. Physiopathology and prevention. Acta Chir
Belg 1998;98(4):176-86.
2. Blaisdell FW, Steele M, and Allen RE. Management of acute lower extremity arterial ischemia due to embolism and thrombosis. Surgery 1978;84(6):822-34.
3. Darling RC, Austen WG, and Linton RR. Arterial embolism. Surg Gynecol Obstet 1967;124(1):106-14.
4. Ferguson LJ, Faris I, Robertson A, Lloyd JV, and Miller JH. Intra-arterial streptokinase therapy to relieve acute limb ischemia. J Vasc Surg 1986;4(3):205-10.
5. Odeh M. The role of reperfusion-induced injury in the pathogenesis of the crush syndrome. N Engl J Med 1991;324(20):1417-22.
6. Grace PA. Ischaemia-reperfusion injury. Br J Surg 1994;81(5):637-47.
7. Eliason JL, Wainess RM, Proctor MC, Dimick JB, Cowan JA, Upchurch GR, Stanley JC, and Henke PK. A national and single institutional experience in the contemporary
treatment of acute lower extremity ischemia. Ann Surg 2003;238(3):382-9; discussion 389-90.
8. Henke PK, and Stanley JC. The treatment of acute embolic lower limb ischemia. Adv Surg 2004;38:281-91.
9. Braithwaite BD, Davies B, Birch PA, Heather BP, and Earnshaw JJ. Management of acute leg ischaemia in the elderly. Br J Surg 1998;85(2):217-20.
10. Gillani S, Cao J, Suzuki T, and Hak DJ. The effect of ischemia reperfusion injury on skeletal muscle. Injury 2012;43(6):670-5.
11. Cutrìn JC, Boveris A, Zingaro B, Corvetti G, and Poli G. In situ determination by surface chemiluminescence of temporal relationships between evolving warm
ischemia-reperfusion injury in rat liver and phagocyte activation and recruitment. Hepatology 2000;31(3):622-32.
12. Kaminski KA, Bonda TA, Korecki J, and Musial WJ. Oxidative stress and neutrophil activation--the two keystones of ischemia/reperfusion injury. Int J Cardiol
2002;86(1):41-59.
13. Blaisdell FW. The pathophysiology of skeletal muscle ischemia and the reperfusion syndrome: a review. Cardiovascular Surgery [[Internet]]. 2002;10(6):620 - 630. from:http://www.sciencedirect.com/science/article/pii/S0967210902000704
14. Crawford RS, Albadawi H, Atkins MD, Jones JE, Yoo HJ, Conrad MF, Austen WG,and Watkins MT. Postischemic poly (ADP-ribose) polymerase (PARP) inhibition
reduces ischemia reperfusion injury in a hind-limb ischemia model. Surgery 2010;148(1):110-8.
15. Durán WN, Takenaka H, and Hobson RW. Microvascular pathophysiology of skeletal muscle ischemia-reperfusion. Semin Vasc Surg 1998;11(3):203-14.
16. Defraigne JO, and Pincemail J. Local and systemic consequences of severe ischemia and reperfusion of the skeletal muscle. Physiopathology and prevention. Acta Chir
Belg 1998;98(4):176-86.
17. Kyriakides C, Woodcock SA, Wang Y, Favuzza J, Austen WG, Kobzik L, Moore FD,Valeri RC, Shepro D, and Hechtman HB. Soluble P-selectin moderates complementdependent
reperfusion injury of ischemic skeletal muscle. Am J Physiol Cell Physiol 2000;279(2):C520-8.
18. Hernandez LA, Grisham MB, Twohig B, Arfors KE, Harlan JM, and Granger DN. Role of neutrophils in ischemia-reperfusion-induced microvascular injury. American
Journal of Physiology-Heart and Circulatory Physiology. Am Physiological Soc; 1987;253(3):H699-H703.
19. Liu P, Yin K, Nagele R, and Wong PY. Inhibition of nitric oxide synthase attenuates peroxynitrite generation, but augments neutrophil accumulation in hepatic ischemiareperfusion in rats. Journal of Pharmacology and Experimental Therapeutics 1998;284(3):1139-1146.
20. Woo YJ, Taylor MD, Cohen JE, Jayasankar V, Bish LT, Burdick J, Pirolli TJ, Berry MF, Hsu V, and Grand T. Ethyl pyruvate preserves cardiac function and attenuates
oxidative injury after prolonged myocardial ischemia. J Thorac Cardiovasc Surg 2004;127(5):1262-9.
21. Rubin BB, Romaschin A, Walker PM, Gute DC, and Korthuis RJ. Mechanisms of postischemic injury in skeletal muscle: intervention strategies. J Appl Physiol 1996;80(2):369-87.
22. Harris AG, Leiderer R, Peer F, and Messmer K. Skeletal muscle microvascular and tissue injury after varying durations of ischemia. Am J Physiol 1996;271(6 Pt
2):H2388-98.
23. Jolly SR, Kane WJ, Hook BG, Abrams GD, Kunkel SL, and Lucchesi BR. Reduction of myocardial infarct size by neutrophil depletion: effect of duration of occlusion. Am
Heart J 1986;112(4):682-90.
24. Weber C. Novel mechanistic concepts for the control of leukocyte transmigration: specialization of integrins, chemokines, and junctional molecules. J Mol Med (Berl)
2003;81(1):4-19.
25. Stillie R, Farooq SM, Gordon JR, and Stadnyk AW. The functional significance behind expressing two IL-8 receptor types on PMN. J Leukoc Biol 2009;86(3):529-43.
26. Chaplin DD. Overview of the immune response. J Allergy Clin Immunol 2010;125(Suppl 2):S3-23.
27. Muller WA. Leukocyte-endothelial cell interactions in the inflammatory response. Lab Invest 2002;82(5):521-33.
28. Parkin J, and Cohen B. An overview of the immune system. Lancet 2001;357(9270):1777-89.
29. Sokol CL, and Luster AD. The chemokine system in innate immunity. Cold Spring Harb Perspect Biol 2015;7(5).
30. Serbina NV, and Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 2006;7(3):311-7.
31. Gross GJ, and Auchampach JA. Reperfusion injury: does it exist? J Mol Cell Cardiol 2007;42(1):12-8.
32. Lewis MS, Whatley RE, Cain P, McIntyre TM, Prescott SM, and Zimmerman GA. Hydrogen peroxide stimulates the synthesis of platelet-activating factor by
endothelium and induces endothelial cell-dependent neutrophil adhesion. J Clin Invest 1988;82(6):2045-55.
33. Gasic AC, McGuire G, Krater S, Farhood AI, Goldstein MA, Smith CW, Entman ML, and Taylor AA. Hydrogen peroxide pretreatment of perfused canine vessels induces
ICAM-1 and CD18-dependent neutrophil adherence. Circulation 1991;84(5):2154-66.
34. Suzuki M, Asako H, Kubes P, Jennings S, Grisham MB, and Granger DN. Neutrophilderived oxidants promote leukocyte adherence in postcapillary venules. Microvasc Res 1991;42(2):125-38.
35. Akimitsu T, White JA, Carden DL, Gute DC, and Korthuis RJ. Fructose-1,6-diphosphate or adenosine attenuate leukocyte adherence in postischemic skeletal muscle. Am J Physiol 1995;269(5 Pt 2):H1743-51.
36. Pemberton M, Anderson G, Vĕtvicka V, Justus DE, and Ross GD. Microvascular effects of complement blockade with soluble recombinant CR1 on ischemia/reperfusion injury of skeletal muscle. J Immunol 1993;150(11):5104-13.
37. Patel KD, Zimmerman GA, Prescott SM, McEver RP, and McIntyre TM. Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils. J
Cell Biol 1991;112(4):749-59.
38. McEver RP. Selectins: novel receptors that mediate leukocyte adhesion during inflammation. Thromb Haemost 1991;65(3):223-8.
39. Carden DL, and Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol 2000;190(3):255-66.
40. Ascer E, Mohan C, Gennaro M, and Cupo S. Interleukin-1 and thromboxane release after skeletal muscle ischemia and reperfusion. Ann Vasc Surg 1992;6(1):69-73.
41. Ascer E, Gennaro M, Cupo S, and Mohan C. Do cytokines play a role in skeletal muscle ischemia and reperfusion? J Cardiovasc Surg (Torino) 1992;33(5):588-92.
42. Seekamp A, Warren JS, Remick DG, Till GO, and Ward PA. Requirements for tumor necrosis factor-alpha and interleukin-1 in limb ischemia/reperfusion injury and
associated lung injury. Am J Pathol 1993;143(2):453-63.
43. Minami M, and Satoh M. Chemokines and their receptors in the brain: pathophysiological roles in ischemic brain injury. Life Sci 2003;74(2-3):321-7.
44. Jaeschke H. Mechanisms of Liver Injury. II. Mechanisms of neutrophil-induced liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory
conditions. Am J Physiol Gastrointest Liver Physiol 2006;290(6):G1083-8.
45. Frangogiannis NG. Chemokines in the ischemic myocardium: from inflammation to fibrosis. Inflamm Res 2004;53(11):585-95.
46. Rollins BJ. Chemokines. Blood 1997;90(3):909-28.
47. Frangogiannis NG. Chemokines in ischemia and reperfusion. Thromb Haemost 2007;97(5):738-47.
48. Miura M, Fu X, Zhang QW, Remick DG, and Fairchild RL. Neutralization of Gro alpha and macrophage inflammatory protein-2 attenuates renal ischemia/reperfusion injury. Am J Pathol 2001;159(6):2137-45.
49. Kakio T, Matsumori A, Ono K, Ito H, Matsushima K, and Sasayama S. Roles and relationship of macrophages and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the ischemic and reperfused rat heart. Lab Invest 2000;80(7):1127-36.
50. Tarzami ST, Cheng R, Miao W, Kitsis RN, and Berman JW. Chemokine expression in myocardial ischemia: MIP-2 dependent MCP-1 expression protects cardiomyocytes
from cell death. J Mol Cell Cardiol 2002;34(2):209-21.
51. Furuichi K, Wada T, Iwata Y, Kitagawa K, Kobayashi K, Hashimoto H, Ishiwata Y, Asano M, Wang H, Matsushima K, Takeya M, Kuziel WA, Mukaida N, and Yokoyama H. CCR2 signaling contributes to ischemia-reperfusion injury in kidney. J Am Soc Nephrol 2003;14(10):2503-15.
52. Che X, Ye W, Panga L, Wu DC, and Yang GY. Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice. Brain Res
2001;902(2):171-7.
53. Kumar AG, Ballantyne CM, Michael LH, Kukielka GL, Youker KA, Lindsey ML, Hawkins HK, Birdsall HH, MacKay CR, LaRosa GJ, Rossen RD, Smith CW, and Entman ML. Induction of monocyte chemoattractant protein-1 in the small veins of
the ischemic and reperfused canine myocardium. Circulation 1997;95(3):693-700.
54. Fantini GA, and Conte MS. Pulmonary failure following lower torso ischemia: clinical evidence for a remote effect of reperfusion injury.Am Surg 1995;61(4):316-9.
55. Barry MC, Wang JH, Kelly CJ, Sheehan SJ, Redmond HP, and Bouchier-Hayes DJ. Plasma factors augment neutrophil and endothelial cell activation during aortic surgery. Eur J Vasc Endovasc Surg 1997;13(4):381-7.
56. Barry MC, Kelly C, Burke P, Sheehan S, Redmond HP, and Bouchier-Hayes D. Immunological and physiological responses to aortic surgery: effect of reperfusion on neutrophil and monocyte activation and pulmonary function. Br J Surg
1997;84(4):513-9.
57. Colletti LM, Kunkel SL, Walz A, Burdick MD, Kunkel RG, Wilke CA, and Strieter RM. Chemokine expression during hepatic ischemia/reperfusion-induced lung injury in the rat. The role of epithelial neutrophil activating protein. J Clin Invest 1995;95(1):134-41.
58. Colletti LM, Burtch GD, Remick DG, Kunkel SL, Strieter RM, Guice KS, Oldham KT, and Campbell DA. The production of tumor necrosis factor alpha and the development of a pulmonary capillary injury following hepatic ischemia/reperfusion.Transplantation 1990;49(2):268-72.
59. Strieter RM, Lukacs NW, Standiford TJ, and Kunkel SL. Cytokines. 2. Cytokines and lung inflammation: mechanisms of neutrophil recruitment to the lung. Thorax 1993;48(7):765-9.
60. Strieter RM, Kunkel SL, Burdick MD, Lincoln PM, and Walz A. The detection of a novel neutrophil-activating peptide (ENA-78) using a sensitive ELISA. Immunol Invest 1992;21(6):589-96.
61. Fürst P, and Stehle P. What are the essential elements needed for the determination of amino acid requirements in humans? J Nutr 2004;134(6 Suppl):1558S-1565S.
62. Vesali RF, Klaude M, Rooyackers OE, TJäder I, Barle H, and Wernerman J. Longitudinal pattern of glutamine/glutamate balance across the leg in long-stay
intensive care unit patients. Clin Nutr 2002;21(6):505-14.
63. Tazuke Y, Wasa M, Shimizu Y, Wang HS, and Okada A. Alanyl-glutaminesupplemented parenteral nutrition prevents intestinal ischemia-reperfusion injury in rats. JPEN J Parenter Enteral Nutr. 2003;27(2):110-5.
64. Wischmeyer PE, Jayakar D, Williams U, Singleton KD, Riehm J, Bacha EA, Jeevanandam V, Christians U, and Serkova N. Single dose of glutamine enhances myocardial tissue metabolism, glutathione content, and improves myocardial function after ischemia-reperfusion injury. JPEN J Parenter Enteral Nutr 2003;27(6):396-403.
65. Wischmeyer PE. Glutamine: mode of action in critical illness. Crit Care Med 2007;35(9 Suppl):S541-4.
66. Perrault LP, and Menasché P. Preconditioning: can nature's shield be raised against surgical ischemic-reperfusion injury? Ann Thorac Surg 1999;68(5):1988-94.
67. Roth E, Oehler R, Manhart N, Exner R, Wessner B, Strasser E, and Spittler A.Regulative potential of glutamine--relation to glutathione metabolism. Nutrition
2002;18(3):217-21.
68. Benjamin IJ, and McMillan DR. Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res 1998;83(2):117-32.
69. Yoo CG, Lee S, Lee CT, Kim YW, Han SK, and Shim YS. Anti-inflammatory effect of heat shock protein induction is related to stabilization of I kappa B alpha through
preventing I kappa B kinase activation in respiratory epithelial cells. J Immunol 2000;164(10):5416-23.
70. Benjamin IJ, and McMillan DR. Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res 1998;83(2):117-32.
71. Calder PC, Jensen GL, Koletzko BV, Singer P, and Wanten GJ. Lipid emulsions in parenteral nutrition of intensive care patients: current thinking and future directions.
Intensive Care Med 2010;36(5):735-49.
72. Calder PC. Omega-3 polyunsaturated fatty acids and inflammatory processes:nutrition or pharmacology? Br J Clin Pharmacol 2013;75(3):645-62.
73. Chen WJ, and Yeh SL. Effects of fish oil in parenteral nutrition. Nutrition 2003;19(3):275-9.
74. Mayer K, Schaefer MB, and Seeger W. Fish oil in the critically ill: from experimental to clinical data. Curr Opin Clin Nutr Metab Care 2006;9(2):140-8.
75. Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients 2010;2(3):355-74.
76. Yeh SL, Chang KY, Huang PC, and Chen WJ. Effects of n-3 and n-6 fatty acids on plasma eicosanoids and liver antioxidant enzymes in rats receiving total parenteral
nutrition. Nutrition 1997;13(1):32-6.
77. Chao CY, Yeh SL, Lin MT, and Chen WJ. Effects of parenteral infusion with fish-oil or safflower-oil emulsion on hepatic lipids, plasma amino acids, and inflammatory
mediators in septic rats. Nutrition 2000;16(4):284-8.
78. Calder PC. Can n-3 polyunsaturated fatty acids be used as immunomodulatory agents? Biochem Soc Trans 1996;24(1):211-20.
79. Mayer K, and Seeger W. Fish oil in critical illness. Curr Opin Clin Nutr Metab Care 2008;11(2):121-7.
80. de Souza Md, Conde CM, Laflôr CM, Sicuro FL, and Bouskela E. n-3 PUFA induce microvascular protective changes during ischemia/reperfusion. Lipids 2015;50(1):23-
37.
81. Mayurasakorn K, Williams JJ, Ten VS, and Deckelbaum RJ. Docosahexaenoic acid: brain accretion and roles in neuroprotection after brain hypoxia and ischemia. Curr
Opin Clin Nutr Metab Care 2011;14(2):158-67.
82. Jing H, Yao J, Liu X, Fan H, Zhang F, Li Z, Tian X, and Zhou Y. Fish-oil emulsion (omega-3 polyunsaturated fatty acids) attenuates acute lung injury induced by intestinal ischemia-reperfusion through Adenosine 5'-monophosphate-activated protein kinase-sirtuin1 pathway. J Surg Res 2014;187(1):252-61.
83. Zhang P, Smith R, Chapkin RS, and McMurray DN. Dietary (n-3) polyunsaturated fatty acids modulate murine Th1/Th2 balance toward the Th2 pole by suppression of Th1 development. J Nutr 2005;135(7):1745-51.
84. Grenon SM, Conte MS, Nosova E, Alley H, Chong K, Harris WS, Vittinghoff E, and Owens CD. Association between n-3 polyunsaturated fatty acid content of red blood cells and inflammatory biomarkers in patients with peripheral artery disease. J Vasc Surg 2013;58(5):1283-90.
85. Hishikari K, Kimura S, Yamakami Y, Kojima K, Sagawa Y, Otani H, Sugiyama T, Kuwahara T, Hikita H, Takahashi A, and Isobe M. The prognostic value of the serum eicosapentaenoic acid to arachidonic acid ratio in relation to clinical outcomes after endovascular therapy in patients with peripheral artery disease caused by femoropopliteal artery lesions. Atherosclerosis 2015;239(2):583-8.
86. Prem JT, Eppinger M, Lemmon G, Miller S, Nolan D, and Peoples J. The role of glutamine in skeletal muscle ischemia/reperfusion injury in the rat hind limb model.
Am J Surg 1999;178(2):147-50.
87. Murphy CG, Chen G, Winter DC, and Bouchier-Hayes DJ. Glutamine preconditioning protects against tourniquet-induced local and distant organ injury in a rodent ischemiareperfusion model. Acta Orthop 2007;78(4):559-66.
88. Ozen OA, Cosar M, Sahin O, Fidan H, Eser O, Mollaoglu H, Alkoc O, Yaman M, and Songur A. The protective effect of fish n-3 fatty acids on cerebral ischemia in rat prefrontal cortex. Neurol Sci 2008;29(3):147-52.
89. Wang X, Pan L, Lu J, Li N, and Li J. N-3 PUFAs attenuate ischemia/reperfusion induced intestinal barrier injury by activating I-FABP-PPARγ pathway. Clin Nutr
2012;31(6):951-7.
90. Kim K, Jung N, Lee K, Choi J, Kim S, Jun J, Kim E, and Kim D. Dietary omega-3 polyunsaturated fatty acids attenuate hepatic ischemia/reperfusion injury in rats by
modulating toll-like receptor recruitment into lipid rafts. Clin Nutr 2013;32(5):855-62.
91. Crawford RS, Hashmi FF, Jones JE, Albadawi H, McCormack M, Eberlin K, Entabi F, Atkins MD, Conrad MF, Austen WG, and Watkins MT. A novel model of acute murine hindlimb ischemia. Am J Physiol Heart Circ Physiol 2007;292(2):H830-7.
92. Hua HT, Al-Badawi H, Entabi F, Stoner MC, Diamond RE, Bonheur JA, Houser S, and Watkins MT. CXC chemokine expression and synthesis in skeletal muscle during
ischemia/reperfusion. J Vasc Surg 2005;42(2):337-43.
93. Casini AF, Ferrali M, Pompella A, Maellaro E, and Comporti M. Lipid peroxidation and cellular damage in extrahepatic tissues of bromobenzene-intoxicated mice. Am J
Pathol 1986;123(3):520-31.
94. McCormack MC, Kwon E, Eberlin KR, Randolph M, Friend DS, Thomas AC, Watkins MT, and Austen WG. Development of reproducible histologic injury severity scores: skeletal muscle reperfusion injury. Surgery 2008;143(1):126-33.
95. Vaschetto R, Kuiper JW, Chiang SR, Haitsma JJ, Juco JW, Uhlig S, Plötz FB, Della Corte F, Zhang H, and Slutsky AS. Inhibition of poly(adenosine diphosphate-ribose)
polymerase attenuates ventilator-induced lung injury. Anesthesiology 2008;108(2):261-8.
96. Hwang JK, Kim JM, Kim YK, Kim SD, Park SC, Kim JI, Nam HW, Kim J, and Moon IS. The early protective effect of glutamine pretreatment and ischemia preconditioning
in renal ischemia-reperfusion injury of rat. Transplant Proc 2013;45(9):3203-8.
97. Hardy G, Bevan SJ, McElroy B, Palmer TE, Griffiths RD, and Braidwood C. Stability of glutamine in parenteral feeding solutions. Lancet 1993. p.186.
98. Albers S, Wernerman J, Stehle P, Vinnars E, and Fürst P. Availability of amino acids supplied by constant intravenous infusion of synthetic dipeptides in healthy man. Clin Sci (Lond) 1989;76(6):643-8.
99. Hübl W, Druml W, Langer K, and Lochs H. Influence of molecular structure and plasma hydrolysis on the metabolism of glutamine-containing dipeptides in humans. Metabolism 1989;38(8 Suppl 1):59-62.
100. Albers S, Wernerman J, Stehle P, Vinnars E, and Fürst P. Availability of amino acids supplied intravenously in healthy man as synthetic dipeptides: kinetic evaluation of L-alanyl-L-glutamine and glycyl-L-tyrosine. Clin Sci (Lond).
1988;75(5):463-8.
101. Stehle P, Ratz I, and Fürst P. In vivo utilization of intravenously supplied L-alanyl-Lglutamine in various tissues of the rat. Nutrition 1989;5(6):411-5.
102. Stehle P, Ratz I, and Fürst P. Whole-body autoradiography in rats after intravenous administration of L-alanyl-L-[U-14C]glutamine. Ann Nutr Metab 1991;35(4):213-20.
103. Lacey JM, and Wilmore DW. Is glutamine a conditionally essential amino acid? Nutr Rev 1990;48(8):297-309.
104. Wilmore DW, and Shabert JK. Role of glutamine in immunologic responses.Nutrition 1998;14(7-8):618-26.
105. Wischmeyer PE, Musch MW, Madonna MB, Thisted R, and Chang EB. Glutamine protects intestinal epithelial cells: role of inducible HSP70. Am J Physiol 1997;272(4 Pt 1):G879-84.
106. Wischmeyer PE, Kahana M, Wolfson R, Ren H, Musch MM, and Chang EB.Glutamine induces heat shock protein and protects against endotoxin shock in the rat. J Appl Physiol (1985) 2001;90(6):2403-10.
107. Ambrosio G, and Tritto I. Reperfusion injury: experimental evidence and clinical implications. Am Heart J 1999;138(2 Pt 2):S69-75.
108. Gamble JR, Harlan JM, Klebanoff SJ, and Vadas MA. Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis
factor. Proc Natl Acad Sci 1985;82(24):8667-71.
109. Calder PC. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr. 2006;83(6 Suppl):1505S-1519S.
110. Schaefer MB, Ott J, Mohr A, Bi MH, Grosz A, Weissmann N, Ishii S, Grimminger F, Seeger W, and Mayer K. Immunomodulation by n-3- versus n-6-rich lipid emulsions
in murine acute lung injury--role of platelet-activating factor receptor. Crit Care Med 2007;35(2):544-54.
111. Heller AR, Rossler S, Litz RJ, Stehr SN, Heller SC, Koch R, and Koch T. Omega-3 fatty acids improve the diagnosis-related clinical outcome. Crit Care Med 2006;34(4):972-9.
112. Shih YM, Shih JM, Pai MH, Hou YC, Yeh CL, and Yeh SL. Glutamine Administration After Sublethal Lower Limb Ischemia Reduces Inflammatory Reaction and Offers Organ Protection in Ischemia/Reperfusion Injury. JPEN J Parenter Enteral Nutr 2015;40(8):1122-1130.
113. Foëx BA, and Shelly MP. The cytokine response to critical illness. J Accid Emerg Med 1996;13(3):154-62.
114. Zhang R, He GZ, Wang YK, Zhou KG, and Ma EL. Omega-3 polyunsaturated fatty acids inhibit the increase in cytokines and chemotactic factors induced in vitro by
lymph fluid from an intestinal ischemia-reperfusion injury model. Nutrition 2015;31(3):508-14.
115. Carlin LM, Stamatiades EG, Auffray C, Hanna RN, Glover L, Vizcay-Barrena G, Hedrick CC, Cook HT, Diebold S, and Geissmann F. Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell
2013;153(2):362-75.
116. Chu HX, Broughton BR, Kim HA, Lee S, Drummond GR, and Sobey CG. Evidence That Ly6C(hi) Monocytes are Protective in Acute Ischemic Stroke by Promoting M2 Macrophage Polarization. Stroke 2015;46(7):1929-37.
117. Mayer K, Kiessling A, Ott J, Schaefer MB, Hecker M, Henneke I, Schulz R, Günther A, Wang J, Wu L, Roth J, Seeger W, and Kang JX. Acute lung injury is reduced in
fat-1 mice endogenously synthesizing n-3 fatty acids. Am J Respir Crit Care Med 2009;179(6):474-83.
118. Seki H, Fukunaga K, Arita M, Arai H, Nakanishi H, Taguchi R, Miyasho T, Takamiya R, Asano K, Ishizaka A, Takeda J, and Levy BD. The anti-inflammatory and proresolving mediator resolvin E1 protects mice from bacterial pneumonia and acute lung injury. J Immunol 2010;184(2):836-43.
論文全文使用權限
  • 同意授權瀏覽/列印電子全文服務,於2017-06-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446