進階搜尋


  查詢北醫館藏
系統識別號 U0007-1704200715050794
論文名稱(中文) 白藜蘆醇對心血管保護作用機轉之探討
論文名稱(英文) Investigation of Cardiovascular protective Mechanism of Resveratrol
校院名稱 臺北醫學大學
系所名稱(中) 醫學檢驗生物技術學研究所
系所名稱(英) Graduate Institute of Biomedical Technology
學年度 94
學期 2
出版年 95
研究生(中文) 詹宏鈞
研究生(英文) Horng-Jium Jan
學號 G160092002
學位類別 碩士
語文別 中文
口試日期
論文頁數 90頁
口試委員 指導教授-陳 建 和
指導教授-劉 得 任
中文關鍵字 白藜蘆醇  血液流變學  膜完整性 
英文關鍵字 resveratrol  hemorheology  integrity of membrane 
學科別分類
中文摘要 長期飲用紅酒被認為對心血管有益,文獻研究也指出紅酒中的多酚類具有抗氧化作用,可能是保護心血管的主要作用機轉。紅酒內含二十幾種多酚,白藜蘆醇是其中的一種,它也是中藥虎杖主要的有效成份之一,長久以來處方用於降血脂、抗發炎及心血管疾病。解剖學研究發現動脈粥樣硬化局部性的好發於某些特定的區域,推測可能與血液的機械特性有關。本文試以血液流變學的觀點來探討白藜蘆醇對心血管保護作用的機轉。天竺鼠餵食有或無添加白藜蘆醇的高膽固醇飼料一個月。採取高膽固醇血液樣本及餐後高三酸甘油血液樣本,分析生理參數及血液流變學參數,結果發現白藜蘆醇可以明顯降低紅血球丙二醛,但無法降低天竺鼠血中的膽固醇及三酸甘油濃度,對高膽固醇所引發的紅血球聚集度下降及高三酸甘油所引發的紅血球聚集度上升無明顯影響,也無法改善高膽固醇所引發的紅血球變形度下降。血管內皮細胞體外試驗發現白藜蘆醇能中和自由基,降低乳酸去氫脢釋出,有保護血管內皮細胞的作用。高膽固醇血症會改變紅血球的機械特性,也會引發自由基造成紅血球細胞膜脂質的過氧化,白藜蘆醇無法改善紅血球的機械特性,對保護心血管的作用機轉可能是來自於捕捉自由基,降低脂質過氧化,保護血管內皮細胞膜的完整性。
英文摘要 Long-term moderate consumption of red wine is thought to have positive effect on arteries. Research literature suggested that the antioxidation of polyphenols in red wine might possess major cardiovascular protective mechanism. Red wine contains more than twenty kinds of polyphenols including resvertrol. Resveratrol is one of the active ingredients in Huzhang, a Chinese herb, which has long been used to lower blood lipids and fight inflammation as well as cardiovascular disease. Anatomic studies found that Atherosclerosis predisposed on some particular areas and this phenomenon may be associated with hemodynamics. This paper approaches the cardiovascular protective mechanism of resveratrol in terms of hemorheology. Guinea pigs were fed with high cholesterol feeds with or without resveratrol for a month. Blood samples of high cholesterol and after meal high triglyceride were taken. Physiological parameters and hemorheological parameters were analyzed. Research found that resveratrol could effectively lower malondialdehyde but could not lower the cholesterol and triglyceride. It had no significant effect upon RBC aggregation induced by hypercholesretolemia and hypertriglyceridemia. It could not improve deformability of erythrocyte caused by hypercholesretolemia. Endothelium in vitro assays found that resveratrol could neutralize free radicals, lower the liberation of lactate dehydrogenase and protect endothelium. Hypercholesterolemia can change some mechanical properties of RBC and produce free radicals, which can result in lipid peroxidation on plasma membrance. Resveratrol cannot improve the mechanical properties of erythrocyte. The cardiovascular protective mechanism of resveratrol may come from scavenging free radicals to lower lipid peroxidation, and therefore protect the membrane integrity of endothelium.
論文目次 致 謝…………………………………………………………………I 中文摘要(Abstract in Chinese)……………………………………II 英文摘要(Abstract in English)……………………………………III 目 錄(Contents)…………………………………………………IV 圖表目錄(Lists of Figures and Tables)…………………………VI 第壹章 緒論(Introduction)…………………………………………1 第貳章 實驗材料與方法(Materials and Methods) 一、實驗動物…………………………………………………………24 二、檢體採集…………………………………………………………25 三、檢體前處理………………………………………………………26 四、紅血球細胞膜丙二醛之測定法…………………………………26 五、紅血球脆性試驗…………………………………………………28 六、纖維蛋白原(Fibrinogen)定量………………………………29 七、全套血球計數……………………………………………………31 八、生化試驗…………………………………………………………32 九、血漿黏度及血液黏度測定………………………………………32 十、紅血球變形度(erythrocyte deformability)測定…………33 十一、紅血球聚集度(erythrocyte aggregation)測定……………34 十二、乳酸去氫脢釋出試驗……………………………………………35 十三、自由基捕捉試驗…………………………………………………37 十四、統計分析…………………………………………………………39 第參章 實驗結果(Results) 一、實驗動物抽血前的外觀及抽血後死亡率………………………40 二、高膽固醇飼料對生理參數及血液流變參數之影響……………40 三、高三酸甘油對生理參數及血液流變參數之影響………………41 四、白藜蘆醇對高膽固醇餵食動物之影響…………………………41 五、白藜蘆醇對高三酸甘油血症動物之影響………………………42 六、白藜蘆醇可降低乳酸去氫脢(LDH)釋出………………………42 七、白藜蘆醇可中和白血球氧爆所產生的自由基…………………43 第肆章 討論(Discussion)……………………………………………44 第伍章 參考文獻(Reference)…………………………………………52 第陸章 圖表(Figures and Tables)…………………………………59 附錄(Appendix)………………………………………………………72
參考文獻 1. Ferrieres, J., The French paradox: lessons for other countries. Heart, 2004. 90(1): 107-11. 2. de Lorgeril, M., et al., Mediterranean diet and the French paradox: two distinct biogeographic concepts for one consolidated scientific theory on the role of nutrition in coronary heart disease. Cardiovasc Res, 2002. 54(3): 503-15. 3. Vinson, J.A., K. Teufel, and N. Wu, Red wine, dealcoholized red wine, and especially grape juice, inhibit atherosclerosis in a hamster model. Atherosclerosis, 2001. 156(1): 67-72. 4. Belleville, J., The French paradox: possible involvement of ethanol in the protective effect against cardiovascular diseases. Nutrition, 2002. 18(2): 173-7. 5. Bleich, S., et al., Moderate alcohol consumption in social drinkers raises plasma homocysteine levels: a contradiction to the 'French Paradox'? Alcohol Alcohol, 2001. 36(3): 189-92. 6. Renaud, S. and M. de Lorgeril, Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet, 1992. 339(8808): 1523-6. 7. Howard, A., et al., Red wine consumption and inhibition of LDL oxidation: what are the important components? Med Hypotheses, 2002. 59(1): 101-4. 8. De Curtis, A., et al., Alcohol-free red wine prevents arterial thrombosis in dietary-induced hypercholesterolemic rats: experimental support for the 'French paradox'. J Thromb Haemost, 2005. 3(2): 346-50. 9. Ghiselli, A., et al., Antioxidant Activity of Different Phenolic Fractions Separated from an Italian Red Wine. J Agric Food Chem, 1998. 46(2): 361-367. 10. Chung, B.H., et al., Alcohol-mediated enhancement of postprandial lipemia: a contributing factor to an increase in plasma HDL and a decrease in risk of cardiovascular disease. Am J Clin Nutr, 2003. 78(3): 391-9. 11. Auger, C., et al., Polyphenols-enriched Chardonnay white wine and sparkling Pinot Noir red wine identically prevent early atherosclerosis in hamsters. J Agric Food Chem, 2005. 53(25): 9823-9. 12. Yang, F., T. Zhang, and Y. Ito, Large-scale separation of resveratrol, anthraglycoside A and anthraglycoside B from Polygonum cuspidatum Sieb. et Zucc by high-speed counter-current chromatography. J Chromatogr A, 2001. 919(2): 443-8. 13. Fremont, L., L. Belguendouz, and S. Delpal, Antioxidant activity of resveratrol and alcohol-free wine polyphenols related to LDL oxidation and polyunsaturated fatty acids. Life Sci, 1999. 64(26): 2511-21. 14. Tadolini, B., et al., Resveratrol inhibition of lipid peroxidation. Free Radic Res, 2000. 33(1): 105-14. 15. Amorini, A.M., et al., Activity and mechanism of the antioxidant properties of cyanidin-3-O-beta-glucopyranoside. Free Radic Res, 2001. 35(6): 953-66. 16. Burkitt, M.J. and J. Duncan, Effects of trans-resveratrol on copper-dependent hydroxyl-radical formation and DNA damage: evidence for hydroxyl-radical scavenging and a novel, glutathione-sparing mechanism of action. Arch Biochem Biophys, 2000. 381(2): 253-63. 17. Moreno, J.J., Resveratrol modulates arachidonic acid release, prostaglandin synthesis, and 3T6 fibroblast growth. J Pharmacol Exp Ther, 2000. 294(1): 333-8. 18. Wung, B.S., et al., Resveratrol suppresses IL-6-induced ICAM-1 gene expression in endothelial cells: effects on the inhibition of STAT3 phosphorylation. Life Sci, 2005. 78(4): 389-97. 19. Manna, S.K., A. Mukhopadhyay, and B.B. Aggarwal, Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immunol, 2000. 164(12): 6509-19. 20. Olas, B., et al., Effect of resveratrol, a natural polyphenolic compound, on platelet activation induced by endotoxin or thrombin. Thromb Res, 2002. 107(3-4): 141-5. 21. Rakici, O., et al., Effects of resveratrol on vascular tone and endothelial function of human saphenous vein and internal mammary artery. Int J Cardiol, 2005. 105(2): 209-15. 22. Signorelli, P. and R. Ghidoni, Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem, 2005. 16(8): 449-66. 23. Park, C.S., et al., Inhibitory effects of Polygonum cuspidatum water extract (PCWE) and its component resveratrol [correction of rasveratrol] on acyl-coenzyme A-cholesterol acyltransferase activity for cholesteryl ester synthesis in HepG2 cells. Vascul Pharmacol, 2004. 40(6): 279-84. 24. Fremont, L., Biological effects of resveratrol. Life Sci, 2000. 66(8): 663-73. 25. Valenzano, D.R., et al., Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol, 2006. 16(3): 296-300. 26. Walle, T., et al., High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos, 2004. 32(12): 1377-82. 27. Crowell, J.A., et al., Resveratrol-associated renal toxicity. Toxicol Sci, 2004. 82(2): 614-9. 28. Parini, P., B. Angelin, and M. Rudling, Importance of estrogen receptors in hepatic LDL receptor regulation. Arterioscler Thromb Vasc Biol, 1997. 17(9): 1800-5. 29. Steinberg, D., Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med, 2002. 8(11): 1211-7. 30. Gianturco, S.H. and W.A. Bradley, Lipoprotein-mediated cellular mechanisms for atherogenesis in hypertriglyceridemia. Semin Thromb Hemost, 1988. 14(2): 165-9. 31. Leno, C., et al., Nephrotic syndrome, accelerated atherosclerosis, and stroke. Stroke, 1992. 23(6): 921-2. 32. Landmesser, U., B. Hornig, and H. Drexler, Endothelial function: a critical determinant in atherosclerosis? Circulation, 2004. 109(21 Suppl 1): II27-33. 33. Sevitt, S., Platelets and foam cells in the evolution of atherosclerosis. Histological and immunohistological studies of human lesions. Atherosclerosis, 1986. 61(2): 107-15. 34. Rosenson, R.S., Statins in atherosclerosis: lipid-lowering agents with antioxidant capabilities. Atherosclerosis, 2004. 173(1): 1-12. 35. Russo, G., J.A. Leopold, and J. Loscalzo, Vasoactive substances: nitric oxide and endothelial dysfunction in atherosclerosis. Vascul Pharmacol, 2002. 38(5): 259-69. 36. Salonen, R.M., et al., Six-year effect of combined vitamin C and E supplementation on atherosclerotic progression: the Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) Study. Circulation, 2003. 107(7): 947-53. 37. Brasen, J.H., et al., Comparison of the effects of alpha-tocopherol, ubiquinone-10 and probucol at therapeutic doses on atherosclerosis in WHHL rabbits. Atherosclerosis, 2002. 163(2): 249-59. 38. Michiels, C., Endothelial cell functions. J Cell Physiol, 2003. 196(3): 430-43. 39. La, M. and J.J. Reid, Endothelin-1 and the regulation of vascular tone. Clin Exp Pharmacol Physiol, 1995. 22(5): 315-23. 40. Rathaus, M. and J. Bernheim, Oxygen species in the microvascular environment: regulation of vascular tone and the development of hypertension. Nephrol Dial Transplant, 2002. 17(2): 216-21. 41. Cardillo, C., et al., Interactions between nitric oxide and endothelin in the regulation of vascular tone of human resistance vessels in vivo. Hypertension, 2000. 35(6): 1237-41. 42. Gschwend, S., et al., Coronary myogenic constriction antagonizes EDHF-mediated dilation: role of KCa channels. Hypertension, 2003. 41(4): 912-8. 43. Takei, A., Y. Huang, and M.F. Lopes-Virella, Expression of adhesion molecules by human endothelial cells exposed to oxidized low density lipoprotein. Influences of degree of oxidation and location of oxidized LDL. Atherosclerosis, 2001. 154(1): 79-86. 44. Frostegard, J., et al., Platelet-activating factor and oxidized LDL induce immune activation by a common mechanism. Arterioscler Thromb Vasc Biol, 1997. 17(5): 963-8. 45. Horie, S., et al., Oxidized low-density lipoprotein associates strongly with carboxy-terminal domain of tissue factor pathway inhibitor and reduces the catalytic activity of the protein. Thromb Haemost, 2002. 87(1): 80-5. 46. Klouche, M., et al., Atherogenic properties of enzymatically degraded LDL: selective induction of MCP-1 and cytotoxic effects on human macrophages. Arterioscler Thromb Vasc Biol, 1998. 18(9): 1376-85. 47. Frostegard, J., et al., Mononuclear leukocytes exposed to oxidized low density lipoprotein secrete a factor that stimulates endothelial cells to express adhesion molecules. Atherosclerosis, 1993. 103(2): 213-9. 48. Sata, M. and K. Walsh, Oxidized LDL activates fas-mediated endothelial cell apoptosis. J Clin Invest, 1998. 102(9): 1682-9. 49. Terkeltaub, R., et al., Oxidized LDL induces monocytic cell expression of interleukin-8, a chemokine with T-lymphocyte chemotactic activity. Arterioscler Thromb, 1994. 14(1): 47-53. 50. Chen, L.Y., P. Mehta, and J.L. Mehta, Oxidized LDL decreases L-arginine uptake and nitric oxide synthase protein expression in human platelets: relevance of the effect of oxidized LDL on platelet function. Circulation, 1996. 93(9): 1740-6. 51. Jimi, S., N. Sakata, and S. Takebayashi, Oxidized LDL induces an increase in the relative collagen synthesis of rabbit aortic smooth muscle cells. J Atheroscler Thromb, 1994. 1(1): 53-9. 52. Vindis, C., et al., Two distinct calcium-dependent mitochondrial pathways are involved in oxidized LDL-induced apoptosis. Arterioscler Thromb Vasc Biol, 2005. 25(3): 639-45. 53. Ares, M.P., et al., Oxidized LDL induces transcription factor activator protein-1 but inhibits activation of nuclear factor-kappa B in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 1995. 15(10): 1584-90. 54. Huang, Y., et al., Oxidized LDL differentially regulates MMP-1 and TIMP-1 expression in vascular endothelial cells. Atherosclerosis, 2001. 156(1): 119-25. 55. Gillotte, K.L., et al., Oxidized phospholipids, linked to apolipoprotein B of oxidized LDL, are ligands for macrophage scavenger receptors. J Lipid Res, 2000. 41(5): 824-33. 56. Shaaban, A.M. and A.J. Duerinckx, Wall shear stress and early atherosclerosis: a review. AJR Am J Roentgenol, 2000. 174(6): 1657-65. 57. Malek, A.M., S.L. Alper, and S. Izumo, Hemodynamic shear stress and its role in atherosclerosis. Jama, 1999. 282(21): 2035-42. 58. Hoeks, A.P., et al., Noninvasive determination of shear-rate distribution across the arterial lumen. Hypertension, 1995. 26(1): 26-33. 59. Baskurt, O.K. and H.J. Meiselman, Blood rheology and hemodynamics. Semin Thromb Hemost, 2003. 29(5): 435-50. 60. Eckmann, D.M., et al., Hematocrit, volume expander, temperature, and shear rate effects on blood viscosity. Anesth Analg, 2000. 91(3): 539-45. 61. Nicolaides, A.N., et al., Blood viscosity, red-cell flexibility, haematocrit, and plasma-fibrinogen in patients with angina. Lancet, 1977. 2(8045): 943-5. 62. Windberger, U., et al., Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: reference values and comparison of data. Exp Physiol, 2003. 88(3): 431-40. 63. Berezina, T.L., et al., Influence of storage on red blood cell rheological properties. J Surg Res, 2002. 102(1): 6-12. 64. Ercan, M., et al., The effects of cholesterol levels on hemorheological parameters in diabetic patients. Clin Hemorheol Microcirc, 2002. 26(4): 257-63. 65. Moriarty, P.M. and C.A. Gibson, Association between hematological parameters and high-density lipoprotein cholesterol. Curr Opin Cardiol, 2005. 20(4): 318-23. 66. Fernandez, M.L. and J.S. Volek, Guinea pigs: A suitable animal model to study lipoprotein metabolism, atherosclerosis and inflammation. Nutr Metab (Lond), 2006. 3: 17. 67. Sullivan, M.P., et al., The gerbil, hamster, and guinea pig as rodent models for hyperlipidemia. Lab Anim Sci, 1993. 43(6): 575-8. 68. Liu, J., et al., Assay of aldehydes from lipid peroxidation: gas chromatography-mass spectrometry compared to thiobarbituric acid. Anal Biochem, 1997. 245(2): 161-6. 69. Yard, B., et al., Prevention of cold-preservation injury of cultured endothelial cells by catecholamines and related compounds. Am J Transplant, 2004. 4(1): 22-30. 70. Valen, G., et al., Hydrogen peroxide induces endothelial cell atypia and cytoskeleton depolymerization. Free Radic Biol Med, 1999. 26(11-12): 1480-8. 71. Castell, L., et al., Granule localization of glutaminase in human neutrophils and the consequence of glutamine utilization for neutrophil activity. J Biol Chem, 2004. 279(14): 13305-10. 72. Martinez, M., et al., Erythrocyte membrane cholesterol/phospholipid changes and hemorheological modifications in familial hypercholesterolemia treated with lovastatin. Thromb Res, 1996. 83(5): 375-88. 73. Ravensbergen, J., et al., Localizing role of hemodynamics in atherosclerosis in several human vertebrobasilar junction geometries. Arterioscler Thromb Vasc Biol, 1998. 18(5): 708-16. 74. Luc, G. and M.J. Chapman, Guinea pig low density lipoproteins: structural and metabolic heterogeneity. J Lipid Res, 1988. 29(10): 1251-63. 75. Zhao, T., et al., Hemorheological abnormalities in lipoprotein lipase deficient mice with severe hypertriglyceridemia. Biochem Biophys Res Commun, 2006. 341(4): 1066-71. 76. Martinez, M., et al., The cholesterol/phospholipid ratio of the erythrocyte membrane in children with familial hypercholesterolemia. Its relationship with plasma lipids and red blood cell aggregability. Clin Hemorheol Microcirc, 1998. 18(4): 259-63.
論文全文使用權限
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 徐華玉
    E-mail:eva_hsu@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446