進階搜尋


  查詢北醫館藏
系統識別號 U0007-1704200714562988
論文名稱(中文) Flavonoids抑制RAW 264.7細胞因LPS刺激而產生的NO與其結構-活性關係
校院名稱 臺北醫學大學
系所名稱(中) 藥理學研究所
系所名稱(英) Department & Graduate Institute of Pharmacology
學年度 92
學期 2
出版年 93
研究生(中文) 張榮珮
研究生(英文) Jung-Pei Chang
學號 M115091005
學位類別 碩士
語文別 中文
口試日期
論文頁數 47頁
口試委員 指導教授-柯文昌
中文關鍵字 flavonoids  RAW 264.7 cells  nitric oxide  iNOS expression 
學科別分類
中文摘要 類黃鹼素(flavonoids) 抑制小鼠巨噬細胞RAW 264.7因LPS刺激產生NO的能力,各方尚有爭論,因此有必要重新檢討。我們用12 well而非96 well培養RAW 264.7,以降低表面張力的影響。用flavones、flavonols、flavanones及isoflavones四大類之flavonoids共13種,去抑制因LPS刺激而產生的NO,結果顯示apigenin、luteolin、diosmetin、eriodictyol、quercetin、genistein及prunetin有較強的抑制作用 (IC50<10 ?M) ,然後選擇一些藥物,研究是否抑制iNOS蛋白量的表現,Western blotting分析結果luteolin、eriodictyol及prunetin呈現濃度依存性的抑制LPS誘發iNOS protein的表現,這些抑制作用並非因細胞毒性所引起,其IC50值均有意義地低於抑制NO產生之IC50值 (Table 2)。另外在in vitro的實驗,除flavones之apigenin與diosmetin,及isoflavones之genistein與prunetin會隨著濃度的提高,而抑制NO生成的速率外,其他flavonoids均無抑制作用,但是抑制作用最大不超過30%;然而所有的flavonoids都能有意義地捕捉NO,但最大作用不及25%。以上結果顯示flavonoids可能是經由抑制iNOS protein expression而降低NO的產生。 關鍵字: flavonoids, RAW 264.7 cells, nitric oxide, iNOS expression
英文摘要 The inhibitory effects of flavonoids on NO production in RAW 264.7 cells were still debated. Therefore, it needs further investigation. To attenuate the effect of surface tension of culture medium, we incubated RAW 264.7 cells in 12-well, but not 96-well plates. Thirteen flavonoids, divided into four classes, flavones, flavonols, flavanones and isoflavones, were used to examine their inhibitory effects on LPS-induced NO production. The results revealed that apigenin, luteolin, diosmetin, eriodictyol, quercetin, genistein and prunetin had more potent effects (IC50<10 μM). Some of them were selected for examining their suppressive effects on iNOS protein expression. The results demonstrated that luteolin, eriodictyol and prunetin attenuated LPS-induced iNOS protein expression in a dose-dependent manner using Western blot analysis. The attenuation was not due to cell cytotoxicity of these flavonoids. The IC50 values differ from those of NO production, respectively (Table 2). In addition, in a in vitro system, flavonoids did not attenuate SNP-induced NO production, with an exception that flavones (apigenin and diosmetin), and isoflavones (genistein and prunetin) concentration-dependently attenuated the NO production. This attenuating effects were not greater than 30%. However, all tested flavonoids significantly had NO-scavenging effects, but the effects were not greater than 25%. The above results revealed flavonoids attenuate NO production maybe due to the inhibition of iNOS protein expression.
論文目次 目錄…………………………………………………………………… I 圖表目次……………………………………………………………… II 中文摘要……………………………………………………………… 1 英文摘要……………………………………………………………… 2 縮寫表………………………………………………………………… 3 緒論…………………………………………………………………… 4 實驗材料……………………………………………………………… 9 實驗方法………………………………………………………………13 實驗結果………………………………………………………………18 討論……………………………………………………………………21 參考文獻………………………………………………………………28 圖表……………………………………………………………………36
參考文獻 Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci. 2004; 75: 639-53 Beshay E, Croze F, Prud''homme GJ. The phosphodiesterase inhibitors pentoxifylline and rolipram suppress macrophage activation and nitric oxide production in vitro and in vivo. Clin Immunol. 2001; 98: 272-9 Beshay E, Prud''homme GJ. Inhibitors of phosphodiesterase isoforms III or IV suppress islet-cell nitric oxide production. Lab Invest. 2001; 81: 1109-17 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72: 248-54 Brown GC. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta. 2001; 1504: 46-57 Bulut V, Severn A, Liew FY. Nitric oxide production by murine macrophages is inhibited by prolonged elevation of cyclic AMP. Biochem Biophys Res Commun. 1993; 195: 1134-8 Chan MM, Mattiacci JA, Hwang HS, Shah A, Fong D. Synergy between ethanol and grape polyphenols, quercetin, and resveratrol, in the inhibition of the inducible nitric oxide synthase pathway. Biochem Pharmacol. 2000; 60: 1539-48 Chen CC, Wang JK. p38 but not p44/42 mitogen-activated protein kinase is required for nitric oxide synthase induction mediated by lipopolysaccharide in RAW 264.7 macrophages. Mol Pharmacol. 1999; 55: 481-8 Chen YC, Liang YC, Lin-Shiau SY, Ho CT, Lin JK. Inhibition of TPA-induced protein kinase C and transcription activator protein-1 binding activities by theaflavin-3,3''-digallate from black tea in NIH3T3 cells. J Agric Food Chem. 1999; 47: 1416-21 Chen YC, Shen SC, Lee WR, Hou WC, Yang LL, Lee TJ. Inhibition of nitric oxide synthase inhibitors and lipopolysaccharide induced inducible NOS and cyclooxygenase-2 gene expressions by rutin, quercetin, and quercetin pentaacetate in RAW 264.7 macrophages. J Cell Biochem. 2001; 82: 537-48 Chen YT, Zheng RL, Jia ZJ, Ju Y. Flavonoids as superoxide scavengers and antioxidants. Free Radic Biol Med. 1990; 9: 19-21 Cheon BS, Kim YH, Son KS, Chang HW, Kang SS, Kim HP. Effects of prenylated flavonoids and biflavonoids on lipopolysaccharide- induced nitric oxide production from the mouse macrophage cell line RAW 264.7. Planta Med. 2000; 66: 596-600 Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem. 1999; 274: 10689-92 Cobb JP, Danner RL.. Nitric oxide and septic shock. JAMA. 1996; 275: 1192-6 Cook HT, Cattell V. Role of nitric oxide in immune-mediated diseases. Clin Sci. 1996; 91: 375-84. Formica JV, Regelson W. Review of the biology of Quercetin and related bioflavonoids. Food Chem Toxicol. 1995; 33: 1061-80 Greten TF, Eigler A, Sinha B, Moeller J, Endres S. The specific type IV phosphodiesterase inhibitor rolipram differentially regulates the pro-inflammatory mediators TNF-? and nitric oxide. International Journal of Immunopharmacology. 1995; 17: 605-10 Hibbs JB Jr, Taintor RR, Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science. 1987; 235: 473-6 Jeon YJ, Kim YK, Lee M, Park SM, Han SB, Kim HM. Radicicol suppresses expression of inducible nitric-oxide synthase by blocking p38 kinase and nuclear factor-kappaB/Rel in lipopolysaccharide- stimulated macrophages. J Pharmacol Exp Ther. 2000; 294: 548-54 Krol W, Czuba ZP, Threadgill MD, Cunningham BD, Pietsz G. Inhibition of nitric oxide (NO.) production in murine macrophages by flavones. Biochem Pharmacol. 1995; 50: 1031-5 Kennedy DO, Scholey AB, Wesnes KA. The dose-dependent cognitive effects of acute administration of Ginkgo biloba to healthy young volunteers. Psychopharmacology (Berl). 2000; 151: 416-23 Kilbourn RG, Gross SS, Jubran A, Adams J, Griffith OW, Levi R, Lodato RF. NG-methyl-L-arginine inhibits tumor necrosis factor-induced hypotension: implications for the involvement of nitric oxide. Proc Natl Acad Sci U S A. 1990; 87: 3629-32 Kim HK, Cheon BS, Kim YH, Kim SY, Kim HP. Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem Pharmacol. 1999; 58: 759-65 Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994; 298: 249-58 Ko WC, Liu PY, Chen JL, Leu IJ, Shih CM. Relaxant effects of flavonoids in isolated guinea pig trachea and their structure- activity relationships. Planta Med. 2003; 69: 1086-90 Ko WC, Shih CM, Lai YH, Chen JH, Huang HL. Inhibitory effects of flavonoids on phosphodiesterase isozymes from guinea pig and their structure-activity relationships. Biochem Pharmcol. 2004; accepted Lee ME, Markowitz J, Lee JO, Lee H. Crystal structure of phosphodiesterase 4D and inhibitor complex(1). FEBS Lett. 2002; 530: 53-8 Liang YC, Huang YT, Tsai SH, Lin-Shiau SY, Chen CF, Lin JK. Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis. 1999; 20: 1945-52 Maffei Facino R, Carini M, Aldini G, Bombardelli E, Morazzoni P, Morelli R. Free radicals scavenging action and anti-enzyme activities of procyanidines from Vitis vinifera. A mechanism for their capillary protective action. Arzneimittelforschung. 1994; 44: 592-601 Marcocci L, Maguire JJ, Droy-Lefaix MT, Packer L. The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem Biophys Res Commun. 1994; 201: 748-55 Maurer K, Ihl R, Dierks T, Frolich L. Clinical efficacy of Ginkgo biloba special extract EGb 761 in dementia of the Alzheimer type. J Psychiatr Res. 1997; 31: 645-55 Matsuda H, Morikawa T, Ando S, Toguchida I, Yoshikawa M. Structural requirements of flavonoids for nitric oxide production inhibitory activity and mechanism of action. Bioorg Med Chem. 2003; 11: 1995-2000 Miller MJ, Sadowska-Krowicka H, Chotinaruemol S, Kakkis JL, Clark DA. Amelioration of chronic ileitis by nitric oxide synthase inhibition. J Pharmacol Exp Ther. 1993; 264: 11-6 Moncada S, Higgs A.The L-arginine-nitric oxide pathway. N Engl J Med. 1993; 329: 2002-12 Mora A, Paya M, Rios JL, Alcaraz MJ. Structure-activity relationships of polymethoxyflavones and other flavonoids as inhibitors of non-enzymic lipid peroxidation. Biochem Pharmacol. 1990; 40: 793-7. Namgoong SY, Son KH, Chang HW, Kang SS, Kim HP. Effects of naturally occurring flavonoids on mitogen-induced lymphocyte proliferation and mixed lymphocyte culture. Life Sci. 1994; 54: 313-20 Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992; 6: 3051-64 Nathan C, Xie QW.Nitric oxide synthases: roles, tolls, and controls. Cell. 1994; 78: 915-8 Nguyen T, Brunson D, Crespi CL, Penman BW, Wishnok JS, Tannenbaum SR. DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci U S A. 1992; 89: 3030-4 Oken BS, Storzbach DM, Kaye JA. The efficacy of Ginkgo biloba on cognitive function in Alzheimer disease. Arch Neurol. 1998; 55: 1409-15 Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988;333:664-6 Paul A, Pendreigh RH, Plevin R. Protein kinase C and tyrosine kinase pathways regulate lipopolysaccharide-induced nitric oxide synthase activity in RAW 264.7 murine macrophages. Br J Pharmacol. 1995; 114: 482-8 Sakata K, Hirose Y, Qiao Z, Tanaka T, Mori H. Inhibition of inducible isoforms of cyclooxygenase and nitric oxide synthase by flavonoid hesperetin in mouse macrophage cell line. Cancer Lett. 2003; 199: 139-45 Salerno L, Sorrenti V, Di Giacomo C, Romeo G, Siracusa MA. Progress in the development of selective nitric oxide synthase (NOS) inhibitors. MA. Curr Pharm Des. 2002; 8: 177-200 Samardzic T, Stosic-Grujicic S, Maksimovic D, Jankovic V, Trajkovic V. Differential regulation of nitric oxide production by increase of intracellular camp in murine primary fibroblasts and L929 fibrosarcoma cell line. Immunology Letters. 2000; 71: 149-55 Sands WA, Clark JS, Liew FY. The role of a phosphatidylcholine -specific phospholipase C in the production of diacylglycerol for nitric oxide synthesis in macrophages activated by IFN-gamma and LPS. Biochem Biophys Res Commun. 1994; 199: 461-6 Severn A, Wakelam MJ, Liew FY. The role of protein kinase C in the induction of nitric oxide synthesis by murine macrophages. Biochem Biophys Res Commun. 1992; 188: 997-1002 Shen SC, Lee WR, Lin HY, Huang HC, Ko CH, Yang LL, Chen YC. In vitro and in vivo inhibitory activities of rutin, wogonin, and quercetin on lipopolysaccharide-induced nitric oxide and prostaglandin E(2) production. Eur J Pharmacol. 2002; 446(1-3): 187-94 Sheu F, Lai HH, Yen GC. Suppression effect of soy isoflavones on nitric oxide production in RAW 264.7 macrophages. J Agric Food Chem. 2001; 49: 1767-72 Stosic-Grujicic S, Trajkovic V, Badovinac V, Mostarica Stojkovic M. Pentoxifylline potentiates nitric oxide production and growth suppression in interferon-? treated L929 Fibroblasts. Cellular Immunology. 1998; 184: 105-11 Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res. 2001; 480-481: 243-68 Sweet MJ, Hume DA. Endotoxin signal transduction in macrophages. J Leukoc Biol. 1996; 60: 8-26 Takano-Ishikawa Y, Goto M, Yamaki K. Inhibitory effects of several flavonoids on E-selectin expression on human umbilical vein endothelial cells stimulated by tumor necrosis factor-alpha. Phytother Res. 2003; 17: 1224-7 Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 1999; 11: 443-51 Tschaikowsky K, Meisner M, Schonhuber F, Rugheimer E. Induction of nitric oxide synthase activity in phagocytic cells inhibited by tricyclodecan-9-yl-xanthogenate (D609). Br J Pharmacol. 1994; 113: 664-8 van Acker SA, Tromp MN, Haenen GR, van der Vijgh WJ, Bast A. Flavonoids as scavengers of nitric oxide radical. Biochem Biophys Res Commun. 1995; 214: 755-9 Wadsworth TL, Koop DR. Effects of the wine polyphenolics quercetin and resveratrol on pro-inflammatory cytokine expression in Raw 264.7 macrophages. Biochemical Pharmacology. 1999; 57: 941-49 Wang HK, Xia Y, Yang ZY, Natschke SL, Lee KH. Recent advances in the discovery and development of flavonoids and their analogues as antitumor and anti-HIV agents. Adv Exp Med Biol. 1998; 439: 191-225 Wang T, Zhang X, Li JJ. The role of NF-kappaB in the regulation of cell stress responses. Int Immunopharmacol. 2002; 2: 1509-20 Weinstein SL, Gold MR, DeFranco AL. Bacterial lipopolysaccharide stimulates protein tyrosine phosphorylation in macrophages. Proc Natl Acad Sci U S A. 1991; 88: 4148-52 Wesnes KA, Ward T, McGinty A, Petrini O. The memory enhancing effects of a Ginkgo biloba/Panax ginseng combination in healthy middle-aged volunteers. Psychopharmacology (Berl). 2000; 152: 353-61 Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen JS, et al. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science. 1991; 254: 1001-3 Xagorari A, Papapetropoulos A, Mauromatis A, Economou M, Fotsis T, Roussos C. Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. J Pharmacol Exp Ther. 2001; 296: 181-7 Xie QW, Kashiwabara Y, Nathan C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem. 1994; 269: 4705-8 Zhang B, Perpetua M, Fulmer M, Harbrecht BG. JNK signaling involved in the effects of cyclic AMP on IL-1beta plus IFNgamma-induced inducible nitric oxide synthase expression in hepatocytes. Cell Signal. 2004; 16: 837-46 Zhou YQ, Chen YQ, Fisher JH, Wang MH. Activation of the RON receptor tyrosine kinase by macrophage-stimulating protein inhibits inducible cyclooxygenase-2 expression in murine macrophages. J Biol Chem. 2002; 277: 38104-10
論文全文使用權限
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446