進階搜尋


  查詢北醫館藏
系統識別號 U0007-1704200714550375
論文名稱(中文) 水蕨與姬蕨極性成分之研究
論文名稱(英文) Studies on the polar components of Ceratopteris Thalictroides (L.) Brongn. And Hypolepis punctata (Thunb.) Mett.
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 93
學期 2
出版年 94
研究生(中文) 周柏宏
研究生(英文) Bo-Hon Chou
學號 M301092008
學位類別 碩士
語文別 中文
口試日期
論文頁數 244頁
口試委員 指導教授-徐鳳麟
中文關鍵字 水蕨  姬蕨  倍半?類 
英文關鍵字 Ceratopteris Thalictroides (L.) Brongn.  Hypolepis punctata (Thunb.) Mett.  Sesquiterpene 
學科別分類
中文摘要 中文摘要 本論文以初步活性篩選顯示具抗癌活性之姬蕨與水蕨為主題,並做進一步化學成分之分離與探討。水蕨全草以甲醇冷浸萃取,浸液經減壓濃縮後,以n-hexane、Ethyl acetate及H2O分配萃取,經初步藥理活性篩選確定活性部分為n-Hexane及Ethyl acetate層,利用各種不同之層析法,經分離與純化後得22個化合物:quercetin 3-O-β-D-glucopyranoside (174.2 mg) (CT-1)、ferulic acid (356.9 mg) (CT-2)、p-coumaric acid (11.7 mg) (CT-3)、3-(4-hydroxy-phenyl)-acrylic acid methyl ester (23.8 mg) (CT-4)、p-hydroxy benzaldehyde (7.5 mg) (CT-5)、β-sitosterol and β-stigmasterol mixture (19.8 mg) (CT-6)、stigmast-5-ene-3,7-dione.(6 mg) (CT-7)、pterosin Z (8.1 mg) (CT-8)、pterosin A (4 mg) (CT-9)、pterosin V (6 mg) (CT-10)、pterosin K (3.5 mg) (CT-11)、pteroside Z (80 mg) (CT-12)、pterosin D 3-O-β-D-glucopyranoside (209 mg) (CT-13)、12-chloro-pterosin D 3-O-β-D-glucopyranoside (14mg) (CT-14)*、ceratopteroside B (38 mg) (CT-15)、ceratopteroside C (36.6 mg) (CT-16)、ceratopteroside D (3.5 mg) (CT-17)*、ceratopteroside E (6 mg) (CT-18)*、6-O-p-coumaroyl-D-glucopyranoside (28 mg) (CT-19)、3-O-p-coumaroyl-D-glucopyranoside (33.3 mg) (CT-20)、4-O-p-coumaroyl-D-glucopyranoside (5 mg) (CT-21)、kaempherol 3-O-β-glucopyranoside (20 mg) (CT-22)。其中CT-14、CT-17、CT-18為pteroside類中之新化合物。其他如CT-1、CT-2、CT-3、CT-4、CT-5、CT-6、CT-7、CT-14、CT-17、CT-18、CT-20、CT-21、CT-22皆為本植物中首次發現之化合物。姬蕨全草鮮品之甲醇萃取物,經以n-Hexane、Ethyl acetate及H2O分配萃取,並取具有活性之水層,藉由各種層析法,共分離出6個化合物。利用各種光譜分析鑑定其主要架構,分別為:Caffeic acid (14 mg) (HP-1)、2R,3R pterosin-L-13- O-β-D-glucopyranoside (26.8 mg) (HP-2)、7’, 8’-Dihydro-7’- (4’-hydroxy-3’-methoxyphenyl)-3-(hydroxymethyl)-1-benzofuranpropanol 4’-O-β-glucopyranoside (29.1 mg) (HP-3) 、6, 7’-dihydroxyisolariciresinol 4’-O-β-glucopyranoside (49.1 mg) (HP-4)*、(+)-Lariciresinol 4’-O-β-D-glucopyranoside (56.3 mg) (HP-5)、(+)-Pinoresinol 4’-O-β-D-glucopyranoside (6 mg) (HP-6)。 其中HP-4為新化合物。其他如HP-1、HP-2、HP-3、HP-5、HP-6為本植物中首次發現之化合物,活性部分則尚待評估。
英文摘要 英文摘要 In the course of our preliminary anticancer screeing program, we found that the MeOH extract of Ceratopteris thalictroides (L.) Brongn and Hypolepis punctata (Thumb.) Mett. exhibited cytotoxic activity. Thus. It intrigued us to further chemical investigation of these two plants. The MeOH exctract of whole fresh ferns of C. thalictroides was divided into fractions soluble in hexane, ethyl acetate, and H2O. From EtOAc fraction 22 compounds were isolated by Diaion, Sephadex LH-20, ODS, and silica gel column chromatography. Based on the 1D, 2D NMR and HRMS spectroscopic techniques, the structures were characterized as : quercetin 3-O-β-D-glucopyranoside (CT-1)、ferulic acid (CT-2)、p-coumaric acid (CT-3)、3-(4-hydroxyphenyl)-acrylic acid methyl ester (CT-4)、p-hydroxy benzaldehyde (CT-5)、β-sitosterol and β-stigmasterol mixture (CT-6)、stigmast-5-ene-3,7-dione (CT-7)、pterosin Z (CT-8)、pterosin A (CT-9)、pterosin V (CT-10)、pterosin K (CT-11)、pteroside Z (CT-12)、pterosin D 3-O-β-D-glucopyranoside (CT-13)、12-chloro-pterosin D 3-O-β-D-glucopyranoside (CT-14)、ceratopteroside B (38 mg) (CT-15)、ceratopteroside C (CT-16)、ceratopteroside D (CT-17)、ceratopteroside E (CT-18)、6-O-p-coumaroyl-D-glucopyranoside (CT-19)、3-O-p-coumaroyl -D-glucopyranoside (CT-20)、4-O-p-coumaroyl-D-glucopyranoside (CT-21)、kaempherol 3-O-β-glucopyranoside (CT-22).Among these, compounds CT-14, CT-17, and CT-18 are newly discovered. The others, CT-1~CT-7, CT-14, CT-17~CT-18, CT-20~CT-22 were isolated from C. thalictroides (L.) Brongn. for the first time. Similarly, the MeOH extract of fresh plant of Hypolepis punctata was divided into fractions soluble in n-hexane, ethyl acetate and H2O. These fractions were subjected to various chromatography and cytotoxic screening. Totally, six compounds were isolated from this fern, and their structures were determined to be caffeic acid (HP-1)、2R,3R pterosin-L 13-O-β-D-glucopyranoside (HP-2)、7’,8’-Dihydro-7’-(4’-hydroxy-3’-methoxyphenyl)-3- (hydroxymethyl)-1 Benzofuranpropanol 4’-O-β-glucopyranoside (HP-3)、6, 7’-dihydroxyisolariciresinol 4’-O-β-glucopyranoside (HP-4)、(+)-Lariciresinol 4’-O-β-D-glucopyranoside (HP-5)、(+)-Pinoresinol 4’-O-β-D-glucopyranoside (HP-6)。Compound HP-4 is newly discovered, and the rest five compounds were first found in this fern.
論文目次 目錄 目錄 ……………………………………………………………………I 圖表 …………………………………………………………………IV 中文摘要 ……………………………………………………………1 英文摘要 ……………………………………………………………3 基本骨架 …………………………………………… 5 名詞縮寫 …………………………………………… 8 緒論 ………………………………………………………………9 一、研究背景及目的 ……………………………………………9 二、蕨類之藥理活性探索 ……………………………………10 三、蕨類之成份研究 ………………………………………………15 四、水蕨之相關研究 ………………………………………………23 五、姬蕨之相關研究 ………………………………………………26 第一章 水蕨之成分研究 ……………………………………………30 第一節 抽提及分離 ……………………………………………30 第二節 化合物之構造決定 ……………………………………32 第一項 Flavonoid類化合物 ………………………32 1.1. CT-1: Quercetin 3-O-?-glucopyranoside ……………32 第二項 Phenolics類化合物 ………………………………38 2.1. CT-2: Ferulic acid ………………………………………38 2.2. CT-3: p-Coumaric acid …………………………………42 2.3. CT-4:3-(4-hydroxy-phenyl)-acrylic acid methyl ester ••• 46 3.1. CT-5: p-hydroxybenzaldehyde …………………………… 49 第三項 Steroid類化合物 ………………………………………51 4.1 . CT-6: β-Sitosterol and β-stigmasterol mixture …………51 4.2. CT-7: stigmast-5-ene-3,7-dione ………………………… 54 第四項 Pterosin類化合物 ……………………………………63 5.1. CT-8: Pterosin Z ……………………………………… 63 5.2. CT-9: Pterosin A ……………………………………… 65 5.3. CT-10: Pterosin V ……………………………………… 70 5.4. CT-11: Pterosin K ……………………………………… 73 第五項Pteroside類化合物 ……………………………………78 6.1. CT-12: Pteroside Z ………………………………… 78 6.2. CT-13: (3R)-pterosin D 3-O-β-D-glucopyranoside ••• 83 6.3 CT-14: 12-chloro-pterosin D 3-O-β-D-glucopyranoside ……………………………… 93 6.4 CT-15: Ceratopteroside B ……………………………106 6.5 CT-16: Ceratopterosin C ……………………………112 6.6 CT-17: Ceratopterosin D ……………………………118 6.7 CT-18: Ceratopterosin E ……………………………126 第七項 Phenylpropanoids glycoside ……………………………136 7.1 CT-19: 6-O-p-coumaroyl-D-glucopyranoside …………136 7.2 CT-20:3-O-p-coumaroyl-D-glucopyranoside …………141 7.3 CT-21:4-O-p-coumaroyl-D-glucopyranoside …………153 第八項 Flavonoid ………………………………………… 160 8.1. CT-22:Kaempherol 3-O-b –glucopyranoside ………160 第二章 姬蕨之成分研究 …………………………………………164 第一節 抽提及分離 ……………………………………………164 第二節 化合物構造之決定 ……………………………………166 第一項 Phenolics ……………………………………………… 166 1.1 HP-1: Caffeic acid …………………………………… 166 第二項 Pteroside類化合物 …………………………………169 2.1. HP-2: 2R, 3R-Pterosin-L 13-O-β-D-glucopyranoside ………………………………………………………… 169 第三項 Lignans …………………………………………… 178 3.1 HP-3: 7’,8’-Dihydro-7’-(4’-hydroxy-3’-methoxyphenyl) -3-(hydroxymethyl)-1-benzofuranpropanol 4’-O-β -glucopyranoside ………………………………… 178 3.2 HP-4: 6,7’-dihydroxyisolariciresinol 4’-O-?- glucopyranoside ………………………………191 3.3 HP-5: (+)-Lariciresinol 4’-O-?-D-glucopyranoside …… 199 3.4 HP-6: (+)-Pinoresinol 4’-O-?-D-glucopyranoside …… 206 第三章 結論 ………………………………………………………215 第四章、實驗部分 ……………………………………………………219 4.1 儀器與材料 ………………………………………………219 4.2 層析法 ……………………………………………………219 4.3 相關實驗 …………………………………………………220 4.3.1 水蕨之抽提與分離 ……………………………………220 4.3.2 姬蕨之抽提與分離 ……………………………………221 4.3.3水蕨成分之物理性質 ……………………………………221 4.3.4姬蕨成分之物理性質 ………………………………… 231 參考文獻 ……………………………………………………………235 圖表 Scheme 1. Ptaquiloside (1)與最終致癌產物(4)之反應機轉 … p. 11 Chart. 1 Fractionation flow chart of Ceratopteris thalictroides (L.) Brongn. …………………………………………… p. 31 Chart. 2 Fractionation flow chart of Hypolepis punctata. ……… p. 165 Table. 1 Toxic effects of Pterosins and Pterosides on HeLa Cells and on mouse. ……………………………………………… p. 13 Table. 2 Pterosins 類之相關化合物. ………………………… p. 15 Table. 3 Pterosides 類之相關化合物. ……………………… p. 18 Table. 4 13C-NMR spectral data of Quercetin and CT-1 (d, ppm, in MeOH-d4, 125 MHz). ……………………………… p. 33 Table. 5 13C-NMR spectral data of Pterosin A (CT-9) and CT-11 ( ?, ppm, in MeOH-d4, 125 MHz) ……………………………………… p. 74 Table. 6 13C-NMR spectral data of Pterosin Z and CT-12 ( ?, ppm, in MeOH-d4, 125 MHz) ………………………………………………p. 79 Table. 7 13C-NMR spectral data of Pterosin D 3R-O-?-D- glucopyranoside and CT-13 ( ?, ppm, in MeOH-d4, 125 MHz). ………………………………………………… p. 85 Table. 8 13C-NMR spectral data of CT-13, Pterosin K (CT-11), Spelosin, and CT-14 ( ?, ppm, in MeOH-d4, 125 MHz ). ……… p. 96 Table. 9 13C-NMR spectral data of CT-13, Ceratopteroside B, p-Coumaric acid, and CT-15 ( ? ppm, MeOH-d4, 125 MHz ) ………………………………………………… p.108 Table. 10 13C-NMR spectral data of Ceratopteroside C and CT-16 (? ppm, MeOH-d4, 125 MHz). ………………………p. 114 Table. 11 13C-NMR spectral data of CT-15、CT-16 and CT-17 (? ppm, MeOH-d4, 125 MHz). ………………………………p. 120 Table. 12 13C-NMR spectral data of Ceratopteroside B, CT-16, and CT-18 (? ppm, MeOH-d4, 125 MHz) ……………… p. 128 Table. 13 13C-NMR spectral data of 6-O-p-coumariyl-D- glucopyranoside, CT-19, and CT-20 (? ppm, CD3OD). ……………………………………………………… p. 143 Table. 14 13C-NMR spectral data of 6-O-p-coumariyl-D- glucopyranoside, CT-19, CT-20 and CT-21 (? ppm, CD3OD). …………………………………………… p. 154 Table. 15 13C-NMR spectral data of Kaempherol and CT-22 ( d ppm, Acetone-d6, 125 MHz). …………………………… p. 161 Table. 16 13C-NMR spectral data of (+)-Lariciresinol and HP-5 (? ppm, Methanol-d4, 125 MHz). …………………… p. 201 Table. 17 13C-NMR spectral data of (+)-Pinoresinol and HP-6 (? ppm, Methanol-d4, 125 MHz) …………………………p. 208 Table. 18 Isolated from MeOH extract of Hypolepis punctata ………………………………………………p. 215 Table. 19 Compounds isolated from the MeOH extract of Ceratopteris thalictroides ……………………………………… p. 216 Fig. 1 Donepezil (Aricept) …………………………………… p. 14 Fig. 2 水蕨形態圖 …………………………………………… p. 25 Fig. 3 姬蕨形態圖 ………………………………………………p. 29 Fig. 4 1H-NMR spectrum of CT-1 Quercetin (MeOH-d4, 500MHz) …………………………………………………p. 34 Fig. 5 13C-NMR spectrum of CT-1 (MeOH-d4, 125MHz) ……… p. 36 Fig.6 DEPT spectrum of CT-1 (MeOH-d4, 125MHz) ………… p. 37 Fig. 7 1H-NMR spectrum of CT-2 (Methanol-d4, 500 MHz) … p. 39 Fig. 8 13C-NMR spectrum of CT-2 (Methanol-d4, 125 MHz) … p. 40 Fig. 9 DEPT spectrum of CT-2 (Methanol-d4, 125 Mhz) ……… p. 41 Fig. 10 1H-NMR spectrum of CT-3 (Methanol-d4, 500 MHz) … p. 43 Fig. 11 13C-NMR spectrum of CT-3 (Methanol-d4, 125 MHz) … p. 44 Fig. 12 DEPT spectrum of CT-3 (Methanol-d4, 125 MHz) ……… p. 45 Fig. 13 1H-NMR-spectrum of CT-4 (Methanol-d4, 500 MHz) … p. 47 Fig. 14 13C-NMR-spectrum of CT-4 (Methanol-d4, 125 MHz) … p. 48 Fig. 15 1H-NMR-spectrum of CT-5 (Methanol-d4, 500 MHz) … p. 50 Fig. 16 1H-NMR-spectrum of CT-6 (CDCl3, 500 MHz) …………p. 52 Fig. 17 IR spectrum of CT-7 …………………………………… p. 55 Fig. 18 1H-NMR-spectrum of CT-7 (CDCl3, 500 MHz) ………… p. 56 Fig. 19 13C-NMR-spectrum of CT-7 (CDCl3, 125 MHz) …………p. 58 Fig. 20 COSY spectrum of CT-7 (CDCl3, 500 MHz) ……………p. 60 Fig. 21 HMQC spectrum of CT-7 (CDCl3, 500 MHz) …………p. 61 Fig. 22 HMBC spectrum of CT-7 (CDCl3, 500 MHz) …………p. 62 Fig. 23 1H-NMR spectrum of CT-8 (CDCl3, 500 MHz) ………p. 64 Fig. 24 1H-NMR spectrum of CT-9 (Methanol-d4, 500 MHz) ……p. 67 Fig. 25 13C-NMR spectrum of CT-9 (Methanol-d4, 125 MHz) … p. 69 Fig. 26 1H-NMR spectrum of CT-10 (Methanol-d4, 500 MHz) … p. 71 Fig. 27 IR spectrum of CT-11 …………………………… p. 75 Fig. 28 EI-MS spectrum of CT-11 ………………………… p. 75 Fig. 29 1H-NMR spectrum of CT-11 (Methanol-d4, 500 MHz) … p. 76 Fig. 30 13C-NMR spectrum of CT-11 (Methanol-d4, 500 MHz) … p. 77 Fig. 31 1H-NMR spectrum of CT-12 (Methanol-d4, 500 MHz) … p. 80 Fig. 32 13C-NMR spectrum of CT-12 (Methanol-d4, 125 MHz) … p. 81 Fig. 33 DEPT spectrum of CT-12 (Methanol-d4, 125 MHz) …… p. 82 Fig. 31 1H-NMR spectrum of CT-13 (Methanol-d4, 500 MHz) … p. 86 Fig. 32 13C-NMR spectrum of CT-13 (Methanol-d4, 125 MHz) … p. 88 Fig. 33 DEPT spectrum of CT-13 (Methanol-d4, 125 MHz) …… p. 89 Fig. 34 1H-1H COSY spectrum of CT-13 (Methanol-d4, 500 MHz) ……………………………………………………………p. 90 Fig. 35 HMQC spectrum of CT-13 (Methanol-d4 500 MHz) … p. 91 Fig. 36 HMBC spectrum of CT-13 (Methanol-d4 500 MHz) … p. 92 Fig. 37 LC-MS spectrum of CT-14 …………………………… p. 97 Fig. 38 IR spectrum of CT-14 ……………………………………p. 97 Fig 39. 1H-NMR spectrum of CT-14 (Methanol-d4 500 MHz) … p. 98 Fig. 40 13C-NMR spectrum of CT-14 (Methanol-d4, 125 MHz) …p. 100 Fig. 41 DEPT spectrum of CT-14 (Methanol-d4 125 MHz) … p. 101 Fig. 42 1H-1H COSY spectrum of CT-14 (Methanol-d4, 500 MHz) ……………………………………………………………p. 102 Fig. 43 HMQC spectrum of CT-14 (Methanol-d4 500 MHz) … p. 103 Fig. 44 HMBC spectrum of CT-14 (Methanol-d4 500 MHz) … p. 104 Fig. 45 1H-NMR spectrum of CT-15 (Methanol-d4, 500 MHz) … p. 109 Fig. 46 13C-NMR spectrum of CT-15 (Methanol-d4, 125 MHz) ……………………………………………………………p. 110 Fig. 47 DEPT spectrum of CT-15 (Methanol-d4, 125 MHz) … p. 111 Fig. 48 1H-NMR spectrum of CT-16 (Methanol-d4, 500 MHz) ……………………………………………………………p. 115 Fig. 49 13C-NMR spectrum of CT-16 (Methanol-d4, 125 MHz) ……………………………………………………………p. 116 Fig. 50 DEPT spectrum of CT-16 (Methanol-d4, 125 MHz) … p. 117 Fig. 51 1H-NMR spectrum of CT-17 (Methanol-d4, 500 MHz) … p. 121 Fig. 52 13C-NMR spectrum of CT-17 (Methanol-d4, 125 MHz)… p. 122 Fig. 53 HMQC spectrum of CT-17 (Methanol-d4, 500 MHz) … p. 123 Fig. 54 HMBC spectrum of CT-17 (Methanol-d4, 500 MHz) … p. 124 Fig. 55 LC-MS spectrum of CT-17 …………………………… p. 125 Fig. 56 1H-NMR spectrum of CT-18 (Methanol-d4, 500 MHz) … p. 129 Fig. 57 13C-NMR spectrum of CT-18 (Methanol-d4, 125 MHz) ……………………………………………………………p. 130 Fig. 58 COSY spectrum of CT-18 (Methanol-d4, 500 MHz) … p. 131 Fig. 59 HMQC spectrum of CT-18 (Methanol-d4, 500 MHz) … p. 132 Fig. 60 HMBC spectrum of CT-18 (Methanol-d4, 500 MHz) … p. 133 Fig. 61 LC-MS spectrum of CT-18 …………………………… p. 135 Fig. 62 1H-NMR spectrum of CT-19 (Methanol-d4, 500 MHz) … p. 137 Fig. 63 13C-NMR spectrum of CT-19 (Methanol-d4, 125 MHz) ……………………………………………………………p. 138 Fig. 64 DEPT spectrum of CT-19 (Methanol-d4, 125 MHz) … p. 140 Fig. 65 1H-NMR spectrum of CT-20 (Methanol-d4, 500 MHz) … p. 144 Fig. 66 13C-NMR spectrum of CT-20 (Methanol-d4, 125 MHz)… p. 146 Fig. 67 DEPT spectrum of CT-20 (Methanol-d4, 125 MHz) … p. 148 Fig. 68 COSY spectrum of CT-20 (Methanol-d4, 500 MHz) … p. 149 Fig. 69 HMQC spectrum of CT-20 (Methanol-d4, 500 MHz) … p. 150 Fig. 70 HMBC spectrum of CT-20 (Methanol-d4, 500 MHz) … p. 151 Fig. 71 1H-NMR spectrum of CT-21 (Methanol-d4, 500 MHz) … p. 155 Fig 72 13C-NMR spectrum of CT-21 (Methanol-d4, 125 MHz) … p. 156 Fig. 73 HMQC spectrum of CT-21 (Methanol-d4, 500 MHz) … p. 158 Fig. 74 HMBC spectrum of CT-21 (Methanol-d4, 500 MHz) … p. 159 Fig. 75 1H-NMR spectrum of CT-22 (Acetone-d6, 500 MHz) … p. 162 Fig. 76 13C-NMR spectrum of CT-22 (Acetone-d6, 125 MHz) … p. 163 Fig. 77 1H-NMR spectrum of HP-1 (Acetone-d6, 500 MHz) … p. 167 Fig. 78 13C-NMR spectrum of HP-1 (Acetone-d6, 125 MHz) … p. 168 Fig. 79 1H-NMR spectrum of HP-2 (Methanol-d4, 500 MHz) … p. 171 Fig. 80 13C-NMR spectrum of HP-2 (Methanol-d4, 125 MHz)… p. 173 Fig. 81 DEPT spectrum of HP-2 (Methanol-d4, 125 MHz) … p. 174 Fig. 82 COSY spectrum of HP-2 (Methanol-d4, 125 MHz) … p. 175 Fig. 83 HMQC spectrum of HP-2 (Methanol-d4, 500 MHz) … p. 176 Fig. 84 HMBC spectrum of HP-2 (Methanol-d4, 125 MHz) … p. 177 Fig. 85 1H-NMR spectrum of HP-3 (Methanol-d4, 500 MHz) … p. 182 Fig. 86 13C-NMR spectrum of HP-3 (Methanol-d4, 125 MHz) … p. 183 Fig. 87 DEPT spectrum of HP-3 (Methanol-d4, 125 MHz) … p. 184 Fig. 88 COSY spectrum of HP-3 (Methanol-d4, 500 MHz) … p. 185 Fig. 89 HMQC spectrum of HP-3 (Methanol-d4, 500 MHz) … p. 187 Fig. 90 HMBC spectrum of HP-3 (Methanol-d4, 500 MHz) … p. 188 Fig. 91 1H-NMR spectrum of HP-4 (Methanol-d4, 500 MHz) … p. 194 Fig. 92 13C-NMR spectrum of HP-4 (Methanol-d4, 125 MHz) … p. 195 Fig. 93 COSY spectrum of HP-4 (Methanol-d4, 500 MHz) … p. 196 Fig. 94 HMQC spectrum of HP-4 (Methanol-d4, 500 MHz) … p. 197 Fig. 95 HMBC spectrum of HP-4 (Methanol-d4, 500 MHz) … p. 198 Fig. 96 1H-NMR spectrum of HP-5 (Methanol-d4, 500 MHz) … p. 202 Fig. 97 13C-NMR spectrum of HP-5 (Methanol-d4, 125 MHz) … p. 203 Fig. 98 HMQC spectrum of HP-5 (Methanol-d4, 500 MHz) … p. 204 Fig. 99 HMBC spectrum of HP-5 (Methanol-d4, 500 MHz) … p. 205 Fig. 100 1H-NMR spectrum of HP-6 (Methanol-d4, 500 MHz) …………………………………………………………p. 209 Fig. 101 13C-NMR spectrum of HP-6 (Methanol-d4, 125 MHz) …………………………………………………………p. 211 Fig. 102 COSY spectrum of HP-6 (Methanol-d4, 500 MHz) … p. 212 Fig. 103 HMQC spectrum of HP-6 (Methanol-d4, 500 MHz) … p. 213 Fig. 104 HMBC spectrum of HP-6 (Methanol-d4, 500 MHz) … p. 214
參考文獻 參考文獻 1. 郭城孟, 蕨類入門,遠流出版社,台北;p138, 2001. 2. 郭城孟, 高美芳, 翁茂倫, 賞蕨-梅峰地區賞蕨手冊,行政院農委會,南投;p1, 2000. 3. 鄭武燦, 台灣植物圖鑑 (上冊),茂昌圖書有限公司,台北;p51, 2000. 4. 賴明洲, 台灣的植物,晨星出版有限公司,台北;p145, 2003. 5. 李亮恭, 劉棠瑞. 正中植物學辭典,正中書局,台北;p575, 1974. 6. Miguel E. ALONSO-AMELOT* and Marisabel AVENDAN?O : Possible association between gastric cancer and bracken fern in Venezuela: an Epidemiologic study. Int. J. Cancer, 91, 252, 2001. 7. Alonso-Amelot ME, Castillo U, Smith BL and Lauren DR : Bracken ptaquiloside in milk. Nature, 382, 587, 1996. 8. Kobayashi A., Egawa H., Koshimizu K., Mitsui T.: Antimicrobial constituents in Pteris inaequalis Bak. Agric. Biol. Chem. 39, 1851, 1975. 9. Murakami T., Tanaka N.: Occurrence, structure and taxonomic implications of Fern constituents; Spring-Verlag, New York, p52, 1988. 10. Uvidelio F. Castillo, Alistair L. Wilkins, Denis R. Lauren, Barry L. Smith, Miguel Alonso-Amelot : Pteroside A2-a New Illudane-Type Sesquiterpene Glucoside from Pteridium caudatum L. Maxon, and the Spectrometric Characterization of Caudatodienone. J. Agric. Food Chem, 51, 2559, 2003. 11. Trevor C. McMorris, Michael J. Kelner, Wen Wang, Jian Yu, Leita A. Estes, Raymond Taetle: (Hydroxymethyl)acylfulvene: An Illudin Derivative with Superior Antitumor Properties, J. Nat. Prod, 59, 896, 1996. 12. Jun Huo, Sheng-Ping Yang, Jian Ding, and Jian-Min Yue: Cytotoxic Sesquiterpene Lactones from Eupatorium lindleyanum. J. Nat. Pro, 67, 1470, 2004. 13. Kobayashi A., Koshimizu K.: Cytotoxic effects of fern constituents Pterosin, on Sea Embryos and a Ciliate. Agric. Biol. Chem. 44, 393, 1980. 14. DM Potter and MS Baird: Carcinogenic effects of ptaquiloside in bracken fern and related compounds. British Journal of Cancer, 83, 914, 2000. 15. Kiyoyuki Yamada, Makoto Ojika, and Hideo Kigoshi: Isolation, Chemistry, and Biochemistry of Ptaquiloside, a Bracken Carcinogen, Angew. Chem. Int. Ed, 37, 1818, 1998. 16. Castillo UF, Ojika M, Alonso-Amelot M and Sakagami Y: Ptaquiloside Z, a new toxic unstable sesquiterpene glucoside from the neotropical bracken fern Pteridium aquilinum var. caudatum. Bioorganic and Medicinal Chemistry, 6, 2229, 1998. 17. McMorris TC: (Hydroxymethyl) acylfulvene, an illudin derivative with superior antitumour properties. J Nat Prod, 59, 896, 1996. 18. Marii Takahashi, Hiroyuki Fuchino1, Setsuko Sekita1 and Motoyoshi Satake: In vitro Leishmanicidal Activity of Some Scarce Natural Products. Phytother. Res, 18, 573, 2004. 19. Yoshihira K., Fukuoka M., Kuroyanagi M., Natori S., Umeda M., Morohoshi T., Enomoto M. , Saito M.: Chemical and toxicological studies on Bracken Fern, pteridium aquilinum var. latiusculum.Ⅰ: Introduction, Extraction and Fractionation of Constituents, and Toxicological Studies. Chem. Pharm Bull. 26, 2346, 1978. 20. Warpehoski MA, Harper DE, Mitchell MA Monroe TJ: Reversibility of the covalent reaction of CC-1065 and analogues with DNA. Biochemistry, 31, 2501, 1992. 21. Charles J. Kelley, Richard C. Harruff, Marvin Carmack: The Ployphenolic Acids of Lithospermum ruderale. Ⅱ. Carbon-13 Nuclear Magnetic Resonance of Lithospermic and Rosmarinic Acids. J. Org. Chem, 41, 449, 1988. 22. Sheridan H., Frankish N., Farrell R.: Smooth Muscle Relaxant Activity of Pterosin Z and Related Compounds. Planta. Med. 65, 271, 1999. 23. Yoshihira K., Fukuoka M., Kuroyanagi M., Natori S.: 1-Indanone Derivatives From Bracken, Pteridium aquilinum var. latiusculum. Chem. Pharm. Bull. 19, 1491, 1971. 24. Ho, S.T., Yang M.S., Wang C.H.: Studies on the Taiwan Folk Medicine Ⅲ: A smooth muscle relaxant from Onychium siliculosum. Onitin. Planta Med. 148-150, 1985. 25. Nagao T., Saito K., Hirayama E., Uchikoshi K., Koyama K., Natori S., Morisaki N., Iwasaki S., Matsushima T.: Mutagenicity of ptaquiloside, the carcinogen in bracken, and it`s related illudane-type sesquiterpenes. Mutation Research. 215, 173, 1989. 26. Murakami T., Taguchi S., Chen C. M.: Chemische untersuchungen der Inhaltsstoffe von Hypolepis punctata (Thumb.) Mett. Chem. Pharm. Bull. 24, 2241, 1976. 27. Castillo U. F., Wilkins A. L., Lauren D. R., Smith B. L., Towers N. R., Alonso-Amelot M. E., Jaimes-Espinoza E.: Isoptaquiloside and caudatoside, illudane-type sesquiterpene glucosides from Pteridium aquilinum var, caudatum. Phytochemistry. 44, 901, 1997. 28. Kuraishi T., Murakami T., Taniguchi T., Kobuki Y., Maehashi H., Tanaka N., Saiki Y., Chen C.M.: Chemical and Chemotaxonomical Studies of Fern. Ⅳ. Pterosin Derivatives of the Genus Microlepia (Pteridaceae) Chem. Pharm. Bull. 33, 2305, 1985. 29. Murakami T., Saiki Y.: Studies on the Phylogeny and the evolution of Ferns on the basis of secondary metabolites. Shoyakugaku Zasshi. 42, 171, 1988. 30. Saito K., Nagao T., Matoba M., Koyama K., Natori S., Murakami T., Saiki Y.: Chemical assay of Ptaquiloside, The carcinogen of Pteridium aquilinum, and the distribution of related compounds. Phytochemistry. 28, 1605, 1989. 31. Kuroyanagi M., Fukuoka M., Yoshihira K., Natori S.: Chemical and toxicological studies on Bracken Fern, Pteridium aquilinum var. latiusculum. Ⅲ. Further characterization of Pterosins and 1-Indanone Skeleton, from the Rhizomes. Chem. Pharm. Bull. 27, 592, 1979. 32. Yoshihira K., Fukuoka M., Kuroyanagi M., Natori S., Umeda M., Morohoshi T., Enomoto M., Saito M.: Chemical and Toxicological Studies on Bracken Fern, Pteridium aquilinum var. latiusculum.Ⅰ. Introduction, extraction and fractionation of constituents, and toxicological studies including carcinogenicity test. Chem. Pharm. Bull. 26, 2346, 1978. 33. Fukuo M., Kuroyangi M., Yoshihira K., Natori S.: Chemical and toxicological studies on Bracken Fern, Pteridium aquilinum var. latiusculum Ⅱ. Structures of Pterosins, Sesquiterpenes having 1-Indanone Skeleton. Chem. Pharm. Bull. 26, 2365, 1978. 34. Tanaka N., Satake T., Takahashi A., Mochizuki M., Murakami T., Saiki Y., Yang J. Z., Chen C.M.: Chemical and Chemotaxonomical studies of Ferns ⅩⅩⅩⅨ. Chemical studies on the Constituents of Pteris bella TAGAWA and Pteridium aquilinum subsp. Wightianum (Wall) SHICH. Chem. Pharm. Bull. 30, 3640, 1982. 35. Saito K., Nagao T., Takatsuki S., Koyama K., Natori S.: The sesquiterpenoid carcinogen of bracken fern, and some analogues, from Pteridaceae. Phytochemistry. 29, 1475, 1990. 36. Ayer W.A., McCaskill R.H. The cybrodins, a new class of sesquiterpenes. Can. J. Chem. 59, 2150, 1981. 37. Satake T., Murakami T., Saiki Y., Chen C.M., Luis D Gomez P.: Chemical and Chemotaxonomical Studies on Filices LI. Chemical Studies on the Constituents of Costa Rican Ferns. Chem. Pharm. Bull. 32, 4620, 1984. 38. Murakami T., Wada H., Tanaka N., Saiki Y., Chen C.M.: Chemische und chemotaxonomische Untersuchungen von Filices ⅩⅩⅦ Chemische Untersuchungen der Inhaltsstoffe von Dennstaedtia wilfordii (MOORE) CHRIST. Chem. Pharm. Bull. 28, 1869, 1980. 39. Akabori S., Akabori Y., Hasegawa M.: Further Structural Studies of 1-Indanone Derivatives obtained From Onychium japonicum. Chem. Pharm. Bull. 23, 1311, 1980. 40. Murakami T., Satake T., Ninomiya K., Iida H., Yamauchi K., Tanaka N., Saiki Y., Chen C.M. : Pterosin-Derivate Aus Der Familie Pteridaceae. Phytochemistry. 19, 1743, 1980. 41. Murakami T., Satake T., Chen C.M.: Chemische Untersuchungen der Inhaltsstoffe von Pteris kiuschiuensis Hieron. Chem. Pharm. Bull. 23, 936, 1975. 42. Bardouille V., Mootoo B.S., Hirotsu K., Clardy J.: Sesquiterpenes From Pityrogramma Calomelanos. Phytochemistry. 17, 275, 1978. 43. Wu T.S., Kuoh C.S., Ho S.T., Yang M.S., Lee K.K. : flavanone and other constituents from Onychium siliculosum. Phytochemistry. 20, 527, 1981. 44. Ho S.T., Yang M.S., Wu T.S., Wang C.H.: Studies on the Taiwan Folk Medicine Ⅲ: A Smmoth Muscle Relaxant from Onychium siliculosum, Onitin. Planta. Medica. 20, 148, 1985. 45. Banerji A., Ramakrishnan G., Chadha M.S., Onitin, Onitisin, New Phenolic Pterosins From The Fern Onychium auratum. Tetrahedron. Letters. 15, 1369, 1974. 46. Murakami T., Tanaka N., Chen C.M.: Pterosin Q und Pterosid Q aus Pteris oshimensis HIERON. Und Histiopteris incise (THUNB.) J. SMITH. Chem. Pharm. Bull. 22, 2758, 1974. 47. Agnew M.P., Lauren D.R.: Determination of ptaquiloside in bracken fern ( Pteridium esculentum ). J. Chromatography. 538, 462, 1991. 48. Hayashi Y., Nishizawa M., Sakan T. Studies on the Sesquiterpenoids of Hypolepis punctata. Mett.-Ⅰ. Tetrahedron Letters. 33, 2509, 1991. 49. McMorris T.C., Kelner M.J., Wang W.: Structure Activity Relationship of Illudins: Analogs with improved therapeutic index. J. Org. Chem. 57, 6876, 1992. 50. Van der Hoeven J. C. M., Lagerweij W.J., Posthumus M. A., Van Veldhuizen A., Holterman H. A. J.: Aquilide A, a new mutagenic compound isolated from bracken fern Pteridium aquilinum (L.) Kuhn. Carcinogenesis. 4, 1587, 1983. 51. Koyama K., Takatsuki S., Natori S.: Dennstoside A., An analogue of Ptaquiloside, from Dennstaedtia scabra. Phytochemistry. 30, 2080, 1991. 52. Sengupta P., Sen M., Niyogi S.K.: Isolation and Structure of Wallichoside, A novel pteroside from Pteris wallichiana. Phytochemistry. 15, 995, 1976. 53. Hikino H., Takahashi T., Takemoto T.: Structure of Pteroside Z and D, Glycosides of Pteridium aquilinum var. latiusculum. Chem. Pharm. Bull. 19, 2424, 1971. 54. Murakami T., Aoyama K., Tanaka N., Chen C.M.: Chemische Untersuchungen der Inhaltsstoffe von Pteris wallichiana AGARDH Chem. Pharm. Bull. 24, 173, 1976. 55. McMorris T. C., Liu M., White R. H.: Studies on the Pterosins and Other Indanones Related to the Illudins. Lloydia. 40, 221, 1977. 56. Koyama K., Takatsuki S., Natori S.: Dennstoside A, an analogue of ptaquiloside, from Dennstaedtia scabra. Phytochemistry. 30, 2080, 1991. 57. NG. K-M. EVA., McMorris T. C.: An efficient synthesis of pterosin C and other pterosins. Can. J. Chem. 62, 1945, 1984. 58. Padwa A., Curtis E. A., Sandanayaka V. P.: Generation and Cycloaddition Behavior of Spirocyclic Carbonyl Yield. Application to the Synthesis of the Pterosin Family of Sesquiterpenes. J. Org. Chem. 61, 73, 1996. 59. Farrel R., Kelleher F., Sheridan H.: Synthesis of Fern Sesquiterpene Pterosin Zvia a Novel Palladium-Catalyzed Route. J. Nat. Prod. 59, 446, 1996. 60. 許涵溥. 水蕨成分之研究. 台北醫學大學生藥學研究所碩士論文, 台北, 2004. 61. 李世軍, 台灣產藥用植物 (台灣油點草、水蕨 )及生藥材 ( 油茶粕、琥珀 ) 之成份研究,國立清華大學化學研究所博士論文,新竹;p67、74、81、84、86、89、97、102、109、116, 2002. 62. Zhang, H. L., Nagatsu, A., Okuyama, H., Mizukami, H., Sakakibara, J.: Sesquiterpene Glycosides from Cotton Oil Cake. Phytochemistry. 48, 665, 1998. 63. Charles J. Kelley, Richard C. Harruff, and Marvin Carmack.: The Polyphenolic Acids of Lithospermum ruderale.Ⅱ. Carbon-13 Nuclear Magnetic Resonance of Lithospermic and Rosmarinic Acids. J. Org. Chem. 41, 449, 1976. 64. Hiroko Shimomura, Yutaka Sashida, Tokuo Adachi.: Phenylpropanoid glucose ester from Prunus Buergeriana. Phytochemistry. 27, 641, 1988. 65. 賴國誌. 姬蕨抗癌成分之研究. 台北醫學大學生藥學研究所碩士論文, 台北, 2003. 66. Pouchert, C. J., Behnke, J.,: The Aldrich Library of 13C and 1H FT NMR Spectra, Aldrich Chemical, Milwaukee Ed. 2, 943, 1993. 67. Grag, V. K., Nes, W. R.: Codisterol and other Δ5-Sterols in the Seeds of Cucurbita maxima. Phytochemistry. 23, 2925, 1984. 68. Grag, V. K., Nes, W. R. Occurrence of Δ5-Sterols in Plants Producing Predominantly Δ5-Sterols: Studies on the Sterol Compositions of Six Cucurbitaceae Seeds. Phytochemistry. 25, 2591, 1986. 69. JLACBF; Justus Liebigs Ann. Chem; 725, 196, 1969. 70. H. Schabdach, J. Schroder, K. Seifert. Synthesis of deuterium and tritium labeled 7-hydroxy-and 7-oxosterols. J. Labelled. Compd. Radiopharm. 41, 4, 329, 1998. 71. Dellus, Vincent; Mila, Isabelle; Scalbert, Augustin; Menard, Catherine; Michon, Veronique. Douglas-fir polyphenols and heartwood formation. Phytochemistry. 45, 8, 1573, 1997. 72. Xie LH, Akao T, Hamasaki K, Deyama T, Hattori M. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol. Chem. Pharm. Bull. 51, 5, 508, 2003.
論文全文使用權限
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446