進階搜尋


  查詢北醫館藏
系統識別號 U0007-1704200714541724
論文名稱(中文) 順氯氨鉑引發的腎毒性在純系小鼠的確立與柴胡在此腎炎模型的藥效評估
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 93
學期 2
出版年 94
研究生(中文) 張惠婷
研究生(英文) Chang Hui-Ting
學號 M508090002
學位類別 碩士
語文別 中文
口試日期
論文頁數 0頁
口試委員 指導教授-陳世銘
中文關鍵字 Cisplatin腎毒性  柴胡  腫瘍壞死因子-a  p21  週期蛋白D1 
英文關鍵字 Cisplatin nephrotoxicity  Bupleuri Radix  TNF-a  p21  cyclin D1 
學科別分類
中文摘要 臨床上,化學治療藥物順氯氨鉑(cisplatin, CDDP)常用於治療固體癌,其引起的腎毒性,常是限制臨床使用的因素之一。本研究利用低劑量CDDP連續投予小鼠,引發腎炎模型,以柴胡及pentoxifylline (PTX)作為預防藥物,評估其在此腎炎之預防效果。 實驗以6週齡雌鼠(BALB/c mice, female)投予不同劑量CDDP (1.25, 2.5, 5 mg/kg/d)及分別投予CDDP 1, 3, 5天探討投予次數引起腎毒性的強度,以確立小鼠CDDP腎炎模型。藉由事先投予柴胡濃縮劑(BR 150, 300, 450 mg/kg/d)及其純成分saikosaponin A, C, D、化學藥品PTX, BR300併用PTX來評估藥物對CDDP引起腎毒性的預防效果。實驗以N-acetyl-b-D-glucosaminidase (NAG)、尿蛋白、urinary creatinine (Ucr.)與BUN評估腎功能;其腎組織以PAS染色觀察病理組織及免疫螢光染色辨別其損傷部位之特異性抗原。 實驗結果顯示,投予不同劑量與次數,以CDDP 5 mg/kg/d連續投予5天損傷最為嚴重,尿液中NAG、尿蛋白與血清中BUN值增加,Ucr.排除降低;組織學觀察到腎小管有明顯的萎縮、脫落與圓柱體沈積,細胞浸潤較少。免疫螢光染色發現投予CDDP會增加TNF-a?, cyclin D1的表現。此外,投予3天CDDP即發現腎功能下降,組織學上觀察到腎小管損傷。免疫螢光染色TNF-a, cyclin D1的表現,僅次於5天;但p21的表現在投予1天時最強,3天次之,5天則明顯減弱。 投予藥物中,柴胡及其純成分saikosaponin A, C, D、化學藥品PTX及BR300併用PTX皆可改善腎功能,組織學上腎小管損傷有減輕的情形。藥效評估以BR 300 mg/kg預防效果較好,純成分則以saikosaponin D最佳。
英文摘要 Cisplatin (CDDP) is an effective antineoplastic agent in the treatment of various solid tumors. The clinical utility of CDDP is limited because of its nephrotoxicity. We tried to establish CDDP induced nephrotoxicity in inbred mice and investigated the impact of Bupleuri Radix (BR) and pentoxifylline (PTX) on the model. BALB/c mice (6 weeks, female) were intraperitoneally administered with 1.25, 2.5, 5 mg/kg/d of CDDP for 5 days (on day 1 to day 5) to determine the experimental dose. Then, CDDP 5mg/kg/d were administered intraperitoneally to determine the relationship between the injection times (on day 1, 3, 5) and the degree of nephrotoxicity. In the second experiment, CDDP (5 mg/kg/d) was given to mice on day 1 to day 5. The mice were administered orally with Bupleuri Radix extract (BR) (150, 300, 450 mg/kg/d), saikosaponin A, C, D, PTX, BR300 combined with PTX once daily for 10 days (on day -5 to day 5). The control group was treated with distilled water. Urinary N-acetyl-b-D-glucosaminidase (NAG), urinary protein, urinary creatinine (Ucr.) and blood urea nitrogen (BUN) were determined. Renal tissues were served to histological examination (PAS stain and immunofluorescence staining). The antibodies including TNF-a, p21, cyclin D1 was chosen to recognize the specific antigens, which deposited in injury sites. The results showed that animals administered with 5 mg/kg/d of CDDP for 5 days having the most severe injury. Elevation of NAG, urinary protein, BUN and decrease of Ucr were observed. The histological examination showed tubular atrophy, existence of cast and a little interstitial infiltration. Immunofluorescent study revealed CDDP increased the deposition of TNF-a, cyclin D1 in kidneys. Besides, deterioration of kidney function and pathologic alterations were observed on day 3. The deposition of TNF-a, cyclin D1 on day 3 were increased maximally to day 5 gradually. The expression of p21 increased maximally on day 1, but decreased on day 5. The mice administered orally with BR300, saikosaponin A, C, D, PTX and BR300 combined with PTX ameliorated kidney damage. BR300 showed the strongest protective effect against CDDP induced nephrotoxicity among the BR groups. Saikosaponin D showed the strongest protective effect among pure compound groups.
論文目次 目錄…………………………………………………………………I 圖目錄…………………………………………………………………i 表目錄…………………………………………………………………iii 縮寫表…………………………………………………………………iv 中文摘要…………………………………………………………………1 英文摘要…………………………………………………………………3 第一章 緒言……………………………………………………………5 第二章 文獻回顧………………………………………………………8 第一節 順氯氨鉑(Cisplatin)的作用機轉及臨床使用……………8 第二節 Cisplatin引起腎毒性的機轉與臨床表徵………………12 第三節 細胞週期(Cell cycle)的調控……………………………14 第四節 柴胡及柴胡皂?……………………………………………21 第五節 Pentoxifylline…………………………………………26 第三章 研究目的………………………………………………………29 第四章 材料與方法……………………………………………………30 第一節 不同劑量CDDP對BALB/c小鼠引起腎毒性的探討…30 1.1 實驗動物………………………………………………30 1.2 實驗設計………………………………………………30 1.3尿液收集………………………………………………30 1.4 動物犧牲法、血液及組織切片製作…………………31 1.5 NAG、尿蛋白、creatinine的含量測定………………31 1.6 血清中BUN值的含量測定…………………………32 1.7 Periodoic Acid Schiff’s stain (PAS)組織染色…………32 1.8組織損傷程度的量化…………………………………33 1.9 免疫螢光染色(Immunofluorescence)…………………33 1.10統計方法……………………………………………34 第二節 CDDP投予次數對BALB/c小鼠引起腎毒性的探討…36 2.1 實驗動物………………………………………………36 2.2 實驗設計………………………………………………36 2.3尿液收集………………………………………………36 2.4 動物犧牲法、血液及組織切片製作…………………36 2.5 NAG、尿蛋白、creatinine的含量測定………………36 2.6 血清中BUN值的含量測定…………………………36 2.7 Periodoic Acid Schiff’s stain (PAS)組織染色…………36 2.8組織損傷程度的量化…………………………………36 2.9 免疫螢光染色(Immunofluorescence)…………………36 2.10統計方法……………………………………………36 第三節 柴胡濃縮劑在CDDP引起腎炎模型的藥效評估………38 3.1 實驗動物……………………………………………38 3.2 實驗藥物………………………………………………38 3.3柴胡濃縮劑在此腎炎模型之實驗設計………………38 3.4尿液收集………………………………………………38 3.5 動物犧牲法、血液及組織切片製作…………………38 3.6 NAG、尿蛋白、creatinine的含量測定………………38 3.7 血清中BUN值的含量測定…………………………38 3.8 Periodoic Acid Schiff’s stain (PAS)組織染色…………39 3.9組織損傷程度的量化…………………………………39 3.10 免疫螢光染色(Immunofluorescence)………………39 3.11統計方法……………………………………………39 第四節 各種預防藥物在CDDP引起腎炎模型的藥效評估……41 4.1 實驗動物………………………………………………41 4.2 實驗藥物………………………………………………41 4.3 各種預防藥物在此腎炎模型之實驗設計……………41 4.4 尿液收集………………………………………………41 4.5 動物犧牲法、血液及組織切片製作…………………41 4.6 NAG、尿蛋白、creatinine的含量測定……………41 4.7 血清中BUN值的含量測定…………………………42 4.8 Periodoic Acid Schiff’s stain (PAS)組織染色…………42 4.9組織損傷程度的量化…………………………………42 4.10 免疫螢光染色(Immunofluorescence)………………42 4.11統計方法…………………………………………… 42 第五章 結果……………………………………………………………44 第一節 不同劑量CDDP對BALB/c小鼠引起腎毒性的探討…44 1.1 尿液NAG、尿蛋白、creatinine的含量分析………44 1.2 血清中BUN值的含量分析…………………………45 1.3 組織病理PAS染色……………………………………45 1.4 組織損傷量化分析…………………………………45 1.5免疫螢光染色…………………………………………46 1.5-1 TNF-?之表現……………………………………46 1.5-2 p21之表現……………………………………46 1.5-3 Cyclin D1之表現………………………………46 第二節 CDDP投予次數對BALB/c小鼠引起腎毒性的探討…56 2.1 NAG、尿蛋白、creatinine的含量分析…………………56 2.2 血清中BUN值的含量分析…………………………56 2.3 組織病理PAS染色……………………………………56 2.4 組織損傷量化分析………………………………….57 2.5免疫螢光染色…………………………………………57 2.5-1 TNF-?之表現……………………………………57 2.5-2 p21之表現……………………………………58 2.5-3 Cyclin D1之表現………………………………58 第三節 柴胡濃縮劑在CDDP引起腎炎模型的藥效評估………67 3.1 NAG、尿蛋白、creatinine的含量分析…………………67 3.2 血清中BUN值的含量分析…………………………68 3.3 組織病理PAS染色……………………………………68 3.4 組織損傷量化分析………………………………….68 3.5免疫螢光染色…………………………………………69 3.5-1 TNF-?之表現……………………………………69 3.5-2 p21之表現……………………………………69 3.5-3 Cyclin D1之表現………………………………70 第四節 各種預防藥物在CDDP引起腎炎模型的藥效評估……79 4.1 NAG、尿蛋白、creatinine的含量分析……………79 4.2 血清中BUN值的含量分析…………………………80 4.3 組織病理PAS染色……………………………………80 4.4 組織損傷量化分析…………………………………81 4.5免疫螢光染色…………………………………………81 4.5-1 TNF-?之表現……………………………………81 4.5-2 p21之表現……………………………………81 4.5-3 Cyclin D1之表現………………………………82 第六章 討論……………………………………………………………93 第一節 不同劑量CDDP對BALB/c小鼠引起腎毒性的探討…93 第二節 CDDP投予次數對BALB/c小鼠引起腎毒性的探討…95 第三節 柴胡濃縮劑在CDDP引起腎炎模型的藥效評估………97 第四節 各種預防藥物在CDDP引起腎炎模型的藥效評估……98 第七章 結論.…………………………………………………………100 參考文獻……………………………………………………………102
參考文獻 1. 中華民國衛生署. (中華民國衛生署, 2005). http://www.doh.gov.tw/statistic/data/死因摘要/93年/93.htm 2. Orgnization, W. H. (World Health Orgnization, 2005). 3. Harder, H. C., Smith, R. G. & Leroy, A. F. Template primer inactivation by cis- and trans-dichlorodiammine platinum for human DNA polymerase alpha, beta, and Rauscher murine leukemia virus reverse transcriptase, as a mechanism of cytotoxicity. Cancer Research 36, 3821-9 (1976). 4. Skeel, R. T. Handbook of Cancer Chemotherapy (ed. Skeel, R. T.) (Lippincott Williams & Wilkins, 1999). 5. Schaeppi, U., Heyman, I. A., Fleischman, R. W., Rosenkrantz, H., Ilievski, V., Phelan, R., Cooney, D. A. & Davis, R. D. cis-Dichlorodiammineplatinum(II) (NSC-119 875): preclinical toxicologic evaluation of intravenous injection in dogs, monkeys and mice. Toxicology & Applied Pharmacology 25, 230-41 (1973). 6. Arany, I. & Safirstein, R. L. Cisplatin nephrotoxicity. Seminars in Nephrology 23, 460-4 (2003). 7. Safirstein, R., Miller, P. & Guttenplan, J. B. Uptake and metabolism of cisplatin by rat kidney. Kidney International 25, 753-8 (1984). 8. Jacobs, C., Kalman, S. M., Tretton, M. & Weiner, M. W. Renal handling of cis-diamminedichloroplatinum(II). Cancer Treatment Reports 64, 1223-6 (1980). 9. Park, M. S., De Leon, M. & Devarajan, P. Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. Journal of the American Society of Nephrology 13, 858-65 (2002). 10. Cummings, B. S. & Schnellmann, R. G. Cisplatin-induced renal cell apoptosis: caspase 3-dependent and -independent pathways. Journal of Pharmacology & Experimental Therapeutics 302, 8-17 (2002). 11. Kaushal, G. P., Kaushal, V., Hong, X. & Shah, S. V. Role and regulation of activation of caspases in cisplatin-induced injury to renal tubular epithelial cells. Kidney International 60, 1726-36 (2001). 12. Ramesh, G. & Reeves, W. B. TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. Journal of Clinical Investigation 110, 835-42 (2002). 13. Schilsky, R. L. & Anderson, T. Hypomagnesemia and renal magnesium wasting in patients receiving cisplatin. Annals of Internal Medicine 90, 929-31 (1979). 14. Hartmann, J. T., Kollmannsberger, C., Kanz, L. & Bokemeyer, C. Platinum organ toxicity and possible prevention in patients with testicular cancer. International Journal of Cancer 83, 866-9 (1999). 15. Aass, N., Fossa, S. D., Aas, M. & Lindegaard, M. W. Renal function related to different treatment modalities for malignant germ cell tumours. British Journal of Cancer 62, 842-6 (1990). 16. Hartmann, J. T., Kollmannsberger, C., Kanz, L. & Bokemeyer, C. The use of reduced doses of amifostine to ameliorate nephrotoxicity of cisplatin/ifosfamide-based chemotherapy in patients with solid tumors. Anti-Cancer Drugs 11, 1-6 (2000). 17. Santini, V. & Giles, F. J. The potential of amifostine: from cytoprotectant to therapeutic agent. Haematologica 84, 1035-42 (1999). 18. Weiss, J. F. Pharmacologic approaches to protection against radiation-induced lethality and other damage. Environmental Health Perspectives 105 Suppl 6, 1473-8 (1997). 19. Church, M. W., Blakley, B. W., Burgio, D. L. & Gupta, A. K. WR-2721 (Amifostine) ameliorates cisplatin-induced hearing loss but causes neurotoxicity in hamsters: dose-dependent effects. Jorunal of the Association for Research in Otolaryngology 5, 227-37 (2004). 20. Glover, D., Ibrahim, J., Kirkwood, J., Glick, J., Karp, D., Stewart, J., Ewell, M. & Borden, E. Phase II randomized trial of cisplatin and WR-2721 versus cisplatin alone for metastatic melanoma: an Eastern Cooperative Oncology Group Study (E1686). Melanoma Research 13, 619-26 (2003). 21. Hussain, A. E., Blakley, B. W., Nicolas, M. & Balderston, J. Assessment of the protective effects of amifostine against cisplatin-induced toxicity. Journal of Otolaryngology 32, 294-7 (2003). 22. Petrilli, A. S., Oliveira, D. T., Ginani, V. C., Kechichian, R., Dishtchekenian, A., Filho Wde, M., Tanaka, C., Dias, C. G., Latorre Mdo, R., Brunetto, A. L., Cardoso, H., Almeida, M. T. & de Camargo, B. Use of amifostine in the therapy of osteosarcoma in children and adolescents. Journal of Pediatric Hematology/Oncology 24, 188-91 (2002). 23. Gradishar, W. J., Stephenson, P., Glover, D. J., Neuberg, D. S., Moore, M. R., Windschitl, H. E., Piel, I. & Abeloff, M. D. A Phase II trial of cisplatin plus WR-2721 (amifostine) for metastatic breast carcinoma: an Eastern Cooperative Oncology Group Study (E8188). Cancer 92, 2517-22 (2001). 24. Asna, N., Lewy, H., Ashkenazi, I. E., Deutsch, V., Peretz, H., Inbar, M. & Ron, I. G. Time dependent protection of amifostine from renal and hematopoietic cisplatin induced toxicity. Life Sciences 76, 1825-34 (2005). 25. Bedi, A., Barber, J. P., Bedi, G. C., el-Deiry, W. S., Sidransky, D., Vala, M. S., Akhtar, A. J., Hilton, J. & Jones, R. J. BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents. Blood 86, 1148-58 (1995). 26. Latif, C., Harvey, S. H. & O'Connell, M. J. Ensuring the stability of the genome: DNA damage checkpoints. Thescientificworldjournal 1, 684-702 (2001). 27. Tomasevic, G., Kamme, F., Stubberod, P., Wieloch, M. & Wieloch, T. The tumor suppressor p53 and its response gene p21WAF1/Cip1 are not markers of neuronal death following transient global cerebral ischemia. Neuroscience 90, 781-92 (1999). 28. Schwartz, D., Almog, N., Peled, A., Goldfinger, N. & Rotter, V. Role of wild type p53 in the G2 phase: regulation of the gamma-irradiation-induced delay and DNA repair. Oncogene 15, 2597-607 (1997). 29. Lin, Z., Lim, S., Viani, M. A., Sapp, M. & Lim, M. S. Down-regulation of telomerase activity in malignant lymphomas by radiation and chemotherapeutic agents. American Journal of Pathology 159, 711-9 (2001). 30. O'Connor, P. M. Mammalian G1 and G2 phase checkpoints. Cancer Surveys 29, 151-82 (1997). 31. Shankland, S. J. & Wolf, G. Cell cycle regulatory proteins in renal disease: role in hypertrophy, proliferation, and apoptosis. American Journal of Physiology - Renal Fluid & Electrolyte Physiology 278, F515-29 (2000). 32. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes & Development 13, 1501-12 (1999). 33. Miyaji, T., Kato, A., Yasuda, H., Fujigaki, Y. & Hishida, A. Role of the increase in p21 in cisplatin-induced acute renal failure in rats. Journal of the American Society of Nephrology 12, 900-8 (2001). 34. Zhou, H. et al. The induction of cell cycle regulatory and DNA repair proteins in cisplatin-induced acute renal failure. Toxicology & Applied Pharmacology 200, 111-20 (2004). 35. Ruan, S. et al. Overexpressed WAF1/Cip1 renders glioblastoma cells resistant to chemotherapy agents 1,3-bis(2-chloroethyl)-1-nitrosourea and cisplatin. Cancer Research 58, 1538-43 (1998). 36. Wang, Y., Blandino, G., Oren, M. & Givol, D. Induced p53 expression in lung cancer cell line promotes cell senescence and differentially modifies the cytotoxicity of anti-cancer drugs. Oncogene 17, 1923-30 (1998). 37. Fan, S., Chang, J. K., Smith, M. L., Duba, D., Fornace, A. J., Jr. & O'Connor, P. M. Cells lacking CIP1/WAF1 genes exhibit preferential sensitivity to cisplatin and nitrogen mustard. Oncogene 14, 2127-36 (1997). 38. Sato, N., Mizumoto, K., Maehara, N., Kusumoto, M., Nishio, S., Urashima, T., Ogawa, T. & Tanaka, M. Enhancement of drug-induced apoptosis by antisense oligodeoxynucleotides targeted against Mdm2 and p21WAF1/CIP1. Anticancer Research 20, 837-42 (2000). 39. Megyesi, J., Safirstein, R. L. & Price, P. M. Induction of p21WAF1/CIP1/SDI1 in kidney tubule cells affects the course of cisplatin-induced acute renal failure. Journal of Clinical Investigation 101, 777-82 (1998). 40. Akervall, J., Brun, E., Dictor, M. & Wennerberg, J. Cyclin D1 overexpression versus response to induction chemotherapy in squamous cell carcinoma of the head and neck--preliminary report. Acta Oncologica 40, 505-11 (2001). 41. Dhanalakshmi, S., Agarwal, P., Glode, L. M. & Agarwal, R. Silibinin sensitizes human prostate carcinoma DU145 cells to cisplatin- and carboplatin-induced growth inhibition and apoptotic death. International Journal of Cancer 106, 699-705 (2003). 42. Dimanche-Boitrel, M. T. et al. Contribution of the cyclin-dependent kinase inhibitor p27KIP1 to the confluence-dependent resistance of HT29 human colon carcinoma cells. International Journal of Cancer 77, 796-802 (1998). 43. Nakashima, T. & Clayman, G. L. Antisense inhibition of cyclin D1 in human head and neck squamous cell carcinoma. Archives of Otolaryngology -- Head & Neck Surgery 126, 957-61 (2000). 44. Oshita, F., Kameda, Y., Nishio, K., Tanaka, G., Yamada, K., Nomura, I., Nakayama, H. & Noda, K. Increased expression levels of cyclin-dependent kinase inhibitor p27 correlate with good responses to platinum-based chemotherapy in non-small cell lung cancer. Oncology Reports 7, 491-5 (2000). 45. Sugiyama, K., Akiyama, T., Shimizu, M., Tamaoki, T., Courage, C., Gescher, A. & Akinaga, S. Decrease in susceptibility toward induction of apoptosis and alteration in G1 checkpoint function as determinants of resistance of human lung cancer cells against the antisignaling drug UCN-01 (7-Hydroxystaurosporine). Cancer Research 59, 4406-12 (1999). 46. Wang, M. B., Yip, H. T. & Srivatsan, E. S. Antisense cyclin D1 enhances sensitivity of head and neck cancer cells to cisplatin. Laryngoscope 111, 982-8 (2001). 47. Owa, T., Yoshino, H., Yoshimatsu, K. & Nagasu, T. Cell cycle regulation in the G1 phase: a promising target for the development of new chemotherapeutic anticancer agents. Current Medicinal Chemistry 8, 1487-503 (2001). 48. Pines, J. & Hunter, T. Cyclins A and B1 in the human cell cycle. Ciba Foundation Symposium 170, 187-96; discussion 196-204 (1992). 49. Casanovas, O., Miro, F., Estanyol, J. M., Itarte, E., Agell, N. & Bachs, O. Osmotic stress regulates the stability of cyclin D1 in a p38SAPK2-dependent manner. Journal of Biological Chemistry 275, 35091-7 (2000). 50. 賴榮祥. 原色生藥學 (創譯出版社, 1976). pp.81-85 51. 北川勳、三川潮、庄司順三、?戶道夫、友田正司、西岡五夫. 生藥學 (廣川書店, 2001). pp.162-164 52. Abe, H., Orita, M., Konishi, H., Arichi, S. & Odashima, S. Effects of saikosaponin-d on enhanced CCl4-hepatotoxicity by phenobarbitone. Journal of Pharmacy and Pharmacology 37, 555-559 (1985). 53. Abe, H., Sakaguchi, M., Odashima, S. & Arichi, S. Protective effect of saikosaponin-d isolated from Bupleurum falcatum L. on CCl4-induced liver injury in the rat. Naunyn-Schmiedebergs Archives of Pharmacology 320, 266-271 (1982). 54. Lin, S. C., Lin, C. C., Lin, Y. H., Supriyatna, S. & Pan, S. L. The protective effect of Alstonia scholaris R. Br. on hepatotoxin-induced acute liver damage. American Journal of Chinese Medicine 24, 153-164 (1996). 55. Chiang, L. C., Ng, L. T., Liu, L. T., Shieh, D. E. & Lin, C. C. Cytotoxicity and anti-hepatitis B virus activities of saikosaponins from Bupleurum species. Planta Medica 69, 705-709 (2003). 56. Li, P., Kawachi, H., Morioka, T., Orikasa, M., Oite, T., Shi, Z. S., Shimizu, F. Suppressive effects of sairei-to on monoclonal antibody 1-22-3-induced glomerulonephritis: analysis of effective components. Pathology International 47, 430-5 (1997). 57. Hattori, T., Ito, M. & Suzuki, Y. Studies on antinephritic effects of plant components in rats (1). Effects of saikosaponins original-type anti-GBM nephritis in rats and its mechanisms. Nippon Yakurigaku Zasshi - Folia Pharmacologica Japonica 97, 13-21 (1991). 58. Hattori, T., Nagamatsu, T., Ito, M. & Suzuki, Y. Studies on antinephritic effect of TJ-8014, a new Japanese herbal medicine, and its mechanisms (1): Effects on original-type anti-GBM nephritis in rats and platelet aggregation. Japanese Journal of Pharmacology 50, 477-485 (1989). 59. Hattori, T., Ito, M. & Suzuki, Y. Studies on antinephritic effects of plant components in rats (1). Effects of saikosaponins original-type anti-GBM nephritis in rats and its mechanisms. Folia Pharmacologica Japonica 97, 13-21 (1991). 60. Abe, H., Orita, M., Konishi, H., Arichi, S. & Odashima, S. Effects of saikosaponin-d on aminonucleoside nephrosis in rats. European Journal of Pharmacology 120, 171-8 (1986). 61. Hiai, S., Yokoyama, H., Nagasawa, T. & Oura, H. Stimulation of the pituitary-adrenocortical axis by saikosaponin of Bupleuri radix. Chemical & Pharmaceutical Bulletin 29, 495-499 (1981). 62. Nose, M., Amagaya, S. & Ogihara, Y. Corticosterone secretion-inducing activity of saikosaponin metabolites formed in the alimentary tract. Chemical & Pharmaceutical Bulletin 37, 2736-2740 (1989). 63. Abe, H., Sakaguchi, M. & Arichi, S. Pharmacological studies on a prescription containing Bupleuri Radix (IV). Effects of saikosaponin on the anti-inflammatory action of glucocorticoid. Nippon Yakurigaku Zasshi - Folia Pharmacologica Japonica 80, 155-61 (1982). 64. Chen, J. C., Chang, N. W., Chung, J. G. & Chen, K. C. Saikosaponin-A induces apoptotic mechanism in human breast MDA-MB-231 and MCF-7 cancer cells. American Journal of Chinese Medicine 31, 363-77 (2003). 65. Bu, S., Xu, J. & Sun, J. Effect of Saikosaponin-d on up-regulating GR mRNA expression and inhibiting cell growth in human leukemia cells. Zhongguo Zhong Xi Yi Jie He Za Zhi Zhongguo Zhongxiyi Jiehe Zazhi/Chinese Journal of Integrated Traditional & Western Medicine/Zhongguo Zhong Xi Yi Jie He Xue Hui, Zhongguo Zhong Yi Yan Jiu Yuan Zhu Ban 20, 350-2 (2000). 66. Guinea, M. C., Parellada, J., Lacaille-Dubois, M. A. & Wagner, H. Biologically active triterpene saponins from Bupleurum fruticosum. Planta Medica 60, 163-7 (1994). 67. Kato, M., Pu, M. Y., Isobe, K., Hattori, T., Yanagita, N. & Nakashima, I. Cell type-oriented differential modulatory actions of saikosaponin-d on growth responses and DNA fragmentation of lymphocytes triggered by receptor-mediated and receptor-bypassed pathways. Immunopharmacology 29, 207-13 (1995). 68. Tsai, Y. J., Chen, I. L., Horng, L. Y. & Wu, R. T. Induction of differentiation in rat C6 glioma cells with Saikosaponins. Phytotherapy Research 16, 117-21 (2002). 69. Hsu, M. J., Cheng, J. S. & Huang, H. C. Effect of saikosaponin, a triterpene saponin, on apoptosis in lymphocytes: association with c-myc, p53, and bcl-2 mRNA. British Journal of Pharmacology 131, 1285-93 (2000). 70. Okita, K., Li, Q., Murakamio, T. & Takahashi, M. Anti-growth effects with components of Sho-saiko-to (TJ-9) on cultured human hepatoma cells. European Journal of Cancer Prevention 2, 169-75 (1993). 71. Shyu, K. G., Tsai, S. C., Wang, B. W., Liu, Y. C. & Lee, C. C. Saikosaponin C induces endothelial cells growth, migration and capillary tube formation. Life Sciences 76, 813-26 (2004). 72. Ward, A. & Clissold, S. P. Pentoxifylline. A review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic efficacy. Drugs 34, 50-97 (1987). 73. Krakauer, T. Induction of CC chemokines in human peripheral blood mononuclear cells by staphylococcal exotoxins and its prevention by pentoxifylline. Journal of Leukocyte Biology 66, 158-64 (1999). 74. Wang, W., Tam, W. F., Hughes, C. C., Rath, S. & Sen, R. c-Rel is a target of pentoxifylline-mediated inhibition of T lymphocyte activation. Immunity 6, 165-74 (1997). 75. Fujimoto, T., Nakamura, T., Furuya, T., Nakane, S., Shirabe, S., Kambara, C., Hamasaki, S., Yoshimura, T. & Eguchi, K. Relationship between the clinical efficacy of pentoxifylline treatment and elevation of serum T helper type 2 cytokine levels in patients with human T-lymphotropic virus type I-associated myelopathy. Internal Medicine 38, 717-21 (1999). 76. Jaimes, E. A., del Castillo, D., Rutherford, M. S. & Raij, L. Countervailing influence of tumor necrosis factor-alpha and nitric oxide in endotoxemia. Journal of the American Society of Nephrology 12, 1204-10 (2001). 77. Rieckmann, P., Weber, F., Gunther, A., Martin, S., Bitsch, A., Broocks, A., Kitze, B., Weber, T., Borner, T. & Poser, S. Pentoxifylline, a phosphodiesterase inhibitor, induces immune deviation in patients with multiple sclerosis. Journal of Neuroimmunology 64, 193-200 (1996). 78. Navarro, J. F., Mora, C., Muros, M., Maca, M. & Garca, J. Effects of pentoxifylline administration on urinary N-acetyl-beta-glucosaminidase excretion in type 2 diabetic patients: a short-term, prospective, randomized study. American Journal of Kidney Diseases 42, 264-70 (2003). 79. Navarro, J. F., Mora, C., Garcia, J., Rivero, A., Macia, M., Gallego, E., Mendez, M. L. & Chahin, J. Effects of pentoxifylline on the haematologic status in anaemic patients with advanced renal failure. Scandinavian Journal of Urology & Nephrology 33, 121-5 (1999). 80. Lin, S. L., Chen, Y. M., Chiang, W. C., Tsai, T. J. & Chen, W. Y. Pentoxifylline: a potential therapy for chronic kidney disease. Nephrology 9, 198-204 (2004). 81. Lin, S. L., Chiang, W. C., Chen, Y. M., Lai, C. F., Tsai, T. J. & Hsieh, B. S. The renoprotective potential of pentoxifylline in chronic kidney disease. Journal of the Chinese Medical Association: JCMA 68, 99-105 (2005). 82. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-54 (1976). 83. Leaback, D. H. & Walker, P. G. Studies on glucosaminidase. 4. The fluorimetric assay of N-acetyl-beta-glucosaminidase. Biochemical Journal 78, 151-6 (1961). 84. Linko-Lopponen, S. Fluorometric measurement of urinary N-acetyl-beta-D-glucosaminidase and its correlation to uremia. Clinica Chimica Acta 160, 123-7 (1986). 85. Gaedeke, J., Fels, L. M., Bokemeyer, C., Mengs, U., Stolte, H. & Lentzen, H. Cisplatin nephrotoxicity and protection by silibinin. Nephrology Dialysis Transplantation 11, 55-62 (1996). 86. Ecelbarger, C. A., Sands, J. M., Doran, J. J., Cacini, W. & Kishore, B. K. Expression of salt and urea transporters in rat kidney during cisplatin-induced polyuria. Kidney International 60, 2274-82 (2001). 87. Tsuruya, K., Ninomiya, T., Tokumoto, M., Hirakawa, M., Masutani, K., Taniguchi, M., Fukuda, K., Kanai, H., Kishihara, K., Hirakata, H. & Iida, M. Direct involvement of the receptor-mediated apoptotic pathways in cisplatin-induced renal tubular cell death. Kidney International 63, 72-82 (2003). 88. Ramesh, G. & Reeves, W. B. TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. American Journal of Physiology - Renal Fluid & Electrolyte Physiology 285, F610-8 (2003). 89. Ramesh, G. & Reeves, W. B. Inflammatory cytokines in acute renal failure. Kidney International - Supplement, S56-61 (2004). 90. Ramesh, G. & Reeves, W. B. Salicylate reduces cisplatin nephrotoxicity by inhibition of tumor necrosis factor-alpha. Kidney International 65, 490-9 (2004). 91. Deng, J., Kohda, Y., Chiao, H., Wang, Y., Hu, X., Hewitt, S. M., Miyaji, T., McLeroy, P., Nibhanupudy, B., Li, S. & Star, R. A. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney International 60, 2118-28 (2001). 92. To, H., Kikuchi, A., Tsuruoka, S., Sugimoto, K., Fujimura, A., Higuchi, S., Kayama, F., Hara, K., Matsuno, K. & Kobayashi, E. Time-dependent nephrotoxicity associated with daily administration of cisplatin in mice. Journal of Pharmacy & Pharmacology 52, 1499-504 (2000). 93. Sugiyama, K., Ueda, H., Suhara, Y., Kajima, Y., Ichio, Y. & Yokota, M. Protective effect of sodium L-malate, an active constituent isolated from Angelicae radix, on cis-diamminedichloroplatinum(II)-induced toxic side effect. Chemical & Pharmaceutical Bulletin 42, 2565-8 (1994). 94. Sugiyama, K., Ueda, H., Ichio, Y. & Yokota, M. Improvement of cisplatin toxicity and lethality by juzen-taiho-to in mice. Biological & Pharmaceutical Bulletin 18, 53-8 (1995). 95. Jones, B. R., Bhalla, R. B., Mladek, J., Kaleya, R. N., Gralla, R. J., Alcock, N. W., Schwartz, M. K., Young, C. W. & Reidenberg, M. M. Comparison of methods of evaluating nephrotoxicity of cis-platinum. Clinical Pharmacology & Therapeutics 27, 557-62 (1980). 96. Satoh, M., Naganuma, A. & Imura, N. Deficiency of selenium intake enhances manifestation of renal toxicity of cis-diamminedichloroplatinum in mice. Toxicology Letters 38, 155-60 (1987). 97. Camargo, S. M., Francescato, H. D., Lavrador, M. A. & Bianchi, M. L. Oral administration of sodium selenite minimizes cisplatin toxicity on proximal tubules of rats. Biological Trace Element Research 83, 251-62 (2001). 98. Verplanke, A. J., Herber, R. F., de Wit, R. & Veenhof, C. H. Comparison of renal function parameters in the assessment of cis-platin induced nephrotoxicity. Nephron 66, 267-72 (1994). 99. Ogborn, M. R., Nitschmann, E., Bankovic-Calic, N., Weiler, H. A., Fitzpatrick-Wong, S. & Aukema, H. M. Dietary conjugated linoleic acid reduces PGE2 release and interstitial injury in rat polycystic kidney disease. Kidney International 64, 1214-21 (2003). 100. Chopra, S., Kaufman, J. S., Jones, T. W., Hong, W. K., Gehr, M. K., Hamburger, R. J., Flamenbaum, W. & Trump, B. F. Cis-diamminedichlorplatinum-induced acute renal failure in the rat. Kidney International 21, 54-64 (1982). 101. Pabst, R. & Sterzel, R. B. Cell renewal of glomerular cell types in normal rats. An autoradiographic analysis. Kidney International 24, 626-31 (1983). 102. Dobyan, D. C., Levi, J., Jacobs, C., Kosek, J. & Weiner, M. W. Mechanism of cis-platinum nephrotoxicity: II. Morphologic observations. Journal of Pharmacology & Experimental Therapeutics 213, 551-6 (1980). 103. Lau, A. H. Apoptosis induced by cisplatin nephrotoxic injury. Kidney International 56, 1295-8 (1999). 104. Fujitsuka, N., Goto, K., Takeda, S. & Aburada, M. The diuretic effect of Sairei-to is mediated by nitric oxide production in pentobarbital-anesthetized rats. Journal of Pharmacological Sciences 94, 185-91 (2004). 105. Hsu, Y. L., Kuo, P. L. & Lin, C. C. The proliferative inhibition and apoptotic mechanism of Saikosaponin D in human non-small cell lung cancer A549 cells. Life Science 1231-42, 2004 Jul 23. (2004). 106. Hsu, Y. L., Kuo, P. L., Chiang, L. C. & Lin, C. C. Involvement of p53, nuclear factor kappaB and Fas/Fas ligand in induction of apoptosis and cell cycle arrest by saikosaponin d in human hepatoma cell lines. Cancer Letters 213, 213-21 (2004). 107. Lin, S. L., Chen, Y. M., Chien, C. T., Chiang, W. C., Tsai, C. C. & Tsai, T. J. Pentoxifylline attenuated the renal disease progression in rats with remnant kidney. Journal of the American Society of Nephrology 13, 2916-29 (2002). 108. Strasser, A., Harris, A. W., Jacks, T. & Cory, S. DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2. Cell 79, 329-39 (1994). 109. Slebos, R. J., Lee, M. H., Plunkett, B. S., Kessis, T. D., Williams, B. O., Jacks, T., Hedrick, L., Kastan, M. B. & Cho, K. R. p53-dependent G1 arrest involves pRB-related proteins and is disrupted by the human papillomavirus 16 E7 oncoprotein. Proceedings of the National Academy of Sciences of the United States of America 91, 5320-4 (1994). 110. Chen, Y. M., Ng, Y. Y., Lin, S. L., Chiang, W. C., Lan, H. Y. & Tsai, T. J. Pentoxifylline suppresses renal tumour necrosis factor-alpha and ameliorates experimental crescentic glomerulonephritis in rats. Nephrology Dialysis Transplantation 19, 1106-15 (2004). 111. Lin, S. L., Chen, R. H., Chen, Y. M., Chiang, W. C., Tsai, T. J. & Hsieh, B. S. Pentoxifylline inhibits platelet-derived growth factor-stimulated cyclin D1 expression in mesangial cells by blocking Akt membrane translocation. Molecular Pharmacology 64, 811-22 (2003).
論文全文使用權限
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446