進階搜尋


  查詢北醫館藏
系統識別號 U0007-1704200714494807
論文名稱(中文) 成人之下顎運動速度與顱顏齒列形態的關係
校院名稱 臺北醫學大學
系所名稱(中) 牙醫學系碩博士班
系所名稱(英) Graduate School of Dentistry
學年度 90
學期 2
出版年 91
研究生(中文) 官儀妍
學號 M88040081
學位類別 碩士
語文別 中文
口試日期
論文頁數 88頁
口試委員 指導教授-蔡吉陽
指導教授-吳慶榕
中文關鍵字 下顎運動速度  顱顏齒列形態 
學科別分類
中文摘要 下顎運動速度是評估口顎系統動態運動功能的指標之一,但個體間的差異變化相當大。影響下顎運動速度表現的原因,除了咀嚼肌本身的差異外,其周圍的骨骼系統、支配的神經系統均扮演重要角色。本研究的目的希望藉由下顎運動軌跡記錄系統(mandibular kinesiography)觀察不同顱顏形態之成年人的下顎運動速度表現,以瞭解下顎運動速度與顱顏齒列型態的相關性。實驗對象為無顱顏畸形及下顎運動障礙之127位成年人,其中男性84位,女性43位,年齡分布21至26歲。受測者接受測顱X光攝影及齒列模型製作以分析顱顏齒列型態,並利用下顎運動軌跡記錄器記錄開口、閉口時的最大及平均速度和閉口末端接觸速度,所得的各變項值再進行相關性的統計分析。 結果顯示個體本身之開口、閉口速度間相關性很高(p<0.001),但個體間的開口、閉口速度存在明顯差異;性別間亦存在明顯差異(p<0.01),男性之開、閉口速度均大於女性。與顱顏齒列形態的相關性並不明顯,僅男性的閉口速度會受上顎門齒之萌出度、傾斜度及與下顎門齒之垂直覆蓋量影響(p<0.05);男女之閉口末端接觸速度會隨顱顏開展度增加而增大(p<0.05)。所以,造成下顎運動速度個體差異的原因,顱顏齒列形態差異造成的影響並不大。
英文摘要 The relationship between the morphologic characteristics of facial skeleton and the function of the masticatory system has been studied extensively. Mandibular movement velocity is one of the parameters used to evaluate the mandibular function. However, the interaction between dentofacial morphology and mandibular movement velocity is unclear. The aims of this study were to investigate the mandibular movement velocity in different dentofacial morphology of young adults and observe the association between different characteristics of the dentofacial morphology and the velocity of mandibular movement. One hundred twenty seven young adults (84 males, 43 females, age ranged from 21 to 26 years) were observed by using Myotronics Kinesiograph K-6 model for the measurement of jaw motion velocity. Five consecutive open-close strokes were recorded for evaluating the following parameters. (1) the maximal opening and closing velocity, (2)the average opening and closing velocity, and(3)the maximal velocity of terminal tooth contact. Dentofacial morphology was evaluated with conventional lateral cephalometric radiographs and dental cast. Analysis of data indicated that the correlation between the opening and closing velocity among individual was high (p<0.01), but there existed large interindividual variation. Only the maximum and average closing velocity of the male subjects had the significant association with the position of upper incisor (p<0.05). It could be concluded that there existed weak correlation between the velocity of mandibular movement and dentofacial morphology.
論文目次 目錄 第一章 緒論 ------------------------------------------- 1 第二章 文獻回顧 第一節 骨骼肌的基本運動特性 ----------------- 5 第二節 咀嚼肌與顱顏型態的關係 -------------- 9 第三節 下顎的動態運動記錄 ------------------ 18 第三章 材料與方法 第一節 研究對象 --------------------------------- 23 第二節 顱顏齒列型態之測量 ------------------ 24 第三節 下顎運動速度之記錄 ------------------ 30 第四節 統計分析 --------------------------------- 32 第四章 結果 ------------------------------------------ 35 第五章 討論 ------------------------------------------ 43 第六章 結論 ------------------------------------------ 54 第七章 參考文獻 ------------------------------------ 57 圖表 ------------------------------------------------------ 64 表目錄 表一 顱顏形態測量項目之分類 -------------------------------------- 64 表二 所有樣本基本資料分布狀況 ----------------------------------- 65 表三 下顎運動速度各測量值之描述性統計 ----------------------- 66 表四 下顎運動速度各測量值之統計結果與性別差異檢定 ----- 67 表五 男性下顎運動速度各測量值之相關性分析 ----------------- 68 表六 女性下顎運動速度各測量值之相關性分析 ----------------- 69 表七 男性顱顏齒列形態測量值之描述性統計 -------------------- 70 表八 女性顱顏齒列形態測量值之描述性統計 -------------------- 71 表九 顱顏齒列形態各測量值之統計結果與性別差異檢定 ----- 72 表十 開口運動速度與顱顏齒列形態之相關性分析 -------------- 73 表十一 閉口運動速度與顱顏齒列形態之相關性分析 -------------- 75 表十二 閉口末端接觸速度與顱顏齒列形態之相關性分析---------- 77 表十三 男性的安格氏異常咬合各組下顎運動速度測量值之統計結 果與差異檢定------------------------------------------------------- 78 表十四 女性的安格氏異常咬合各組下顎運動速度測量值之統計結果與差異檢定 ------------------------------------------------------79 表十五 男性的安格氏異常咬合分組顱顏齒列形態各測量值之統計結果與差異檢定 -------------------------------------------------- 80 表十六 女性的安格氏異常咬合分組顱顏齒列形態各測量值之統計結果與差異檢定 -------------------------------------------------- 81 圖目錄 圖一 顱顏界標(cephalometric landmarks)--------------------------- 82 圖二 測顱線與測顱平面(cephalometric lines and planes)-------- 83 圖三 線性測量項目(linear cephalometric measurements)--------- 84 圖四 角度測量項目(angular cephalometric measurements)------- 85 圖五 感應磁鐵固定於口內之狀況 -------------------------------------- 86 圖六 感應器固定於受測者頭部之位置 -------------------------------- 87 圖七 顯示器上所顯示之K-6系統的第二圖表 ----------------------- 87
參考文獻 1. Lieber RL. Skeletal muscle mechanics: Implications for rehabilitation. Phy Ther. 73: 844-856, 1993. 2. Barany M. ATPase activity of myosin correlated with speed of muscle shorting. J Neurol Sci, 14: 171-182, 1967. 3. Fuchimoto T, Kaneko M. Force, velocity and power relationship in different age groups. Jpn J Phy Educ, 25: 273-279, 1981. 4. Wickiewicz TL, Roy RR, Powell PL, Perrine JJ, Edgerton VR. Muscle architecture and force-velocity relationships in humans. J Appl Physiol, 57: 435-443, 1984. 5. MacIntosh BR, Herzog W, Suter E, Wiley JP, Sokolosky J. Human skeletal muscle fibre types and force: velocity properties. Eur J Appl Physiol, 67: 499-506, 1993. 6. Coyle EF, Costill DL, Lesmes GR. Leg extension power and muscle fiber composition. Med Sci Sports Exerc, 11: 12-15, 1979. 7. Edman KAP. The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibers. J Physiol, 291: pp. 143-159, 1979. 8. Hill AV. The heart of shortening and the dynamics constants of muscle. Proc Roy Soc,B.26, 136-195. 1938 9. Katz B. The relation between force and speed in muscular contraction. J Physiol, 96: 45-64, 1939. 10. Gulch RW. Force-velocity relations in human skeletal muscle. Int J Sports Med, 15(sppl 1): pp S2-S10, 1994. 11. Osternig LR, Hamill J, Lander JE, Robertson R. Co-activation of sprinter and distance runner muscle in isokinetic exercise. Med Sci Sports Exerc, 18: 431-435, 1986. 12. Dudley GA, Harris RT, Duvoisin MR, Hather BM, BuchananP. Effect of voluntary vs. artificial activation on the relationship of muscle torque to speed. J Appl Physiol, 69: 2215-2221, 1990. 13. Kiliaridis S. Masticatory muscle influence on craniofacial growth. Acta Odontol Scand, 53:196-202, 1995. 14. Braun S, Bantleon HP, Hnat WP, Freudenthaler JW, Marcotte MR, Johnson BE. A study of bite force, part1: relationship to various physical characteristics. Angle Orthod, 65(5): 367-372, 1995. 15. Ingervall B, Helkimo E. Masticatory muscle force and facial morphology in man. Archs Oral Biol, 23: 203-206, 1978. 16. Proffit WR, Fields HW, Nixon WL. Occlusal forces in normal and long-face adults. J Dent Res, 62(5): 566-571, 1983. 17. Garner LD, Kotwal NS. Correlation study of incisive biting force with age, sex and anterior occlusion. J Dent Res, 52: 698-702, 1973. 18. Moller E. Tyggeapparatters naturlige funktioner. In: Bidfunktion-Bettfysiologi, Part I. Munksgaard, Kopenhamn. 19. Bolt KJ, Orchardson R. Relationship between mouth-opening force and facial skeletal dimensions in human females. Archs Oral Biol, 31(12): 789-793, 1986. 20. Yildirim E, DeVincenzo JP. Maximum opening and closing forces exerted by diverse skeletal types. Angle Orthod, 41(3): 230-235, 1971. 21. Heckathorne CW, Childress DS. Relationships of the surface electromyogram to the force, length, velocity, and contraction rate of the cineplastic human biceps. Am J Phys Med, 60(1): 1-19, 1981. 22. Pruim GJ, TenBosch JJ, Longh De HJ. Jaw muscle EMG-activity and static loading of the mandible. L Biomech, 11: 389-395, 1978. 23. Bakke M, Michler L, Han K. Clinical significant of isometric bite force versus electrical activity in temporal and masseter muscles. Scand J Dent Res, 97: 539-551, 1989. 24. Hagberg C, Agerberg G, Hagber M. Regression analysis of electromyographic activity of masticatory muscles versus bite force. Scand J Dent Res, 93:396-402, 1985. 25. Lindauer SJ, Gay T, Rendell J. Electromyographic-force characteristics in the assessment of oral function. J Dent Res, 70(11): 1417-1421, 1991. 26. Moller E. The chewing apparatus: an electromyographic study of the action of the muscles of mastication and its correlation to facial morphology. Acta Physiol Scand, 69: suppl.280: 1-226, 1966. 27. Ahlgren J. Mechanism of mastication. Acta Odontol Scand, 24: suppl22: 1-105, 1966. 28. Ingervall B, Thilander B. Relation between facial morphology and activity of the masticatory muscles. J Oral Rehab, 1: 131-147, 1974. 29. Takada K, Lowe AA, Freund VK. Canonical correlations between masticatory muscle orientation and dentoskeletal morphology in children. Am J Orthod, 86: 331-341, 1984. 30. Ingervall B. Facial morphology and activity of temporal and lip muscles during swallowing and chewing. Angle Orthod, 46:372-380, 1976. 31. Ahlgren J, Sonesson B, Blitz M. An electromyographic analysis of the temporalis function of normal occlusion. Am J Orthod, 87: 230-239, 1985. 32. Watanabe K. The relationship between dentofacial morphology and the isometric jaw-opening and closing muscle function as evaluated by electromyography. J Oral Rehab, 27: 639-645, 2000. 33. Ueda HM, Ishizuka Y, Miyamoto K, Morimoto N, Tanne K. Relationship between masticatory muscle activity and vertical craniofacial morphology. Angle Orthod, 68(3): 233-238,1998. 34. Ueda HM, Miyamoto K, Ishizuka Y, Morimoto N, Tanne K. Masticatory muscle activity in children and adults with different facial types. Am J Orthod Dentofacial Orthop 118: 63-68, 2000. 35. Ringqvist M. Size and distribution of histochemical fibre types in masseter muscle of adults with different states of occlusion. J Neurol Sci, 22: 429-438, 1974. 36. Boyd SB, Gonyea WJ, Finn RA, Woodard CE, Bell WH. Histochemical study of the masseter muscle in patients with vertical maxillary excess. J Oral Maxillofac Surg, 42: 75-83, 1984. 37. Warner M. Relationships between dentoskeletal morphology and myofiber characteristics of the human masseter muscle, doctoral dissertation. University of Taxas Health Science Center, Department of Cell Biology, Dallas, Tex, 1984. 38. Shaughnessy T, Fields H, Westbury J. Association between craniofacial morphology and fiber-type distributions in human masseter and medial pterygoid muscles. The International Journal of adult orthodontics and orthognathic surgery, 4(3): 145-155, 1989. 39. Spronsen van PH, Weijs WA, Valk J. Comparison of jaw muscle bite force cross-section obtained by means of magnetic resonance imaging and high resolution CT scanning. J Dent Res, 68(12): 1765-1770, 1989. 40. Weijs WA, Hillen B. Relationship between the physiological cross-section of the human jaw muscles and their cross-section area in computer tomograms. Acta Anat, 118: 129-138, 1984. 41. Hannam AG, Wood WW. Relationship between the size and spatial morphology of human masseter and medial pterygoid muscles, the craniofacial skeleton, and jaw biomechanics. Am J Physio Anthrop, 80: 429-445, 1989. 42. Kiliaridis S, Kalebo P. Masseter muscle thickness measured by ultrasonography and its relation to facial morphology. J Dent Res, 70(9): 1262-1265. 1991. 43. Bakke M, Tuxen A, Jensen BR. Ultrasound image of human masseter muscle related to bite force, electromyography, facial morphology, and occlusal factors. Scand J Dent Res, 100: 164-171, 1992. 44. Raadsheer MC, Eijden van TMGJ, Spronsen van PH, Ginkel van FC. A comparison of human masseter muscle thickness measured by ultrosonography and magnetic resonance imaging. Archs Oral Biol, 39: 1079-1084, 1994. 45. Weijs WA, Hillen B. Relationship between masticatory muscle cross-section and skull shape. J Dent Res, 63(9): 1154-1157, 1984. 46. Spronsen Van PH, Weils WA, Valk J. Relationship between jaw muscle cross-section and craniofacial morphology in normal adults, studies with magnetic resonance imaging. Euro J Orthod, 13: 351-361, 1991. 47. Gionhaku N, Low AA. Relationship between jaw muscle volume and craniofacial form. J Dent Res, 68(5): 805-809, 1989. 48. Spronsen van H, Weijs WA, Valk J. Comparison of jaw muscle cross-section of long face and normal adults. J Dent Res, 71(6): 1279-1285, 1992. 49. Sasaki K, Hannam AG, Wood WW. Relationships between the size, position, and angulation of human jaw muscles and unilateral first molar bite force. J Dent Res, 68(3): 449-503, 1989. 50. Raadsheer MC, Eijden van TMG, Ginkel van FC, Andersen BP. Contribution of jaw muscle size and craniofacial morphology to human bite force magnitude. J Dent Res, 78(1): 31-42, 1999. 51. Koolstra JH, Eijden van TMGJ, Spornsen van PH. Computer-assisted estimation of lines of action of human masticatory muscles reconstructed in vivo by means of magnetic resonance imaging of parallel sections Archs Oral Biol, 35(7): 549-556, 1990. 52. Spronsen van H, Weijs WA, Ginkel van FC. Jaw muscle orientation and moment arms of long face and normal adults. J Dent Res, 75(6): 1372-1380, 1996. 53. Hsu CW, Shiau YY, Chen CM, Chen KC. Measurement of the size and orientation of human masseter and medial pterygoid muscles. Proc Natl Sci Counc ROC(B), 25(1): 45-49, 2001. 54. Jankelson B, Hoffman GM, Hendron JA. Physiology of the stomatognathic system. JADA, 46: 375, 1953. 55. Karlsson S. Recording of mandibular movements by intra-orally placed light-emitting diodes. Acta Odontol Scand, 35: 111, 1977. 56. Jankelson B, Swain CW, Crane PF, Radke JC. Kinesiometric instrumentation: a new technology. J Am Dent Asso, 90: 834-840, 1975. 57. Lewin A, Van Rensburg LB, Lemmer J. A method of recording the movement of a point on the jaws. J Dent Asso S Afr, 29: 395, 1974. 58. Houston WJB. The analysis of errors in orthodontic measurements. Am J Orthod, 83(5): 382-390, 1983. 59. 鄭信忠. 以口香糖測試方法研究咀嚼能力與頭顱顏面齒列形態之關係. 碩士論文,台北醫學院口腔復健醫學研究所,台北市,1995. 60. Yen YC, Wang SY, Chan CC. Prevalence of malocclusion among school children in suburban Taipei. J Clini Dent, 3:159-170, 1982. 61. Manns A, Mirralles R, Guerrero F. The changes in electrical activity of postural activity of the postural muscles of the mandible upon varying dimension. J Prosthet Dent, 45: 438-445, 1981. 62. Van Eijden TM. Three dimensional analysis of human bite-force magnitude and moment. J Oral Rehabil, 14: 209-214, 1971. 63. Wu CZ, Chou SL. The effect of head posture on the maximal mandibular movement velocity. Chinese Dental J, 12, 51,#138, 1993. 64. Neill DJ, Howell PGT. Computerized kinesiography in the study of mastication in dentate subjects. J Prosthet Dent, 55(5): 629-638, 1986. 65. Wu CZ, Chou SL. The effects of maximum centric clenching on the velocity of mandibular movement. 北醫學報, 23: 25-34, 1994. 66. Jankelson B. Measurement accuracy of the mandibular kinesiograph — A computerized study. J Prosthet Dent, 44(6): 656-666, 1980. 67. Wu CZ. The immediate effects of Occlusal splint on the mandibular movement velocity in healthy individuals. New Taipei J of Medicine, 3: 165-172, 1999. 68. Gillings BRD, Graham CH, Duckmanton NA. Jaw movement in young adult men during chewing. J Prosthet Dent, 29(6): 616-627, 1973. 69. Proschel P, Hofmann M. Frontal chewing patterns of the incisor point and their dependence on resistance of food and type of occlusion. J Prosthet Dent, 59(3): 617-624, 1988. 70. Watanabe K, Shimizu K, Nakata S, Watanabe M. The relationship between the isotonic mechanical power in jaw-opening and jaw-closing muscles in man. J Oral Rehabil, 18: 169-177, 1991. 71. Linderholm H, Wennstroem A. Isometric bite force and its relation to general muscle force and body build. Acta Odont Scand, 28: 679, 1970. 72. Guttelman AS. Chop-stroke chewers. Dent Prog, 1: 254-257, 1961. 73. Ahlgren J. Mechanism of mastication. Acta Odontol Scand, 24(Suppl.): 44, 1966. 74. Karlsson S, Carlsson GE. Characteristics of mandibular masticatory movement in young and elderly dentate subjects. J Dent Res. 69(2): 473-476, 1990. 75. Agerberg G. Maximal mandibular movements in young men and women. Svensk Tanklak.-T., 67: 81-100, 1974. 76. Grummons D. Current concepts in TMJ treatment, presented to the S. Fla. Academy of Orthodontists, Miami, Fla., Feb., 1990.
論文全文使用權限
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446