進階搜尋


  查詢北醫館藏
系統識別號 U0007-1407201115395600
論文名稱(中文) 鈦基合金表面生成二氧化鈦薄膜之生物相容性研究
論文名稱(英文) Research of biocompatibility on titanium-based alloy with titanium dioxide film
校院名稱 臺北醫學大學
系所名稱(中) 牙醫學系碩博士班
系所名稱(英) School of Dentistry
學年度 99
學期 2
出版年 100
研究生(中文) 陳宜妤
研究生(英文) Yi-Yu Chen
學號 M204097010
學位類別 碩士
語文別 中文
口試日期 2011-06-09
論文頁數 45頁
口試委員 指導教授-林哲堂
共同指導教授-歐耿良
委員-吳其昌
委員-陳順隆
委員-林明宏
中文關鍵字 鈦金屬  表面處理  牙科植體 
英文關鍵字 titanium  surface treatment  dental implant 
學科別分類
中文摘要 牙科植體漸漸成為治療缺牙區的選項之一時,許多學者便致力於研究植體與組織的交互作用,經由表面形態的改變,追求更有效率的骨整合。已有研究提出鈦金屬表面形成的氧化層跟其優良的生物相容性有關,因此瞭解氧化層的性質與改變氧化層的結構、形態、厚度等,讓人甚感興趣。
本實驗利用電漿處理的表面處理方式,得到不同表面氧化層的鈦金屬試片,以人類骨肉瘤細胞培養後觀察其所呈現的細胞形態以及與試片接觸的情形,同時比較血液相容性的差異。結果顯示經過處理的鈦金屬,其生物相容性與血液相容性都有改善的現象。
英文摘要 The biocompatibility of titanium is closely related with the surface oxide film. The improvement of the biological activity of titanium with plasma immersion on implantation has been investigated. However, the effects of oxygen ion implantation on the titanium were still lack. In this study, the titanium plates were implanted with oxygen at different power conditions and subsequently analyzed for surface morphologies and phase composition. To observe the effect of oxygen ion implantation on cell behavior, MG-63 osteoblast-like cells were cultured on the treated titanium plates. The hemocompatibility was determined by measuring the adhesion of blood platelets and fibrinogen, P-selectine expression, and the blood clotting time on these modified titanium plates. The results revealed that MG-63 osteoblast-like cells expressed better response on the surface-treated titanium plates. Furthermore, the results of clotting time assay demonstrated titanium treated by oxygen ion power could promote blood coagulation. The titanium plates treated with 1 KW ion power revealed better expression of platelets and fibrinogen adhesion, which showed the higher average roughness. In conclusion, the biocompatibility and hemocompatibility of titanium-based alloy can potentially be improved by plasma immersion oxygen ion implantation.
論文目次 Title------i
審定書------ii
Contents------iii
Abstract------iv
Chapter 1 Introduction
1.1 General background------1
1.2 Motivation of this study------3
1.3 Purpose of this study------3
Chapter 2 Literature Review
2.1 Properties of titanium------5
2.2 Characterization of TiO2------6
2.3 Influence of the oxide film thickness------7
2.4 Influence of the oxide film roughness------8
2.5 Ion implantation ------11
Chapter 3 Materials and Methods
3.1 Materials and preparation------13
3.2 Samples analysis------14
3.3 Cell culture------14
3.4 Glutaraldehyde- OsO4 primary fixation------15
3.5 Cell activity assay------15
3.6 Hemocompatibility of the samples------16
Chapter 4 Results
4.1 TiO2 Atomic Force Microscope (AFM) surface analysis------17
4.2 TiO2 Raman analysis------17
4.3 TiO2 contact angle analysis------18
4.4 TiO2 XRD analysis------18
4.5 The young’s modulus and the hardness of different TiO2 samples------18
4.6 Cell morphology of TiO2 samples------19
4.7 MTT values of MG-63 cells on different TiO2 samples------19
4.8 ALP activity of MG-63 cells on different TiO2 samples------19
4.9 Clotting time assay on different TiO2 samples------20
4.10 Fibrinogen adhesion assay on different TiO2 samples------20
4.11 Platelet activation assay on different TiO2 samples------20
4.12 Platelet adhesion assay on different TiO2 samples------21

Chapter 5 Discussion------22
Chapter 6 Conclusions------27

Tables------28
Figures------30
References------41
參考文獻 Advincula, M. C., F. G. Rahemtulla, et al. (2006). "Osteoblast adhesion and matrix mineralization on sol-gel-derived titanium oxide." Biomaterials 27(10): 2201-2212.
Albrektsson, T., P. I. Branemark, et al. (1981). "Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man." Acta Orthop Scand 52(2): 155-170.
Batzer, R., Y. Liu, et al. (1998). "Prostaglandins mediate the effects of titanium surface roughness on MG63 osteoblast-like cells and alter cell responsiveness to 1 alpha,25-(OH)2D3." J Biomed Mater Res 41(3): 489-496.
Binon, P. P., D. J. Weir, et al. (1992). "Surface analysis of an original Branemark implant and three related clones." Int J Oral Maxillofac Implants 7(2): 168-175.
Bobyn, J. D., R. M. Pilliar, et al. (1980). "The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone." Clin Orthop Relat Res(150): 263-270.
Bosetti, M., A. Masse, et al. (2001). "In vivo evaluation of bone tissue behavior on ion implanted surfaces." Journal of Materials Science-Materials in Medicine 12(5): 431-435.
Bowers, K. T., J. C. Keller, et al. (1992). "Optimization of surface micromorphology for enhanced osteoblast responses in vitro." Int J Oral Maxillofac Implants 7(3): 302-310.
Boyan, B. D., R. Batzer, et al. (1998). "Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to 1 alpha,25-(OH)2D3." J Biomed Mater Res 39(1): 77-85.
Boyan, B. D., S. Lossdorfer, et al. (2003). "Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies." Eur Cell Mater 6: 22-27.
Branemark, P.-I., G. A. Zarb, et al. (1985). Tissue-integrated prostheses : osseointegration in clinical dentistry. Chicago ; London, Quintessence Publishing.
Branemark, P. I., B. O. Hansson, et al. (1977). "Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period." Scand J Plast Reconstr Surg Suppl 16: 1-132.
Buser, D., R. K. Schenk, et al. (1991). "Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs." J Biomed Mater Res 25(7): 889-902.
Conrad, J. R., J. L. Radtke, et al. (1987). "Plasma Source Ion-Implantation Technique for Surface Modification of Materials." Journal of Applied Physics 62(11): 4591-4596.
De Maeztu, M. A., J. I. Alava, et al. (2003). "Ion implantation: surface treatment for improving the bone integration of titanium and Ti6Al4V dental implants." Clin Oral Implants Res 14(1): 57-62.
De Maeztu, M. A., I. Braceras, et al. (2008). "Improvement of osseointegration of titanium dental implant surfaces modified with CO ions: a comparative histomorphometric study in beagle dogs." Int J Oral Maxillofac Surg 37(5): 441-447.
De Maeztu, M. A., I. Braceras, et al. (2007). "Histomorphometric study of ion implantation and diamond-like carbon as dental implant surface treatments in beagle dogs." International Journal of Oral & Maxillofacial Implants 22(2): 273-279.
Degasne, I., M. F. Basle, et al. (1999). "Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces." Calcif Tissue Int 64(6): 499-507.
Doundoulakis, J. H. (1987). "Surface analysis of titanium after sterilization: role in implant-tissue interface and bioadhesion." J Prosthet Dent 58(4): 471-478.
Gittens, R. A., T. McLachlan, et al. (2011). "The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation." Biomaterials 32(13): 3395-3403.
Hulbert, S. F., S. J. Morrison, et al. (1972). "Tissue reaction to three ceramics of porous and non-porous structures." J Biomed Mater Res 6(5): 347-374.
Kasemo, B. (1983). "Biocompatibility of titanium implants: surface science aspects." J Prosthet Dent 49(6): 832-837.
Keller, J. C., C. M. Stanford, et al. (1994). "Characterizations of titanium implant surfaces. III." J Biomed Mater Res 28(8): 939-946.
Kieswetter, K., Z. Schwartz, et al. (1996). "Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells." J Biomed Mater Res 32(1): 55-63.
Kim, H. J., S. H. Kim, et al. (2005). "Varying Ti-6Al-4V surface roughness induces different early morphologic and molecular responses in MG63 osteoblast-like cells." J Biomed Mater Res A 74(3): 366-373.
Kim, H. K., J. W. Jang, et al. (2004). "Surface modification of implant materials and its effect on attachment and proliferation of bone cells." J Mater Sci Mater Med 15(7): 825-830.
Krennmair, G., R. Seemann, et al. (2010). "Clinical outcome of root-shaped dental implants of various diameters: 5-year results." Int J Oral Maxillofac Implants 25(2): 357-366.
Larsson, C., P. Thomsen, et al. (1996). "Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses." Biomaterials 17(6): 605-616.
Larsson, C., P. Thomsen, et al. (1994). "Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thicknesses and morphology." Biomaterials 15(13): 1062-1074.
Lausmaa, J. (1996). "Surface spectroscopic characterization of titanium implant materials." Journal of Electron Spectroscopy and Related Phenomena 81(3): 343-361.
Lincks, J., B. D. Boyan, et al. (1998). "Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition." Biomaterials 19(23): 2219-2232.
Lossdorfer, S., Z. Schwartz, et al. (2004). "Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity." J Biomed Mater Res A 70(3): 361-369.
Lu, J. X., B. Flautre, et al. (1999). "Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo." J Mater Sci Mater Med 10(2): 111-120.
Ma, W., J. H. Wei, et al. (2008). "Histological evaluation and surface componential analysis of modified micro-arc oxidation-treated titanium implants." J Biomed Mater Res B Appl Biomater 86(1): 162-169.
Machnee, C. H., W. C. Wagner, et al. (1993). "Identification of oxide layers of commercially pure titanium in response to cleaning procedures." Int J Oral Maxillofac Implants 8(5): 529-533.
Maitz, M. F., M. T. Pham, et al. (2003). "Blood compatibility of titanium oxides with various crystal structure and element doping." Journal of Biomaterials Applications 17(4): 303-319.
Mandl, S., D. Krause, et al. (2001). "Plasma immersion ion implantation treatment of medical implants." Surface & Coatings Technology 142: 1046-1050.
Mandl, S., R. Sader, et al. (2002). "Investigation on plasma immersion ion implantation treated medical implants." Biomolecular Engineering 19(2-6): 129-132.
Martin, J. Y., Z. Schwartz, et al. (1995). "Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63)." J Biomed Mater Res 29(3): 389-401.
Misch, C. E. (2005). Dental implant prosthetics. St. Louis, Mo. ; London, Elsevier Mosby.
Nasatzky, E., J. Gultchin, et al. (2003). "[The role of surface roughness in promoting osteointegration]." Refuat Hapeh Vehashinayim 20(3): 8-19, 98.
Olefjord, I. and S. Hansson (1993). "Surface analysis of four dental implant systems." Int J Oral Maxillofac Implants 8(1): 32-40.
Park, K. H., S. J. Heo, et al. (2007). "Osseointegration of anodized titanium implants under different current voltages: a rabbit study." J Oral Rehabil 34(7): 517-527.
Powers, J. M., R. L. Sakaguchi, et al. (2006). Craig's restorative dental materials. St. Louis, Mo. ; [London], Mosby Elsevier.
Puleo, D. A. and M. V. Thomas (2006). "Implant surfaces." Dent Clin North Am 50(3): 323-338, v.
Raines, A. L., R. Olivares-Navarrete, et al. (2010). "Regulation of angiogenesis during osseointegration by titanium surface microstructure and energy." Biomaterials 31(18): 4909-4917.
Ronold, H. J., S. P. Lyngstadaas, et al. (2003). "A study on the effect of dual blasting with TiO2 on titanium implant surfaces on functional attachment in bone." J Biomed Mater Res A 67(2): 524-530.
Rupp, F., L. Scheideler, et al. (2006). "Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces." J Biomed Mater Res A 76(2): 323-334.
Schupbach, P., R. Glauser, et al. (2005). "The human bone-oxidized titanium implant interface: A light microscopic, scanning electron microscopic, back-scatter scanning electron microscopic, and energy-dispersive x-ray study of clinically retrieved dental implants." Clin Implant Dent Relat Res 7 Suppl 1: S36-43.
Schwartz, Z., C. H. Lohmann, et al. (1999). "Implant surface characteristics modulate differentiation behavior of cells in the osteoblastic lineage." Adv Dent Res 13: 38-48.
Schwarz, F., M. Wieland, et al. (2009). "Potential of chemically modified hydrophilic surface characteristics to support tissue integration of titanium dental implants." J Biomed Mater Res B Appl Biomater 88(2): 544-557.
Silva, T. S., D. C. Machado, et al. (2009). "Effect of titanium surface roughness on human bone marrow cell proliferation and differentiation: an experimental study." Acta Cir Bras 24(3): 200-205.
Simon, M., C. Lagneau, et al. (2005). "Corrosion resistance and biocompatibility of a new porous surface for titanium implants." Eur J Oral Sci 113(6): 537-545.
Solar, R. J., S. R. Pollack, et al. (1979). "In vitro corrosion testing of titanium surgical implant alloys: an approach to understanding titanium release from implants." J Biomed Mater Res 13(2): 217-250.
Stillman, N. and C. W. Douglass (1993). "The developing market for dental implants." J Am Dent Assoc 124(4): 51-56.
Sul, Y. T., C. Johansson, et al. (2005). "Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure." Int J Oral Maxillofac Implants 20(3): 349-359.
Sul, Y. T., C. B. Johansson, et al. (2001). "Oxidized implants and their influence on the bone response." J Mater Sci Mater Med 12(10-12): 1025-1031.
Sul, Y. T., C. B. Johansson, et al. (2002). "Resonance frequency and removal torque analysis of implants with turned and anodized surface oxides." Clin Oral Implants Res 13(3): 252-259.
Tengvall, P. and I. Lundstrom (1992). "Physico-chemical considerations of titanium as a biomaterial." Clin Mater 9(2): 115-134.
Walivaara, B., B. O. Aronsson, et al. (1994). "Titanium with different oxides: in vitro studies of protein adsorption and contact activation." Biomaterials 15(10): 827-834.
Webster, T. J., C. Ergun, et al. (2000). "Enhanced functions of osteoblasts on nanophase ceramics." Biomaterials 21(17): 1803-1810.
Wennerberg, A. and T. Albrektsson (2009). "Effects of titanium surface topography on bone integration: a systematic review." Clin Oral Implants Res 20 Suppl 4: 172-184.
Wennerberg, A., T. Albrektsson, et al. (1993). "Design and surface characteristics of 13 commercially available oral implant systems." Int J Oral Maxillofac Implants 8(6): 622-633.
Yang, C. H., Y. T. Wang, et al. (2011). "Effect of oxygen plasma immersion ion implantation treatment on corrosion resistance and cell adhesion of titanium surface." Clin Oral Implants Res.
Yang, Y., N. Oh, et al. (2006). "Enhancing osseointegration using surface-modified titanium implants." JOM Journal of the Minerals, Metals and Materials Society 58(7): 71-76.
Zhao, G., Z. Schwartz, et al. (2005). "High surface energy enhances cell response to titanium substrate microstructure." J Biomed Mater Res A 74(1): 49-58.
Zhu, X., J. Chen, et al. (2004). "Effects of topography and composition of titanium surface oxides on osteoblast responses." Biomaterials 25(18): 4087-4103.
Zitter, H. and H. Plenk, Jr. (1987). "The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility." J Biomed Mater Res 21(7): 881-896.


論文全文使用權限
  • 同意授權瀏覽/列印電子全文服務,於2011-08-18起公開。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446