進階搜尋


  查詢北醫館藏
系統識別號 U0007-1302200815104900
論文名稱(中文) 備勞喘吸入劑抑制脂多醣刺激巨噬細胞產生間白素-六基因分子機制研究
論文名稱(英文) MOLECULAR MECHANISM OF FENOTEROL INHALANT SOLUTION-INDUCED SUPPRESSION OF INTERLEUKIN-6 GENE EXPRESSION IN LIPOPOLYSACCHARIDE-ACTIVATED MACROPHAGES
校院名稱 臺北醫學大學
系所名稱(中) 臨床醫學研究所
系所名稱(英) Graduate Institute of Clinical Medicine
學年度 96
學期 1
出版年 97
研究生(中文) 張哲華
研究生(英文) Jer-Hwa Chang
學號 M102094030
學位類別 碩士
語文別 英文
口試日期 2008-01-17
論文頁數 47頁
口試委員 指導教授-陳大樑
指導教授-陳瑞明
委員-翁祖輝
委員-范守仁
委員-馮琮涵
中文關鍵字 備勞喘  脂多醣  巨噬細胞  間白素-六 
英文關鍵字 FENOTEROL  LIPOPOLYSACCHARIDE  MACROPHAGES  INTERLEUKIN-6 
學科別分類
中文摘要 備勞喘(fenoterol)吸入劑為一種短效且具選擇性之乙二型交感神經刺激劑(beta2-agonist),常被廣泛地使用於阻塞性肺部疾病或是嚴重肺部感染症而導致急性呼吸窘迫症(ARDS)之病患,作為控制其支氣管攣縮之藥物。引起急性呼吸窘迫症(ARDS)最普遍的原因為嚴重感染,而某些乙型交感神經刺激劑,經近期研究發現可被用於早期緩解急性呼吸窘迫症。備勞喘在過去的研究中極少被探討關於抗發炎之效果,對於其作用機制亦未曾被闡明。一些先發研究顯示,在動物或人體實驗中,乙型交感神經刺激劑可抑制細胞激素,例如:腫瘤壞死因子(TNF)以及間白素-六(IL-6)之生成。本研究之目的在評估備勞喘在經脂多醣(LPS)活化之RAW264.7類巨噬細胞模式中,是否可以產生IL-6 mRNA之免疫抑制效應,並且探討其可能之分子機制。
RAW264.7巨噬細胞於不同濃度1, 10及100 x 10-3 M之備勞喘劑下,經有或無100 ng/ml LPS加入,在一、六及二十四小時之時間間隔後,皆對細胞存活率(viability)沒有影響。 以備勞喘及LPS處理RAW264.7,LPS可促使IL-6 mRNA之產生,並在第一及第六小時被備勞喘所抑制。為了探討備勞喘抑制IL-6 mRNA之分子機制,我們研究不同的轉錄因子。在LPS活化之巨噬細胞中,備勞喘能於兩個小時內顯著地抑制c-Jun核蛋白質。在被LPS活化之巨噬細胞中,備勞喘也能於一個小時內顯著地抑制c-Jun總細胞蛋白,但無法抑制c-Fos或NF-?羠蛋白。為了闡明c-Jun的上游路徑,我們也設計研究p-JNK以及p-MEK-4蛋白。結果顯示,在兩個小時內被LPS活化之RAW264.7中,p-JNK 1/2蛋白,可被備勞喘不顯著地抑制。在活化之RAW264.7中且於五十分鐘內,經備勞喘處理後,p-MEK-4蛋白亦可被備勞喘不顯著地抑制。
本研究結果顯示備勞喘可抑制IL-6 mRNA,且其機轉可能是透過c-Jun或許也可能是透過與JNK/MEK-4有關之分子路徑。
英文摘要 Fenoterol inhalant solution, a short-acting and selective beta2-agonist, is widely used as aerosal inhalation for management of bronchospasm in patients with obstructive lung disease or severe lung infection. The most common cause of acute respiratory distress syndrome (ARDS) is severe infection, and some beta-adrenergic agents are under studies as novel treatments targeting earlier resolution of ARDS. The studies of fenoterol for the anti-inflammation effect are rare and no known mechanism has been elucidated in previous articles. Previous studies revealed that beta-agonist caused cytokine inhibition (e.g. TNF and IL-6 production) in animal or human models. The aims of this studies were to evaluate the effect of fenoterol on IL-6 mRNA production and its possible molecular mechanisms in the cell model of lipopolysaccharide (LPS)-activated macrophage-like cell line, RAW264.7.
Exposure of RAW264.7 macrophages to 1, 10, 100 x 10-3 M fenoterol at 1-, 6-, and 24-hour intervals with or without 100 ng/ml LPS did not affect cell viability. While treated with fenoterol and LPS in RAW264.7, the IL-6 mRNA production was induced by LPS and inhibited at the 1st and the 6th hours. To clarify the molecular mechanisms by which fenoterol inhibited the IL-6 mRNA, different transcription factors were investigated. Fenoterol could significantly suppress the nuclear protein levels of c-Jun in LPS-activated macrophages within 2 hours. Fenoterol could also significantly suppress the total cellular protein levels of c-Jun but not c-Fos or NF-?羠 in LPS-activated macrophages within 1 hour. In order to elucidate the upstream pathways, the p-JNK (phosphorylated c-Jun N-terminal kinase) and p-MEK-4 (phosphorylated MAP kinase kinase 4) proteins were studied. The results revealed that p-JNK1/2 proteins were insignificantly suppressed by fenoterol within 2 hours after the LPS activation in RAW264.7. The p-MEK-4 proteins levels were also insignificantly suppressed by fenoterol within 50 minutes in LPS activated macrophages.
The results of this study showed that fenoterol could suppress IL-6 mRNA expression through c-Jun and possibly JNK/MEK-4-dependent pathway.
論文目次 Contents

Index of Tables I
Index of Figures II
Abstract in Chinese III
Abstract V
Introduction 1
I. Lung infection and alveolar macrophages 1
II. Beta 2-agonists in acute lung injury 3
III. Immunosuppression of beta agonists and fenoterol 4
IV. Lipopolysaccharides, inflammatory cytokines and lung injuries 7
V. MAPK cascades in the signaling pathways 8
VI. MAPK and inflammatory cytokines 9
VII. C-Jun nuclear protein regulation 10
VIII. Study hypothesis and specific aims 10
IX. Study design 12
Materials and Methods 14
I. Experimental materials 14
II. Cell culture and drug treatment 14
III. Determination of cell viability 15
IV. Reverse-transcription polymerase chain reaction (RT-PCR) assay 15
V. Preparation of nuclear and total cell proteins and immunodetection analyses 16
VI. Immunodetection of JNK/MEK-4 and phosphorylated JNK/MEK-4 17
VII. Statistical analysis 17
Results 19
I. Effects of fenoterol and LPS on cell viability of macrophages 19
II. Effects of fenoterol on IL-6 mRNA production in LPS-activated macrophages 19
III. Effects of fenoterol on nuclear and total protein c-Jun production in LPS-activated macrophages 20
IV. Effects of fenoterol on other total proteins (NF-?羠 and c-Fos) production in LPS-activated macrophages 21
V. Effects of fenoterol on p-JNK proteins production in LPS-activated macrophages 22

VI. Effects of fenoterol on p-MEK4 proteins production in LPS-activated macrophages 23
Discussion 24
I. Effects of fenoterol and LPS on cell viability of macrophages 25
II. Effects of fenoterol on IL-6 mRNA production in LPS-activated macrophages 26
III. Effects of fenoterol on nuclear and total proteins (c-Jun, NF-?羠 and c-Fos) production in LPS-activated macrophages 26
IV. Effects of fenoterol on p-JNK proteins production in LPS-activated macrophages 27
V. Effects of fenoterol on p-MEK4 proteins production in LPS-activated macrophages 28
Conclusion 29
References 30
Tables and Figures 37
參考文獻 1. Fine MJ, Smith MA, Carson CA, Mutha SS, Sankey SS, Weissfeld LA, Kapoor WN. Prognosis and outcomes of patients with community- acquired pneumonia: A meta-analysis. JAMA 1996;275:134-141.
2. Torres A, Serra-Batlles J, Ferrer A, Jiménez P, Celis R, Cobo E, Rodriguez-Roisin R. Severe community-acquired pneumonia: Epidemiology and prognostic factors. Am Rev Respir Dis 1991;144:312-318.
3. The British Thoracic Society Research Committee and the Public Health Laboratroy Service. The etiology, management and outcomes of severe community-acquired pneumonia on the intensive care unit. Respir Med 1992;86:7-13.
4. Excutive Yuan Department of Health. Overview of the ten major causes of death in Taiwan. Vital Health Statistics 2007.
5. Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet 1967;2:319-323.
6. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994;149:818-824.
7. Hudson LD, Steinberg KP. Epidemiology of acute lung injury and ARDS. Chest 1999;116:74S-82S.
8. Doyle RL, Szaflarski N, Modin GW, Wiener-Kronish JP, Matthay MA. Identification of patients with acute lung injury. Predictors of mortality. Am J Respir Crit Care Med 1995;152:1818-1824.

9. Zilberberg MD, Epstein SK. Acute lung injury in the medical ICU: Comorbid conditions, age, etiology, and hospital outcome. Am J Respir Crit Care Med 1998;157:1159-1164.
10. Monchi M, Bellenfant F, Cariou A, Joly LM, Thebert D, Laurent I, Dhainaut JF, Brunet F. Early predictive factors of survival in the acute respiratory distress syndrome. A multivariate analysis. Am J Respir Crit Care Med 1998;158:1076-1081.
11. Luhr OR, Antonsen K, Karlsson M, Aardal S, Thorsteinsson A, Frostell CG, Bonde J, the ARF Study Group. Incidence and mortality after acute respiratory failure and acute respiratory distress syndrome in Sweden, Denmark, and Iceland. The Am J Respir Crit Care Med 1999;159:1849-1861.
12. Heffner JE, Brown LK, Barbieri CA, Harpel KS, DeLeo J. Prospective validation of an acute respiratory distress syndrome predictive score. Am J Respir Crit Care Med 1995;152:1518-1526.
13. Hume DA, Ross LL, Himes SR, Sasmono RT, Wells CA, Ravasi T. The mononuclear phagocyte system revisited. J Leukoc Biol 2002;72:621- 627.
14. Cavaillon JM, Minou AC. Monocytes/macrophages and sepsis. Crit Care Med 2005;33:S506-S509.
15. Medzhitov R, Janeway JC. Innate immunity. N Engl J Med 2000;343:338- 344.
16. Goodman RB, Strieter RM, Frevert CW, Cummings CJ, Tekamp-Olson P, Kunkel SL, Walz A, Martin TR. Quantitative comparison of C-X-C chemokines produced by endotoxin-stimulated human alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 1998;275:L87–L95.

17. Martin TR, Mathison JC, Tobias PS, Leturcq DJ, Moriarty AM, Maunder RJ, Maunder RJ, Ulevitech RJ. Lipopolysaccharide binding protein enhances the responsiveness of alveolar macrophages to bacterial lipopolysaccharide. Implications for cytokine production in normal and injuried lungs. J Clin Invest 1992;90:2209-2219.
18. Meduri GU, Kohler G, Headley S, Tolley E, Stentz F, Postlethwaite A. Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest 1995;108:1303-1314.
19. Modelska K, Matthay MA, Brown LA, Deutch E, Lu LN, Pittet JF. Inhibition of ??-adrenergic-dependent alveolar epithelial clearance by oxidant mechanisms after hemorrhagic shock. Am J Physiol Lung Cell Mol Physiol 1999;276:L844–L857.
20. Pittet JF, Wiener-Kronish JP, McElroy MC, Folkesson HG, Matthay MA. Stimulation of lung epithelial liquid clearance by endogenous release of catecholamines in septic shock in anesthetized rats. J Clin Invest 1994;94:663–671.
21. Su X, Robriquet L, Folkesson HG, Matthay MA. Protective effect of endogenous ??-adrenergic tone on lung fluid balance in acute bacterial pneumonia in mice. Am J Physiol Lung Cell Mol Physiol 2006;290:L769–L776.
22. Bosma KJ, Lewis JF. Emerging therapies for treatment of acute lung injury and acute respiratory distress syndrome. Expert Opin Emerg Drugs 2007;12(3):461-477.
23. Esper AM, Martin GS. Evolution of treatments for patients with acute lung injury. Expert Opin Investig Drugs 2005;14:633-645.

24. Severn A, Rapson NT, Hunter CA, Liew FY. Regulation of tumor necrosis factor production by adrenaline and ?牷Vadrenergic agonists. J Immunol 1992;148:3441-3445.
25. Van der Poll T, Jansen J, Endert E, Sauerwein HP, Van Deventer SJ. Noradrenaline inhibits lipopolysaccharide-induced tumor necrosis factor and interleukin 6 production in human whole blood. Infect Immun 1994;62:2046-2050.
26. Straub RH, Dorner M, Riedal J, Kubitza M, Van Rooijen N, Lang B, Schölmerich JR, Falk W. Tonic neurogenic inhibition of interleukin-6 secretion from murine spleen caused by opioidergic transmission. Am J Physiol Regulatory Integrative Comp Physiol 1998;274:997-1003.
27. Farmer P, Pugin J. ?? -Adrenergic agonists exert their “anti-inflammatory” effects in monocytic cells through the I?羠/NF-?羠 pathway. Am J Physiol Lung Cell Mol Physiol 2000;279:675-682.
28. Maris NA, De Vos AF, Dessing MC, Spek CA, Lutter R, Henk MJ, Van der Zee JS, Bresser P, Van der Poll T. Antiinflammatory effects of salmeterol after inhalation of lipopolysaccharide by healthy volunteers. Am J Respir Crit Care Med 2005;172:878-884.
29. Boehringer Ingelheim International GmbH. Pharmacy Information. Germany, 2007.
30. Juergens UR, Stober M, Libertus H, Darlath W, Gillissen A, and Vetter H. Different mechanisms of action of β2-adrenergic receptor agonists: A comparison of reproterol, fenoterol and salbutamol on monocyte cyclic-AMP and leukotriene B4 production in vitro. Eur J Med Res 2004;9:365-370.
31. Glauser MP, Zanetti G, Baumgartner JD, Cohen J. Septic shock: Pathogenesis. Lancet 1991;338:732-736.
32. Fong Y, Lowry SF. Tumor necrosis factor in the pathophysiology of infection and sepsis. Clin Immunol Immunopathol 1990;55:157-170.
33. Tracey KJ, Fong Y, Hesse DG, Manogue KR, Lee AT, Kuo GC, Lowry SF, Cerami A. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature (London) 1987;330:662-664.
34. Fong Y, Tracey KJ, Moldawer LL, Hesse DG, Manogue KR, Kenney JS, Lee AT, Kuo GC, Allison AC, Lowry SF, Cerami A. Antibodies to cachectin/tumor necrosis factor reduce interleukin 1?? and interleukin 6 appearance during lethal bacteremia. J Exp Med 1989;170:1627-1633.
35. Deventer V, Buller HR, Cate JW, Aarden LA, Hack CE, Sturk A. Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic and complement pathways. Blood 1990;76:2520-2526.
36. Le J, Vilcek J. Interleukin 6: A multifunctional cytokine regulating immune reactions and the acute phase protein response. Lab Invest 1989;61:588-602.
37. Bhatia M, Moochhala S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J pathol 2004;202:145-156.
38. Keane MP, Strieter RM. Chemokine signaling in inflammation. Crit Care Med 2000;28:13–26.
39. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001;410:37–40.
40. Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 1995;270:16483–16486.

41. Chen P, Li J, Barnes J, Kokkonen GC, Lee JC, Liu Y. Restraint of proinflammatory cytokine biosynthesis by mitogen-activated protein kinase phosphatase-1 in lipopolysaccharide-stimulated macrophages. J Immunol 2002;169:6408-6416.
42. Elbern H, Kowol J, Sladkovic R, Ebel A, Akira S. IL-6-regulated transcription factors. Int J Biochem Cell Biol 1997;29:1401-1418.
43. Nakamura A, Johns EJ, Imaizumi A, Yanagawa Y, Kohsaka T. Modulation of interleukin-6 by ??2-adrenoceptor in endotoxin-stimulated renal macrophage cells. Kidney international 1999;56:839-849.
44. Sanchez-Tillo E, Comalada M, Xaus J, Farrera C, Valledor AF, Caelles C, Lloberas J, Celada A. JNK1 is required for the induction of MKP1 expression in macrophages during proliferation and LPS-dependent activation. J Biol Chem 2007;282(17):12566-12573.
45. Price MA, Cruzalegui FH, Treisman R. The p38 and ERK MAP kinase pathways cooperate to activate Ternary complex factors and c-fos transcription in response to UV light. EMBO J 1996;15:6552-6563.
46. Hazzalin CA, Cano E, Cuenda A, Barratt MJ, Cohen P, Mahadevan LC. p38/RK is essential for stress-induced nuclear responses: JNK/SAPKs and c-Jun/ATF-2 phosphorylation are insufficient. Curr Biol 1996;6:1028-1031.
47. Leppä S, Saffrich R, Ansorge W, Bohmann D. Differential regulation of c-Jun by ERK and JNK during PC12 cell differentiation. EMBO J 1998;17:4404–4413.
48. Carter AB, Monick MM, Hunninghake GW. Both ERK and p38 kinases are necessary for cytokine gene transcription. Am J Respir Cell Mol Biol 1999;20:751–758.

49. Jenga KCG, Houa RCW, Wanga JC, Ping LI. Sesamin inhibits lipopolysaccharide-induced cytokine production by suppression of p38 mitogen-activated protein kinase and nuclear factor-?羠. Immunology Letters 2005;97:101–106.
50. Schwab AM, Granholm S, Persson E, Wilkes B, Lerner UH, Conaway HH. Stimulation of resorption in cultured mouse calvarial bones by thiazolidinediones. Endocrinology 2005;146:4349–4361.
51. Libermann TA, Baltimore D. Activation of interleukin-6 gene expression through the NK-?羠 transcription factor. Mol Cell Biol 1990;10:2327-2334.
論文全文使用權限
  • 同意授權瀏覽/列印電子全文服務,於2009-02-15起公開。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446