進階搜尋


  查詢北醫館藏
系統識別號 U0007-1301200816234300
論文名稱(中文) 肋膜積液中纖維蛋白分解活性的研究
論文名稱(英文) Studies on fibrinolytic activity in pleural effusions
校院名稱 臺北醫學大學
系所名稱(中) 臨床醫學研究所
系所名稱(英) Graduate Institute of Clinical Medicine
學年度 96
學期 1
出版年 97
研究生(中文) 鍾啟禮
研究生(英文) Chi-Li Chung
學號 D102092009
學位類別 博士
語文別 英文
口試日期 2008-01-04
論文頁數 110頁
口試委員 委員-顏茂雄
委員-黃德富
共同指導教授-張西川
委員-吳志雄
委員-曾啟瑞
指導教授-許準榕
共同指導教授-蕭哲志
中文關鍵字 肋膜積液  細胞激素  纖維蛋白分解活性  結核性肋膜炎  肋膜間皮細胞 
英文關鍵字 pleural effusion  cytokine  fibrinolytic activity  tuberculous pleuritis  pleural mesothelial cell 
學科別分類
中文摘要 肋膜積液是臨床上常見的問題,也是許多疾病常有的併發症。目前研究觀察到不同病因的肋膜積液中,其纖維蛋白分解系統都有調控異常的現象。肋膜積液中的纖維蛋白分解活性受抑制,將導致肋膜腔產生纖維蛋白沉積及肋膜沾黏,形成腔室化肋膜積液(loculated effusion)及肋膜纖維化(pleural fibrosis),進而損害病患的肺功能;這些現象與肋膜發炎、細胞激素及肋膜細胞的交互作用有關,但其調控機轉目前尚未完全釐清。
本研究分四個子題進行,第一,腔室化及自由流動之漏出性肋膜積水中細胞激素與纖維蛋白分解活性的比較分析;第二,多次胸腔穿刺引流對滲出性肋膜積水中細胞激素與纖維蛋白分解活性的影響;第三,肋膜腔注射纖維蛋白分解酵素對腔室化結核性肋膜炎產生肋膜纖維化及臨床預候的影響;第四,Dynasore,一種可滲透入細胞之dynamin抑制劑,對於TGF-β1誘發MeT-5A人類肋膜間皮細胞株產生PAI-1之影響。希望研究結果有助於釐清纖維蛋白分解活性失調的病理機轉並裨益病患的照護。
第一個子題的研究結果顯示,在包括肺炎、結核或惡性腫瘤所造成的漏出性肋膜積液中,相較於自由流動之肋膜積液,腔室化積液的纖維蛋白分解活性被更明顯抑制。腔室化積液中的TNF-α, IL-1β, TGF-β1及PAI-1的濃度皆明顯高於自由流動之肋膜積液;而不論是腔室化或自由流動積液,其PAI-1的濃度及PAI-1/tPA比值皆與TNF-α, IL-1β及TGF-β1的濃度呈明顯正相關。肋膜腔中PAI-1與tPA的不平衡,將導致纖維蛋白沉積及肋膜沾黏,形成肋膜積液腔室化。此外,結核性肋膜積液最後產生殘餘性肋膜纖維化者,其肋膜積液中的TGF-β1的濃度明顯高於未產生殘餘性肋膜纖維化者,此結果顯示TGF-β1在結核性肋膜炎產生肋膜纖維化扮演重要角色。
第二個子題的研究結果顯示,對於心臟衰竭合併滲出性肋膜積水患者,多次胸腔穿刺引流(連續三天)會導致肋膜積液中的LDH值、 紅血球數、白血球數、嗜中性白血球、TNF-α、 IL-1β、 IL-8、 VEGF 及PAI-1濃度顯著地增加。且第二天及第三天穿刺引流所得的肋膜積液中,PAI-1及PAI-1/tPA比值與TNF-α、 IL-1β、 IL-8及 VEGF 的濃度呈現明顯正相關。多次胸腔穿刺引流可能會誘發滲出性肋膜積水產生肋膜發炎、抑制其纖維蛋白分解活性,導致纖維蛋白沉積。此外,多次胸腔穿刺引流後形成肋膜纖維蛋白沉積之患者,其七日內肋膜積液未吸收的機率明顯偏高,因此推論纖維蛋白分解活性被抑制,可能阻礙肋膜積液的吸收。
第三個子題的研究結果顯示, 肋膜腔注射纖維蛋白分解酵素streptokinase,提高肋膜腔內纖維蛋白分解活性,可分解清除纖維蛋白,安全且有效地引流出腔室化結核性肋膜積液,配合抗結核藥物治療,可加速肋膜積液的吸收、減少產生肋膜纖維化的機率、並長期改善病患的肺功能。
第四個子題的研究結果顯示,dynasore可藉著活化non-Smad TGF-β訊息路徑,來加強TGF-β1誘發PAI-1在MeT-5A人類肋膜間皮細胞的表現。而且,dynasore本身可活化JNK MAPK,導致Smad4的核轉移(nuclear translocation),促進PAI-1的基因表現及蛋白合成。本研究的初步報告認為,dynasore雖然可以抑制與dynamin有關的endocytosis,卻反而會促進TGF-β/JNK的訊息傳遞,進而增加PAI-1的表現。
簡要言之,本研究顯示,肋膜發炎反應可抑制肋膜積液中纖維蛋白分解活性,導致肋膜腔中PAI-1與tPA的不平衡,形成纖維蛋白沉積、肋膜積液腔室化及肋膜纖維化。纖維蛋白分解活性被抑制,可能阻礙肋膜積液的吸收;而提高纖維蛋白分解活性,可以促進肋膜積液的吸收,並減少肋膜纖維化。Dynaosre可促進肋膜間皮細胞內PAI-1的基因表現及蛋白合成,臨床上或許可作為肋膜沾粘(pleurodesis)的藥劑。仍需要進行更多細胞、動物及人體研究,探討肋膜腔中細胞激素、發炎細胞及肋膜間皮細胞之間的交互作用,才能更深入了解肋膜積液中纖維蛋白分解活性的調控與臨床上的意義。
英文摘要 Pleural effusion is a common clinical problem and can occur as complications of many different diseases. It is well recognized that the fibrinolytic system does not function properly in the pleural space in patients with pleural effusions of various etiologies. The impaired fibrinolytic activity contributes to the development of pleural fibrin deposition, loculated effusions and pleural fibrosis, of which the pathogenesis involves interactions among pleural cytokines, inflammatory cells and pleural mesothelial cells. However, the regulatory mechanism of fibrinolytic activity in pleural effusions remains incompletely understood.
In this study, we would like to explore (1) the difference in levels of cytokines and fibrinolytic activity between loculated and free-flowing pleural exudates; (2) the effect of repeated thoracenteses on cytokines and fibrinolytic activity in pleural transudates; (3) the effect of intrapleural streptokinase on pleural fibrosis and clinical outcome in patients with loculated TB pleurisy; and (4) the effect of dynasore, a cell permeable dynamin inhibitor, on TGF-β1-induced PAI-1 expression in MeT-5A human pleural mesothelial cells.
We hope the results obtained can be of value in elucidating the pathogenesis of impaired fibrinolytic activity in pleural diseases and in the management of the patients with large transudative effusions, loculated pleural exudates and pleural fibrosis.
The results of the first study on pleural exudates caused by malignancy, TB or pneumonia indicated that fibrinolytic activity was depressed in loculated effusions, compared to free-flowing effusions. The levels of TNF-α, IL-1β, TGF-β1 and PAI-1 were significantly higher in loculated than in free-flowing effusions. In both loculated and free-flowing effusions, the levels of PAI-1 and the PAI-1/tPA ratio correlated positively with those of TNF-α, IL-1β and TGF-β1. The imbalance of PAI-1 and tPA in pleural spaces may lead to fibrin deposition and loculation of pleural effusions. In addition, the pleural levels of TGF-β1 were significantly higher in those with residual pleural thickening, suggesting that TGF-β may play a role in the development of pleural fibrosis in TB pleurisy.
The result of the second study demonstrated that significant increase in amount of LDH, erythrocytes, total leukocytes, neutrophils, TNF-α, IL-1β, IL-8, VEGF and PAI-1 in the pleural fluid after repeated thoracenteses in patients with transudative pleural effusions caused by congestive heart failure. The amount of PAI-1 and PAI-1/tPA ratio on day 2 and day 3 in the pleural fluid were highly correlated with those of TNF-α, IL1-β, IL-8 and VEGF. Repeated thoracenteses may cause pleural inflammation, impair fibrinolytic activity and lead to fibrin deposition in transudative effusions. Moreover, the patients who developed pleural fibrins had significantly lower rate of complete resolution of pleural effusions by 7 days after repeated thoracenteses, which suggests that impaired fibrinolytic activity may impede resolution of pleural effusion.
The result of the third study on patients with loculated TB effusions revealed that tube drainage with streptokinase irrigation may increase the fibrinolytic activity in the pleural space, increase clearance of pleural fibrins and is safe and effective for evacuation of loculated TB effusions. Effective drainage adjuvant to anti-TB treatments may hasten resolution of pleural effusion, reduce the incidence of residual pleural fibrosis and accelerate recovery of pulmonary function in patients with loculated TB pleurisy.
The result of the fourth study revealed that dynasore may enhance PAI-1 expression induced by TGF-β1 in MeT-5A human pleural mesothelial cells through the activation of non-Smad TGF-β signaling pathway. Dynasore may activate JNK MAPK and/or lead to nuclear translocation of Smad4, and increase PAI-1 gene expression and protein synthesis in MeT-5A cells. The preliminary data of the study indicate that dynasore, a potent inhibitor of endocytic pathways known to depend on dynamin, does not inhibit but, on the contrary, augment the activation of TGF-β/JNK signaling and amplify PAI-1 expression. Further studies are needed to verify the role of receptor trafficking in the regulation of TGF-β signaling in human pleural mesothelial cells.
In summary, the impaired fibrinolytic activity in pleural effusions, as reflected by higher PAI-1 to tPA ratio, depends on pleural inflammation and is very important in the development of fibrin deposition, fluid loculation and residual fibrosis in pleural spaces. Impaired fibrinolytic activity may impede resolution of pleural effusion, whereas enhanced fibrinolytic activity may facilitate clearance of pleural effusion and prevent pleural fibrosis. Dynasore enhances PAI-1 expression in human pleural mesothelial cells and may be used as a pleurodesing agent. More cellular, animal and human studies on interactions among cytokines, inflammatory cells, and mesothelial cells in the pleural space are needed for elucidation of fibrinolytic activity in pleural effusions and the clinical significance.
論文目次 目錄(Contents)
----------------------------------------------------------1
縮寫表(Abbreviations)
----------------------------------------------------------2
圖表目次
----------------------------------------------------------3
中文摘要(Abstract in Chinese)
----------------------------------------------------------6
英文摘要(Abstract in English)
----------------------------------------------------------8
緒論(Introduction)
---------------------------------------------------------11
材料和方法(Materials and Methods)
---------------------------------------------------------19
結果(Results)
---------------------------------------------------------34
討論(Discussion)
---------------------------------------------------------47
結論和展望(Conclusion and Perspective)
---------------------------------------------------------63
參考文獻(References)
---------------------------------------------------------65
附圖(Attached figures)
---------------------------------------------------------79
表(Tables)
---------------------------------------------------------81
圖(Figures)
---------------------------------------------------------93
附錄(Appendix)
--------------------------------------------------------110
參考文獻 Abazeed ME, Blanchette JM, Fuller RS. Cell-free transport from the trans-golgi network to late endosome requires factors involved in formation and consumption of clathrin-coated vesicles. J Biol Chem 2005; 280: 4442–4450.

Agrenius V, Chmielewska J, Widström O, Blombäck M. Pleural fibrinolytic activity is decreased in inflammation as demonstrated in quinacrine pleurodesis treatment of malignant pleural effusion. Am Rev Respir Dis 1989; 140: 1381- 1385.

Albini A, Tosetti F, Benelli R, Noonan DM. Tumor inflammatory angiogenesis and its chemoprevention. Cancer Res 2005; 23: 10637-10641.

Antony VB. Fibrinolysis in the pleural space. Am J Respir Crit Care Med 2002; 166: 909-910.
Antony VB. Immunological mechanisms in pleural disease. Eur Respir J 2003; 21: 539-544.

Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL. Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 2005; 275: 36803–36810.

Biemond BJ, Levi M, Ten Cate H, Van der Poll T, Büller HR, Hack CE, Ten Cate JW. Plasminogen activator and plasminogen activator inhibitor I release during experimental endotoxemia in chimpanzees: effect of intervention in cytokine and coagulation cascades. Clin Sci 1995; 88: 587-594.

Bithell TC. Blood coagulation. In: Lee GR, Bithell TC, Foerster J, et al, eds. Wintrobe’s clinical hematology. 9th ed. Philadelphia, PA: Lea & Febiger, 1993; 566-615.

Border WA, Noble NA. Transforming growth factor-β in tissue fibrosis. N Engl J Med 1994; 331: 1286-1292.

Bouros D, Schiza S, Tzanakis N, Chalkiadakis G, Drositis J, Siafakas N. Intrapleural urokinase versus normal saline in the treatment of complicated parapneumonic effusions and empyema . A randomized, double-blind study. Am J Respir Crit Care Med 1999; 159: 37-42.

Broaddus VC, Hebert CA, Vitangcol RV, Hoeffel JM, Bernstein MS, Boylan AM. Interleukin-8 is a major neutrophil chemotactic factor in pleural liquid of patients with empyema. Am Rev Respir Dis 1992;146: 825-830.

Candela A, Andujar J, Hernandez L, Martin C, Barroso E, Arriero JM, Romero S. Functional sequelae of tuberculous pleurisy in patients correctly treated. Chest 2003; 123: 1996-2000.

Cases Viedma E, Lorenzo Dus MJ, González-Molina A, Sanchis Aldás JL. A study of loculated tuberculous pleural effusions treated with intrapleural urokinase. Resp Med 2006; 100: 2037-2042.

Cheng DS, Lee YCG, Rogers JT, Perkett EA, Moyers JP, Rodriguez RM, Light RW. Vascular endothelial growth factor level correlates with transforming growth factor-β isoform levels in pleural effusions. Chest 2000; 118: 1747-1753.

Cheng DS, Rodriguez RM, Perkett EA, Rogers J, Bienvenu G, Lappalainen U, Light RW. Vascular endothelial growth factor in pleural fluid. Chest 1999; 116: 760-765.

Chung CL, Chen CH, Sheu JR, Chen YC, Chang SC. Proinflammatory cytokines, transforming growth factor-β1, and fibrinolytic enzymes in loculated and free-flowing pleural exudates. Chest 2005; 128: 690-697.

Chung CL, Chen YC, Chang SC. Effect of repeated thoracenteses on the fluid characteristics, cytokines, and fibrinolytic activity in malignant pleural effusion. Chest 2003; 123: 1188-1195.

Damke H, Baba T, Warnock DE, Schmid SL. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 1994; 127: 915–934.

Davies CW, Traill ZC, Gleeson FV, Davies RJ. Intrapleural streptokinase in the management of malignant multiloculated pleural effusions. Chest 1999; 115: 729-733.

Davies RJ, Traill ZC, Gleeson FV. Randomized controlled trial of intrapleural streptokinase in community acquired pleural infection. Thorax 1997; 52: 416-421.

de Caestecker MP, Parks WT, Franck CJ, Castagnino P, Bottaro DP, Roberts AB, Lechleider RJ. Smad2 transduces common signals from receptor serine-threonine and tyrosine kinases. Genes Dev 1998; 12: 1587−1592.

de Pablo A, Villena V, Echave-Sustaeta J, Encuentra AL. Are pleural fluid parameters related to the development of residual pleural thickening in tuberculosis? Chest 1997; 112: 1293-1297.

Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signaling. Nature 2003; 425, 577-584.

Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315: 1650-1659.

Engel ME, McDonnell MA, Law BK, Moses HL. Interdependent SMAD and JNK signaling in transforming growth factor-β-mediated transcription. J Biol Chem 1999; 274: 37413−37420.

Falk P, Ma C, Chegini N, Holmdahl L. Differential regulation of mesothelial cell fibrinolysis by transforming growth factor-β1. Scan J Clin Lab Invest 2000; 60: 439–447.

Funaba M, Zimmerman CM, Mathews LS. Modulation of Smad2-mediated signaling by extracellular signal-regulated kinase. J Biol Chem 2002; 277: 41361−41368.

Good JT, Taryle DA, Hyers TM, Sahn SA. Clotting and fibrinolytic activity of pleural fluid in a model of pleural adhesions. Am Rev Respir Dis 1978; 118: 903-908.

Grove CS, Lee YCG. Vascular endothelial growth factor: the key mediator in pleural effusion formation. Curr Opin Pulm Med 2002; 8: 294-301.

Guo B, Inoki K, Isono M, Mori H, Kanasaki K, Sugimoto T, Akiba S, Sato T, Yang B, Kikkawa R, Kashiwagi A, Haneda M, Koya D. MAPK/AP-1-dependent regulation of PAI-1 gene expression by TGF-β in rat mesangial cells. Kidney Int 2005; 68: 972-984.

Guo YB, Kalomenidis I, Hawthorne M, Parman KS, Lane KB, Light RW. Pleurodesis is inhibited by anti-vascular endothelial growth factor antibody. Chest 2005; 128: 1790-1797.

Gürsel G, Gökcora N, Elbeg S, Samurkasoğlu B, Ekim N. Tumor necrosis factor-alpha (TNF-α) in pleural fluids. Tuber Lung Dis 1995; 76: 370-371.

Han DH, Song JW, Chung HS, Lee JH. Resolution of residual pleural disease according to time course in tuberculous pleurisy during and after the termination of antituberculosis medication. Chest 2005; 128: 3240-3245.

Hayes S, Chawla A, Corvera S. TGF-β receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J Cell Biol 2002; 158: 1239−1249.
Henley JR, Krueger EWA, Oswald BJ, McNiven MA. Dynamin-mediated internalization of caveolae. J Cell Biol 1998; 14: 85-99.

Himelman RB, Callen PW. The prognostic value of loculations in parapneumonic pleural effusions. Chest 1986; 90: 852-856.

Hsiao G, Huang HY, Fong TH, Shen MY, Lin CH, Teng CM, Sheu JR. Inhibitory mechanisms of YC-1 and PMC in the induction of iNOS expression by lipoteichoic acid in RAW 264.7 macrophages. Biochem Pharmacol 2004: 67; 1411-1419.

Hua CC, Chang LC, Chen YC, Chang SC. Proinflammatory cytokines and fibrinolytic enzymes in tuberculous and malignant pleural effusions. Chest 1999; 116: 1292-1296.

Huang HC, Chang HY, Chen CW, Lee CH, Hsieu TR. Predicting factors for outcome of tube thoracostomy in complicated parapneumonic effusion or empyema. Chest 1999; 115: 751-756.

Huggins JT, Sahn SA. Causes and management of pleural fibrosis. Respirology 2004; 9: 441-447.

Idell S, Girard W, Koenig KB, McLartv J, Fair DS. Abnormalities of pathways of fibrin turnover in the human pleural space. Am Rev Respir Dis 1991; 144:187–194.

Idell S, Mazar AP, Bitterman P, Mohla S, Harabin AL. Fibrin turnover in lung inflammation and neoplasia. Am J Respir Crit Care Med 2001; 163: 578-584.

Idell S, Zwieb C, Kumar A, Koenig KB, Johnson AR. Pathways of fibrin turnover of human pleural mesothelial cells in vitro. Am J Respir Cell Mol Biol 1992; 7: 414-426.

Idell S. Coagulation, fibrinolysis and fibrin deposition in lung injury and repair. In: Phan SH, Thrall RS, eds. Pulmonary Fibrosis. New York, Marcel Dekker, 1995: 743–776.

Ito T, Williams JD, Fraser DJ, Phillips AO. Hyaluronan regulates transforming growth factor-β1 receptor compartmentalization. J Biol Chem 2004; 279: 25326-25332.

Jagirdar J, Lee TC, Reibman J, Gold LI, Aston C, Bégin R, Rom WN. Immunohistochemical localization of transforming growth factor-β isoforms in asbestos-related diseases. Environ Health Perspect 1997; 105 (Suppl 5): 1197–1203.

Jantz MA, Antony VB. Pleural fibrosis. Clin Chest Med 2006; 27: 181-191.

Kamaraju AK, Roberts AB. Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo. J Biol Chem 2005; 280: 1024–1036.

Kretzschmar M, Doody J, Timokhina I, Massaqué J. A mechanism of repression of TGF-β/Smad signaling by oncogenic Ras. Genes Dev 1999; 13: 804−816.

Kwak SM, Park CS, Cho JH, Rvu JS, Kim SK, Chang J, Kim SK. The effects of urokinase instillation therapy via percutaneous transthoracic catheter in loculated tuberculous pleural effusion: A randomized prospective study. Yonsei Med J 2004; 45: 822–828.

Lai YF, Chao TY, Wang YH, Lin AS. Pigtail drainage in the treatment of tuberculous pleural effusions: a randomised study. Thorax 2003; 58: 149-152.

Large SE, Levick RK. Aspiration in the treatment of primary tuberculous pleural effusion. BMJ 1958; 30: 1512–1514.

Lee TH, Avraham H, Lee SH, Avrahm S. Vascular endothelial growth factor modulates neutrophil transendothelial migration via up-regulation of interleukin-8 in human brain microvascular endothelial cells. J Biol Chem 2002; 277: 10445-10451.

Lee YCG, Lane KB, Parker RE, Avo DS, Rogers JT, Diters RW, Thompson PJ, Light RW. Transforming growth factor-β2 (TGF-β2) produces effective pleurodesis in sheep with no systemic complications. Thorax 2000; 55: 1058–1062.

Lee YCG, Lane KB. The many faces of transforming growth factor-β in pleural diseases. Curr Opin Pul Med 2001; 7: 173-179.

Lee YCG, Light RW. Management of malignant pleural effusions. Respirology 2004; 9: 148-156.

Lee YCG, Melderneker D, Thompson PJ, Light RW, Lane KB. Transforming growth factor-β induces vascular endothelial growth factor elaboration from pleural mesothelial cells in vivo and in vitro. Am J Respir Crit Care Med 2002; 165: 88-94.

Lee YCG, Teixeira LR, Devin CJ, Vaz MAC, Vargas FS, Thompson PJ, Lane KB, Light RW. Transforming growth factor-β2 induces pleurodesis significantly faster than talc. Am J Respir Crit Care Med 2001; 163: 640-644.

Light RW, Cheng DS, Lee YCG, Rogers J, Davidson J, Lane KB. A single intrapleural injection of transforming growth factor β-2 produces an excellent pleurodesis in rabbits. Am J Respir Crit Care Med 2000; 162: 98–104.

Light RW, MacGregor MI, Luchsinger PC, Ball WC Jr. Pleural effusions: the diagnostic separation of transudates and exudates. Ann Intern Med 1972; 77: 507-513.

Light RW. Parapneumonic effusions and empyema. In: Light RW, editor. Pleural diseases. 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2001: 151-181.

Light RW. Physiology of the pleural space. In: Light RW, editor. Pleural diseases. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2007: 7-16.

Light RW. Transudative pleural effusions. In: Light RW, editor. Pleural Diseases. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2001: 96-107.

Light RW. Tuberculous pleural effusions. In: Light RW, ed. Pleural diseases, 4th Ed. Lippincott Williams & Wilkins, Philadelphia, 2001: 182-195.

Lomas DJ, Padley SG, Flower CDR. The sonographic appearances of pleural fluid. Br J Radiol 1993; 66: 619-624.

Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T. Dynasore, a cell-permeable inhibitor of dynamin. Developmental Cell 2006; 10: 839–850.

Maeda J, Ueki N, Oshkawa T, Iwahashi N, Nakano T, Hada T, Higashino K. Local production and localization of transforming growth factor-β in tuberculous pleurisy. Clin Exp Immunol 1993; 92: 32 –38.

Marczin N, Carolyn YG, Catravas JD. Induction of nitric oxide synthase by protein synthesis inhibition in aortic smooth muscle cells. Br J Pharmacol 1998; 123: 1000–1008.

Marel M, Zrustova M, Stasny B, Light RW. The incidence of pleural effusion in a well-defined region: epidemiologic study in Central Bohemia. Chest 1993; 104: 1486-1489.

Martin MM, Buckenberger JA, Jiang J, Malana GE, Knoell DL, Feldman DS, Elton TS. TGF-β1 stimulates human AT1 receptor expression in lung fibroblasts by cross talk between the Smad, p38 MAPK, JNK, and PI3K signaling pathways. Am J Physiol Lung Cell Mol Physiol 2007; 293: L790-L799.

Massagué, J. TGF-β signal transduction. Annu Rev Biochem 1998 67: 753-791.

McLoud TC, Flower CDR. Imaging the pleura: sonography, CT, and MR imaging. AJR Am J Roentgenol 1991; 156: 1145-1153.

Mohammed KA, Nasreen N, Hardwick J, Logie CS, Patterson CE, Antony VB. Bacterial induction of pleural mesothelial monolayer barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2001; 281: L119-25.

Mori Y, Chen SJ, Varga J. Modulation of endogenous Smad expression in normal skin fibroblasts by transforming growth factor-β. Exp Cell Res 2000; 258: 374–383.

Morrone N, Lombardi MC, Machado O. Prevention of pleural thickening through pleural aspiration in patients with tuberculous effusion. J Pneumo (Sao Paulo) 1989; 15: 180-184.

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J Immunol Meth 1983; 65: 55–63.

Newon AJ, Kirchhausen T, Murthy VN. Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. PNAS 2006; 103: 17955-17960.

Nichols B. Caveosomes and endocytosis of lipid rafts. J Cell Sci 2003; 116: 4707–4714.

Offner FA, Feichtinger H, Stadlmann S, Obrist P, Marth C, Klingler P, Grage B, Schmahl M, Knabbe C. Transforming growth factor-β synthesis by human peritoneal mesothelial cells. Induction by interleukin-1. Am J Pathol 1996; 148: 1679-1688.

Orphanidou D, Gaga M, Rasidakis A, Dimakou K, Toumbis M, Latsi P, Pandalos J, Christacopoulou J, Jordanoglou J. Tumor necrosis factor, interleukin-1 and adenosine deaminase in tuberculous pleural effusion. Respir Med 1996; 90: 95-98.

Penheiter SG, Mitchell H, Garamszeqi N, Edens M, Doré JJ Jr, Leof EB. Internalization-dependent and -independent requirements for transforming growth factor-β receptor signaling via the Smad pathway. Mol Cell Biol 2002; 22: 4750−4759.

Pepper MS, Ferrara N, Orci L, Montesano R. Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem Biophys Res Commun 1991; 181: 902-906.

Philip-Joët F, Alessi MC, Philip-Joët C, Aillaud M, Barriere JR, Arnaud A, Juhan-Vague I. Fibrinolytic and inflammatory processes in pleural effusions. Eur Respir J 1995; 8: 1352-1356.

Pollak JS, Passik CS. Intrapleural urokinase in the treatment of loculated pleural effusions. Chest 1994; 105: 868–873.

Rodriguez-Panadero F, Segado A, Juan JM, Ayerbe R, Garcia IT, Castillo J. Failure of talc pleurodesis is associated with increased pleural fibrinolysis. Am J Respir Crit Care Med 1995; 151: 785-790.

Romero-Candeira S, Fernández C, Martín C, Sánchez-Pava J, Hernández L. Influence of diuretics on the concentration of proteins and other components of pleural transudates in patients with heart failure. Am J Med 2001; 110: 681-686.

Runyan CE, Schnaper HW, Poncelet AC. The phosphatidylinositol 3-kinase/Akt pathway enhances Smad3-stimulated mesangial cell collagen I expression in response to transforming growth factor-β1. J Biol Chem 2004; 279: 2632–2639.

Runyan CE, Schnaper HW, Poncelet AC. The role of internalization in TGF-β1-induced Smad2 association with SARA and Smad2-dependent signaling in human mesangial cells. J Biol Chem 2005; 280: 8300-8308.

Samarakoon R, Higgins CE, Higgins SP, Kutz SM, Higgins PJ. Plasminogen activator inhibitor type-1 gene expression and induced migration in TGF-β1-stimulated smooth muscle cells is pp60(c-src)/MEK-dependent. J Cell Physiol 2005; 204: 236-246.

Sasse SA, Jadus MR, Kukes GD. Pleural fluid transforming growth factor-β1 correlates with pleural fibrosis in experimental empyema. Am J Respir Crit Care Med 2003; 168: 700–705.

Söderblom T, Nyberg P, Teppo AM, Klockars M, Riska H, Pettersson T. Pleural fluid interferon-γ and tumor necrosis factor-α in tuberculous and rheumatoid pleurisy. Eur Respir J 1996; 9: 1652-1655.

Sporn MB, Roberts AB, Wakefield LM, de Crombrugghe B. Some recent advances in the chemistry and biology of transforming growth factor-β. J Cell Biol 1987; 105: 1039-1045.

Thickett DR, Armstrong L, Millar AB. Vascular endothelial growth factor (VEGF) in inflammatory and malignant pleural effusions. Thorax 1999; 54: 707-710.

Tillet WS, Sherry S, Read CT. The use of streptokinase- streptodornase in the treatment of postpneumonic empyema. J Thorac Surg 1951; 21: 275-297.

Vayalil PK, Iles KE, Choi J, Yi AK, Postlethwait EM, Liu RM. Glutathione suppresses TGF-β-induced PAI-1 expression by inhibiting p38 and JNK MAPK and the binding of AP-1, SP-1, and Smad to the PAI-1 promoter. Am J Physiol Lung Cell Mol Physiol 2007; 293: L1281-L1292.

von Hayek H. The parietal and the visceral pleura. New York: Hafner. 1960.
Wang NS. Anatomy and physiology of the pleural space. Clin Chest Med 1985; 6: 3-16.

Whawell SA, Thompson JN. Cytokine-induced release of plasminogen activator inhibitor-1 by human mesothelial cells. Eur J Surg 1995; 161: 315-317.

Woodward RN, Finn AV, Dichek DA. Identification of intracellular pathways through which TGF-β1 upregulates PAI-1 expression in endothelial cells. Atherosclerosis 2006; 186: 92-100.

Wyser C, Walzl G, Smedema JP, Swart F, van Schalkwyk EM, van de Wal BW. Corticosteroids in the treatment of tuberculous pleurisy. A double-blind placebo-controlled randomized study. Chest 1996; 110: 333-338.

Xirouchaki N, Tzanakis N, Bouros D, Kyriakou D, Karkavitsas N, Alexandrakis M, SiafakasNM. Diagnostic value of interleukin-1α, interleukin-6 and tumor necrosis factor in pleural effusions. Chest 2002; 121: 815-820.

Yang PC, Luh KT, Chang DB, Wu HD, Yu CJ, Kuo SH. Value of sonography in determining the nature of pleural effusion: analysis of 320 cases. AJR Am J Roentgenol 1992; 159: 29-33.

Yeo KT, Wang HH, Nagy JA, Sioussat TM, Ledbetter SR, Hoogewerf AJ, Zhou Y, Masse EM, Senger DR, Dvorak HF. Vascular permeability factor (vascular endothelial growth factor) in guinea pig and human tumor and inflammatory effusions. Cancer Res 1993; 53: 2912-2918.

Zastrow MV, Sorkin A. Signaling on the endocytic pathway. Curr Opin Cell Biol 2007; 19: 436-445.

Zhang XL, Topley N, Ito T, Phillips A. Interleukin-6 regulation of transforming growth factor (TGF)-β receptor compartmentalization and turnover enhances TGF-β1 signaling. J Biol Chem 2005; 280: 12239-12245.
論文全文使用權限
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446