進階搜尋


  查詢北醫館藏
系統識別號 U0007-1107200900471000
論文名稱(中文) 細胞核數目相異之肺靜脈與左心房心肌細胞在電生理與離子通道的表現
論文名稱(英文) Electrical Activity and Channel Expression in Pulmonary Vein and Left Atrium Cardiomyocytes of Various Nucleus Number
校院名稱 臺北醫學大學
系所名稱(中) 臨床醫學研究所
系所名稱(英) Graduate Institute of Clinical Medicine
學年度 97
學期 2
出版年 98
研究生(中文) 黃駿豐
研究生(英文) Chun-Feng Huang
學號 M118096002
學位類別 碩士
語文別 中文
口試日期 2009-06-12
論文頁數 59頁
口試委員 委員-陳耀昌
共同指導教授-葉宏一
委員-謝敏雄
委員-陳識中
指導教授-陳亦仁
中文關鍵字 心房顫動  左心房  肺靜脈  心肌細胞  單核  雙核 
英文關鍵字 atrial fibrillation  left atrium  pulmonary vein  cardiomyocyte  mononucleate  binucleate 
學科別分類
中文摘要 前言
心房顫動乃是臨床上最常見的心律不整之一,而且會造成嚴重的心臟功能不良以及增加致死率與發病率。過去的研究已知肺靜脈心肌組織是異位節律點的來源,它會引發陣發性心房顫動及異位性左心房心博過速。但何種心肌細胞容易引發心房顫動仍未有定論。
目的
心肌細胞在胚胎發育過程中,會有不同的細胞核數目產生,其機轉尚未完全明瞭。是否不同的細胞核數目有不同的細胞電生理特性,尚未有相關的研究被提出。因此本實驗的目的在探討單雙核心房與肺靜脈心肌細胞的電生理特性與離子通道的差異,與研究不同細胞核數目的心肌細胞在引發心房顫動機轉中所扮演的角色。

材料與方法
年齡約三個月的雄性兔子 (1.5 到 2 公斤,n = 18),將左心房與肺靜脈的心肌細胞分離出後,以DAPI染細胞核,以區分單核或雙核心肌細胞。以全細胞膜電位箝定法與免疫螢光染色去研究單雙核心肌細胞間的電生理特性,以及離子流與離子通道間的差異。

結果
本實驗主要的發現是 (1) 無論是左心房或不具節律性肺靜脈的單核細胞都較雙核細胞的靜止膜電位為正; (2) 具節律性的肺靜脈心肌細胞中,單核細胞較雙核細胞有較高頻率的節律性; (3) 左心房單核與雙核心肌細胞的IK1離子電流密度沒有顯著差異,但肺靜脈單核心肌細胞的Ik1離子電流密度較雙核細胞小,相同的,肺靜脈單核心肌細胞的Kir 2.3螢光密度也較小; (4) 無論左心房或肺靜脈,單核心肌細胞的ICa,L最大離子電流密度都較雙核細胞為大,而左心房與肺靜脈單核心肌細胞的鈣離子濃度變化也較雙核細胞大; (5) 無論是左心房或肺靜脈,單核心肌細胞都較雙核細胞的RyR2螢光密度為大。

結論
本實驗首次證明左心房與肺靜脈單雙核心肌細胞有不同的電生理特性,且其電生理特性由不同的離子流與離子通道密度所決定,但仍有許多離子流與離子通道特性尚待驗證。此外,單雙核心肌細胞對於引發心房顫動的藥物反應是否不同也值得探討,以進一步釐清核數目相異心肌細胞的生理反應與心房顫動的關聯性。
英文摘要 Introduction

Atrial fibrillation (AF) is the most important clinical arrhythmia which induces cardiac dysfunction and increases mortality and morbidity. Pulmonary veins (PVs) were known to be important sources of ectopic beats with the initiation of paroxysmal atrial fibrillation and the foci of ectopic atrial tachycardia. However, the characteristics of arrhythmogenic cardiomyocytes in left atrium (LA) and pulmonary vein have not been identified.

Aim

The purposes of this study were to evaluate the electrophysiological difference and ion channel properties between mononucleated and binucleated cardiomyocytes in LA and PV.

Material and Methods

Male rabbits of 3months old (n=18; 1.5-2 kg) were sacrificed. Isolated LA-PV cardiomyocytes were obtaied by enzyme. Whole-cell patch clamp and immunostaining were used to study the electroactivity and ion channel of DAPI-identified mononucleated and binucleated cardiomyocytes in LA and PV.

Results

Compared to binucleated cardiomyocytes, mononucleated cardiomyocytes (n=10) have more positive resting membrane potential than binucleated myocytes (n=17) in LA (-57.9±1.0 mV versus -62.2±1.2 mV, P<0.05). Similarly, mononucleated cardiomyocytes (n=10) have more positive resting membrane potential than binucleated cardiomyocytes (n=10) in PV (-56.5±1.1 mV versus -64.0±1.6 mV, P<0.05). In pacemaker PV cardiomyocytes, mononucleated myocytes (n=34) have higher frequency of beating rates than binucleated myocytes (n=34) (2.1±0.2 Hz versus 1.3±0.2 Hz, P<0.05).
Mononucleated cardiomyocytes (n=19) have smaller IK1 current density than binucleated cardiomyocytes (n=12) in PV (-2.6±0.2 pA/pF versus -3.5±0.4 pA/pF, P<0.05). Besides, the ICa,L is larger in mononucleated myocytes (n=16) than in binucleated myocytes (n=15) of LA (-14.2±1.3 pA/pF versus -10.9±0.9 pA/pF, P< 0.05). The ICa,L is also larger in mononucleated cardiomyocytes (n=18) than in binucleated cardiomyocytes (n=18) of LA (-9.3±0.7 pA/pF versus -7.0±0.8 pA/pF, P<0.05). In PV,. the RyR2 density of mononucleated myocytes (n=27) is higher than that of binucleated myocytes (n=17) of LA (100.3±4.2 IU/μm2 versus 85.1±3.3 IU/μm2, P<0.05). The RyR2 density of mononucleated cardiomyocytes (n=16) is also higher than that of binucleated cardiomyocytes (n=18) of PV (139.8±5.0 IU/μm2 versus 124.1±5.4 IU/μm2, P<0.05).

Moreover, the mononucleated myocytes (n=20) had a larger [Ca2+]i transient than the binucleated myocytes (n=10) in LA (F-F0/F0, 0.52±0.06 IU versus 0.19±0.05 IU, P<0.05). Similarly, the amplitude of the [Ca2+]i transient of mononucleated cardioimyocytes (n=15) was also larger than that of binucleated cardiomyocytes (n=10) in PV (F-F0/F0, 0.64±0.09 IU versus 0.20±0.03 IU, P<0.05). In addition, the duration of [Ca2+]i transients of mononucleated myocytes (n=20) was longer than that of binucleated myocytes (n=10) in LA (67.9±6.9 ms versus 40.2±3.7 ms, P<0.05). In PV, as compared with binucleated cardiomyocytes (n=10), the mononucleated cardiomyocytes (n=15) also had a longer duration of [Ca2+]i transients (69.2±5.3 ms versus 45.3±5.9 ms, P<0.05)

Conclusions

The study first demonstrate the different electrophysiology characteristics between mononucleated and binucleated cardiomyocytes in LA and PV. Moreover, this study demonstrated the feasibility to examine the response of mononucleated and binucleated cardiomyocytes to drugs that were shown to induce AF.
論文目次 中文摘要------------------------------------------------------------------------------1
英文摘要------------------------------------------------------------------------------3
第一章 緒論--------------------------------------------------------------------------5
第一節 心房顫動-----------------------------------------------------------------5
第二節 肺靜脈心肌細胞的介紹-----------------------------------------------7
第三節 心律不整的介紹-------------------------------------------------------10
第四節 離子通道與離子流的介紹-------------------------------------------12
第二章 研究目的-------------------------------------------------------------------16
第三章 材料與方法----------------------------------------------------------------17
第一節 實驗動物----------------------------------------------------------------17
第二節 左心房-肺靜脈心肌細胞的分離------------------------------------17
第三節 電生理學的研究-------------------------------------------------------18
第四節 免疫螢光染色的研究-------------------------------------------------21
第五節 試劑與抗體-------------------------------------------------------------23
第六節 實驗數據與統計-------------------------------------------------------25
第四章 實驗結果-------------------------------------------------------------------26
第一節 左心房及肺靜脈單雙核心肌細胞電生理特性的比較---------26
第二節 左心房及肺靜脈單雙核心肌細胞各離子流的比較------------27
第三節 左心房及肺靜脈單雙核心肌細胞各離子通道與鈣離子免疫螢光染色的比較 --------------------------------------------------------28
第五章 討論-------------------------------------------------------------------------31
第一節 左心房及肺靜脈單雙核心肌細胞電生理特性與離子流的探討-----------------------------------------------------------------------------------------32
第二節 左心房及肺靜脈單雙核心肌細胞各離子通道與鈣離子流免疫螢光染色的比較--------------------------------------------------------34
第三節 結論與展望--------------------------------------------------------------35
參考文獻-----------------------------------------------------------------------------37
圖--------------------------------------------------------------------------------------45
參考文獻 1. Pai SM and Torres V. Atrial fibrillation: new management strategies. Curr Probl Cardiol 1993;18: 235-300.
2. Wolf PA, Abbott RD, and Kannel WB. Atrial fibrillation: a major contributor to stroke in the elderly. The Framingham Study. Arch Intern Med 1987;147: 1561-1564.
3. Wolf PA, Dawber TR, Thomas HE, Jr., and Kannel WB. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham study. Neurology 1978;28: 973-977.
4. Nattel S. New ideas about atrial fibrillation 50 years on. Nature 2002;415: 219-226.
5. Kourie JI. Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol 1998;275: C1-24.
6. Garrey WE. Auricular fibrillation. physiol Rev. 1924;4:215-250.
7. Moe GK, Rheinboldt WC, Abildskov JA. A computer model of
atrial fibrillation. Am Heart J. 1964;67:200-220.
8. Bosch RF, Nattel S. Cellular electrophysiology of atrial fibrillation.
Cardiovasc Res. 2002;54:259-269.
9. Allessie MA, Bonke FI, Schopman FJ. Circus movement in rabbit
atrial muscle as a mechanism of tachycardia. III. The "leading
circle" concept: a new model of circus movement in cardiac tissue
without the involvement of an anatomical obstacle. Circ Res.
1977;41:9-18.
10. Allessie M, Ausma J, Schotten U. Electrical, contractile and
structural remodeling during atrial fibrillation. Cardiovasc Res.
2002;54:230-246.
11. Haissaguerre M, Jais P, Shah DC, Gencel L, Pradeau V, Garrigues
S, Chouairi S, Hocini M, Le Metayer P, Roudaut R, Clementy J.
Right and left atrial radiofrequency catheter therapy of paroxysmal
atrial fibrillation. J Cardiovasc Electrophysiol. 1996;7:1132-1144.
12. Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou
G, Garrigue S, Le Mouroux A, Le Metayer P, Clementy J.
Spontaneous initiation of atrial fibrillation by ectopic beats
originating in the pulmonary veins. N Engl J Med. 1998;339:
659-666.
13. Nattel S. Therapeutic implications of atrial fibrillation mechanisms:
can mechanistic insights be used to improve AF management?
Cardiovasc Res. 2002;54:347-360.
14. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA. Atrial
fibrillation begets atrial fibrillation. A study in awake chronically
instrumented goats. Circulation. 1995;92:1954-1968.
15. Cheung DW. Electrical activity of the pulmonary vein and its
interaction with the right atrium in the guinea-pig. J Physiol.
1980;314:445-456.
16. de Bakker JM, Ho SY, Hocini M. Basic and clinical
electrophysiology of pulmonary vein ectopy. Cardiovasc Res.
2002;54:287-294.
17. Verheule S, Wilson EE, Arora R, Engle SK, Scott LR, Olgin JE.
Tissue structure and connexin expression of canine pulmonary
veins. Cardiovasc Res. 2002;55:727-738.
18. Hocini M, Ho SY, Kawara T, Linnenbank AC, Potse M, Shah D,
Jais P, Janse MJ, Haissaguerre M, De Bakker JM. Electrical
conduction in canine pulmonary veins: electrophysiological and
anatomic correlation. Circulation. 2002;105:2442-2448.
19. Spach MS, Barr RC, Jewett PH. Spread of excitation from the
atrium into thoracic veins in human beings and dogs. Am J Cardiol.
1972;30:844-854.
20. Spach MS, Miller WT, III, Dolber PC, Kootsey JM, Sommer JR,
Mosher CE, Jr. The functional role of structural complexities in the
propagation of depolarization in the atrium of the dog. Cardiac
conduction disturbances due to discontinuities of effective axial
resistivity. Circ Res. 1982;50:175-191.
21. Cheung DW. Pulmonary vein as an ectopic focus in digitalis-induced
arrhythmia. Nature. 1981;294:582-584.
22. Masani F. Node-like cells in the myocardial layer of the pulmonary
vein of rats: an ultrastructural study. J Anat. 1986;145:133-142.
23. DeRuiter MC, Gittenberger-De Groot AC, Wenink AC, Poelmann
RE, Mentink MM. In normal development pulmonary veins are
connected to the sinus venosus segment in the left atrium. Anat Rec.
1995;243:84-92.
24. Chen YJ, Chen SA, Chen YC, Yeh HI, Chang MS, Lin CI.
Electrophysiology of single cardiomyocytes isolated from rabbit
pulmonary veins: implication in initiation of focal atrial fibrillation.
Basic Res Cardiol. 2002;97:26-34.
25. Chen YJ, Chen SA, Chen YC, Yeh HI, Chan P, Chang MS, Lin CI.
Effects of rapid atrial pacing on the arrhythmogenic activity of
single cardiomyocytes from pulmonary veins: implication in
initiation of atrial fibrillation. Circulation. 2001;104:2849-2854.
26. Chen SA, Tai CT, Tsai CF, Hsieh MH, Ding YA, Chang MS.
Radiofrequency catheter ablation of atrial fibrillation initiated by
pulmonary vein ectopic beats. J Cardiovasc Electrophysiol. 2000;
11:218-227.
27. Lin WS, Prakash VS, Tai CT, Hsieh MH, Tsai CF, Yu WC, Lin YK,
Ding YA, Chang MS, Chen SA. Pulmonary vein morphology in
patients with paroxysmal atrial fibrillation initiated by ectopic beats
originating from the pulmonary veins: implications for catheter
ablation. Circulation. 2000;101:1274-1281.
28. Wu TJ, Doshi RN, Huang HL, Blanche C, Kass RM, Trento A,
Cheng W, Karagueuzian HS, Peter CT, Chen PS. Simultaneous
biatrial computerized mapping during permanent atrial fibrillation
in patients with organic heart disease. J Cardiovasc Electrophysiol.
2002;13:571-577.
29. Chen MS, Marrouche NF, Khaykin Y, Gillinov AM, Wazni O,
Martin DO, Rossillo A, Verma A, Cummings J, Erciyes D, Saad E,
Bhargava M, Bash D, Schweikert R, Burkhardt D,
Williams-Andrews M, Perez-Lugones A, Abdul-Karim A, Saliba W,
Natale A. Pulmonary vein isolation for the treatment of atrial
fibrillation in patients with impaired systolic function. J Am Coll
Cardiol. 2004;43:1004-1009.
30. Ehrlich JR, Cha TJ, Zhang L, Chartier D, Melnyk P, Hohnloser SH,
Nattel S. Cellular electrophysiology of canine pulmonary vein
cardiomyocytes: action potential and ionic current properties. J
Physiol. 2003;551:801-813.
31. Chen SA, Hsieh MH, Tai CT, Tsai CF, Prakash VS, Yu WC, Hsu
TL, Ding YA, Chang MS. Initiation of atrial fibrillation by ectopic
beats originating from the pulmonary veins: electrophysiological
characteristics, pharmacological responses, and effects of
radiofrequency ablation. Circulation. 1999;100:1879-1886.
32. Chen YJ, Chen SA, Chang MS, Lin CI. Arrhythmogenic activity of
cardiac muscle in pulmonary veins of the dog: implication for the
genesis of atrial fibrillation. Cardiovasc Res. 2000;48:265-273.
33. Chen YC, Chen SA, Chen YJ, Chang MS, Chan P, Lin CI. Effects
of thyroid hormone on the arrhythmogenic activity of pulmonary
vein cardiomyocytes. J Am Coll Cardiol. 2002;39:366-372.
34. Waldo AL and Wit AL. Mechanisms of cardiac arrhythmias. Lancet 1993;341: 1189-1193.
35. Chen YJ, Chen YC, Yeh HI, Lin CI, and Chen SA. Electrophysiology and arrhythmogenic activity of single cardiomyocytes from canine superior vena cava. Circulation 2002;105: 2679-2685.
36. Zeng J and Rudy Y. Early afterdepolarizations in cardiac myocytes: mechanism and rate dependence. Biophys J 1995;68: 949-964.
37. Pogwizd SM and Bers DM. Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc Med 2004;14: 61-66.
38. Verkerk AO, Veldkamp MW, Bouman LN, and van Ginneken AC. Calcium-activated Cl(-) current contributes to delayed afterdepolarizations in single Purkinje and ventricular myocytes. Circulation 2000;101:2639-2644.
39. Kleiman RB, and Houser SR. Calcium currents in normal and
hypertrophied isolated feline ventricular myocytes. Am J Physiol 1998;255:H1434-1442.
40. Kucera JP, Rohr S, and Rudy Y. Localization of sodium channels in
intercalated disks modulates cardiac conduction. Circ Res 2002;91:1176-1182.
41. Kuo HC, Cheng CF, Clark RB, Lin JJ, Lin JL, Hoshijima M, Nguyen-Tran VT, Gu Y, Ikeda Y, Chu PH, Ross J, Giles WR, and Chien KR. A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of I(to) and confers susceptibility to ventricular tachycardia. Cell 2001;107:801-813.
42. Lau CP, Tse HF, and Ayers GM. Defibrillation-guided radiofrequency
ablation of atrial fibrillation secondary to an atrial focus. J Am Coll Cardiol 1999;33:1217-1226.
43. Lebeche D, Kaprielian R, and Hajjar R. Modulation of action potential
duration on myocyte hypertrophic pathways. J Mol Cell Cardiol
2006;40:725-735.
44. Li J, Patel VV, Kostetskii I, Xiong Y, Chu AF, Jacobson JT, Yu C, Morley GE, Molkentin JD, and Radice GL. Cardiac-specific loss of N-cadherin leads to alteration in connexins with conduction slowing and arrhythmogenesis. Circ Res 2005;97: 474-481.
45. DiFrancesco D. The contribution of the ‘pacemaker’ current (if) to generation of spontaneous activity in rabbit sino-atrial node myocytes. J Physiol 1991; 434:23–40.
46. Satoh H. Sino-atrial nodal cells of mammalian hearts: ionic currents and gene expression of pacemaker ionic channels. J Smooth Muscle Res 2003; 39:175–193.
47. Coronado R, Morrissette J, Sukhareva M, Vaughan DN. Structure and function of ryanodine receptors. Am J Physiol Cell Physiol 1994;266: C1485–C1504.
48. Hidalgo C, Bull R, Behrens MI, Donoso P. Redox regulation of RyR-mediated Ca2+ release in muscle and neurons. Biol Res 2004;37: 539–552.
49. Currie S, Smith GL. Enhanced phosphorylation of phospholamban and downregulation of sarco/endoplasmic reticulum Ca2+ ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure. Cardiovasc Res 1999;41(1): 135.
50. Vangheluwe P, Raeymaekers L, Dode L, Wuytack F. Modulating sarco (endo) plasmic reticulum Ca2+ ATPase 2 (SERCA2) activity: cell biological implications. Cell Calcium 2005;38: 291-302.
51. Jonker SS, Zhang L, Louey S, Giraud GD, Thornburg KL, Faber J. Myocyte enlargement, differentiation, and proliferation kinetics in the fetal sheep heart. J Appl Physiol 2007;102: 1130-1142.
52. Soonpaa MH, Field LJ Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 1998;83:15–26.
53. MacLennan DH, and Kranias EG. Phospholamban: a crucial regulator
of cardiac contractility. Nat Rev Mol Cell Biol 2003;4:566-577.
54. Masani F. Node-like cells in the myocardial layer of the pulmonary vein of rats: an ultrastructural study. J Anat 1986;145:133-142.
論文全文使用權限
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446