進階搜尋


  查詢北醫館藏
系統識別號 U0007-1008201116482300
論文名稱(中文) D-乳酸於gentamicin誘導大鼠腎病變下投與atorvastatin 之研究
論文名稱(英文) The study of D-Lactate in rats with gentamicin-induced nephropathy accompanied with atorvastatin treatment
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 99
學期 2
出版年 100
研究生(中文) 李淩堯
研究生(英文) Ling-Yao Lee
學號 M301098010
學位類別 碩士
語文別 中文
口試日期 2011-07-11
論文頁數 93頁
口試委員 指導教授-李仁愛
委員-蔡東湖
委員-陳世銘
中文關鍵字 乳酸  甲基乙二醛  Gentamicin  atorvastatin  腎病變 
英文關鍵字 D-lactate  methylglyoxal  gentamicin  atorvastatin  renal damage 
學科別分類
中文摘要 在我們先前的研究,D-乳酸可能可作為腎損傷的指標,且其前驅物甲基乙二醛(Methylglyoxal ; MG)也為高度氧化壓力的產物,所以本次研究目的在於利用gentamicin(GM)誘導的腎損傷,並給予最近許多文獻報導指出對腎臟具保護效果的atorvastatin(ATO),觀察其腎、
血清、尿中,D-乳酸及甲基乙二醛之間的變化。
本次動物實驗利用Male Wistar Albino rats (340–350 g) 24隻隨機分為4組,每組6隻。組別分別為Normal組、GM誘導組、GM+ATO給藥組及ATO組,並在給藥後10日予以犧牲,觀察其結果。
在結果方面,在腎臟及血清中可觀察到D-lactate及MG在GM誘導組和Normal組相比,皆有明顯的上升(P < 0.01),而GM+ATO的給藥組和GM誘導組相比則可看到D-lactate及MG有下降的效果(P < 0.05)。在尿中MG方面在在誘導後第8天(Day 8)則可觀察到GM誘導組和正常組相比,有上升的效果(P < 0.05)而GM+ATO的治療組和GM誘導組相比則可看到尿中MG有下降的效果(P < 0.05);在尿中D-乳酸方面在誘導後第4天(Day 4) GM誘導組和Normal組相比反而呈現下降的趨勢(P < 0.05),在誘導後第8天(Day 8) GM誘導組雖有微升但和Normal組相比還是呈現下降的結果(P < 0.05)。



所以本次研究可觀察到腎功能的好壞和血中及腎臟中D-lactate具高度相關性,代表D-乳酸對於GM誘導腎病變也有高度的相關性,且D-乳酸前驅物甲基乙二醛也隨著腎病變的進程在腎臟、血清、尿中呈現上升的趨勢,此外ATO對GM造成的腎損傷也有達到改善的效果,但在尿中D-乳酸GM誘導組和Normal組相比反而有下降的趨勢,代表著D-lactate在腎臟有累積,但排除到尿液的量反而較少,很有可能由於腎臟中對於D-lactate再吸收作用受到影響,造成此結果的原因還需做進一步的確認。
英文摘要 In our previous study, D-lactate may be an indicator of renal damage and its precursor methylglyoxal is also a product in high oxidative stress. Therefore, the purpose of this study was to investigate the relationship between methylglyoxal and D-lacate concentration in atorvastatin(ATO)-treated gentamicin(GM)-induced nephrotoxicity animal model.
Twenty-four male wistar rats with 8 weeks of age (340 - 350 g) rats were randomly divided into normal , GM alone, GM + ATO groups , and ATO alone.
The results showed that In kidney, GM group compare with normal cause apparently increase of methylglyoxal(P < 0.01) and D-lactate(P < 0.01); GM+ATO group compare with GM group showed lower concentrations of methylglyoxal (P < 0.05)and D-lactate (P < 0.05). In serum, GM also caused the increase of methylglyoxal compared with normal group(P < 0.01) and D-lactate (P < 0.05);the GM+ATO group compare with GM group showed lower concentrations of methylglyoxal (P < 0.05)and D-lactate (P < 0.05).In urine MG, after 8 days treated with drugs, GM group compare with normal cause increase of methylglyoxal (P < 0.05), GM+ATO group compare with GM group(P < 0.05). In urine D-lactate, after 4 days treated with drugs, GM group compare with normal cause decrease of D-lactate(P < 0.05) after 8 days treated with drugs, GM group compare with normal also cause decrease of D-lactate(P < 0.05).
According to the lab data, the renal damage was induced successfully, the stage of GM-induced renal damage was consistent with D-lactate concentration in kidney and serum. Therefore, D-lactate may be an indicator of GM-induced renal damage. The concentrations of methylglyoxal, a precursor of D-lactate, were also elevated under GM-induced renal damage. On the other hand, ATO decreased the concentrations of both methylglyoxal and D-lactate in gentamicin-induced rats. However, in urine the GM group compare with normal cause decrease of D-lactate. It represents D-lactate accumulate in
kidney, excretion less in urine. It may relate to D-lactate reabsorption in kidney.
論文目次 目錄
第一章 緒論............................................................................................... 1
第一節 乳酸(Lactic acid)基本背景簡介 ......................................... 1
1-1.1 乳酸之結構及特性 ............................................................ 1
1-1.2 D-Lactate來源 ..................................................................... 3
第二節 甲基乙二醛(Methylglyoxal ; MG)之來源及病理特性 .. 6
1-2.1 MG之來源 .......................................................................... 6
1-2.2 MG之病理特性 .................................................................. 9
1-2.3醣化終產物 (Advanced Glycation Endproducts, AGEs)之病理特性 .............................................................................. 10
第三節D-Lactate相關疾病 .............................................................. 11
1-3.1 D-乳酸中毒 ........................................................................ 12
1-3.2 短腸症候群(short-bowel syndrome;SBS) ............... 12
1-3.3 腹瀉 .................................................................................. 13
1-3.4神經毒性(Neurotoxicity) ............................................. 13
第四節 D-Lactate之藥動學特性 ..................................................... 14
1-4.1 D-Lactate之吸收 ............................................................... 14
1-4.2 D-Lactate之代謝 ............................................................... 16
II
1-4.3 D-Lactate之排泄 ............................................................... 17
第五節 Gentamicin基本資料介紹 .................................................. 18
1-5.1 Gentamicin結構及臨床用途 ............................................ 18
1-5.2 Gentamicin之臨床毒性 .................................................... 19
1-5.3 GM腎毒性(Nephrotoxiety)可能機制 .............................. 21
1-5.4 GM之藥物動力學 ............................................................ 22
第六節Statin基本資料介紹 ............................................................ 23
1-6.1 Statin結構及簡介 ............................................................. 23
1-6.2 Statin 對於腎臟保護的作用 ............................................ 28
1-6.3 Atorvastatin之藥動學特性 ..................................................
第二章 實驗材料與方法 ........................................................................ 32
第一節 實驗試藥及儀器.................................................................. 32
2-1.1實驗試藥 ........................................................................... 32
2-1.2實驗儀器 ........................................................................... 33
第二節 動物實驗方法及分組 ......................................................... 35
2-2.1動物實驗 ........................................................................... 35
2-2.2實驗分組 ........................................................................... 36
2-2.3腎臟及血液樣品收集 ....................................................... 37
2-2.4尿液收集 ........................................................................... 37
III
第三節 D-Lactate分析法 ................................................................. 39
2-3.1螢光衍生化法 ................................................................... 40
2-3.2分析方法 ........................................................................... 40
2-3.3 Column-switching system ................................................. 41
2-3.4 D-lactate 樣品製備 ........................................................... 43
2-3.5 分析條件 .......................................................................... 44
第四節MG之分析法 ....................................................................... 46
2-4.1螢光衍生化法 ................................................................... 46
2-4.2 HPLC條件 ........................................................................ 47
2-4.3 MG樣品配置 .................................................................... 47
第五節Creatinine分析法 ................................................................. 48
第六節 統計方法 .............................................................................. 50
第三章實驗結果 ...................................................................................... 51
第一節 檢量線線性 .......................................................................... 51
3-1.1 D-lactate檢量線線性 (Linearity) ..................................... 51
3-1.2 MG檢量線線性 (Linearity) ............................................ 54
第二節 血液生化指標變化 ............................................................. 56
第三節腎臟MG及D-lactate之結果 ............................................... 59
第四節血清MG及D-lactate之結果 ............................................... 62
第五節尿液MG及D-lactate之結果 ............................................... 65
IV
第四章 討論............................................................................................. 73
第一節GM誘導腎損傷與血中生化值、腎臟切片組織之關係 ... 73
第二節GM誘導腎損傷後腎臟及血清中D-lactate, MG
的變化………………………………………………... 75
第三節 GM對於大鼠腎臟及血清中D-lactate、MG造成變化的可能原因 .......................................................................................................... 77
第四節ATO對於GM誘導腎損傷大鼠腎臟及血清D-lactate、MG造成變化的可能原因 ................................................................................ 80
第五節D-lactate, MG在GM誘導後在尿液中的變化 ............................ 82
參考文獻 ...................................................................................................
參考文獻 參考文獻
Abeysekara S, Naylor JM, Wassef AWA, Isak U, Zello GA (2007). D-Lactic acid-induced neurotoxicity in a calf model. American Journal of Physiology - Endocrinology and Metabolism 293(2): E558-E565.
Ali BH (2003). Agents ameliorating or augmenting experimental gentamicin nephrotoxicity: Some recent research. Food and Chemical Toxicology 41(11): 1447-1452.
Antons KA, Williams CD, Baker SK, Phillips PS (2006). Clinical Perspectives of Statin-Induced Rhabdomyolysis. American Journal of Medicine 119(5): 400-409.
Aronson PS (1996). Role of ion exchangers in mediating NaCl transport in the proximal tubule. Kidney International 49(6): 1665-1670.
Athyros VG, Mikhailidis DP, Papageorgiou AA, Symeonidis AN, Pehlivanidis AN, Bouloukos VI, et al. (2004). The effect of statins versus untreated dyslipidaemia on renal function in patients with coronary heart disease. A subgroup analysis of the Greek atorvastatin and coronary heart disease evaluation (GREACE) study. Journal of Clinical Pathology 57(7): 728-734.
Banday AA, Farooq N, Priyamvada S, Yusufi ANK, Khan F (2008). Time dependent effects of gentamicin on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in rat kidney tissues. Life Sciences 82(9-10): 450-459.
Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990). Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences of the United States of America 87(4): 1620-1624.
Beisswenger PJ, Howell SK, Touchette AD, Lal S, Szwergold BS (1999). Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes 48(1): 198-202.
85
Bongaerts G, Bakkeren J, Severijnen R, Sperl W, Willems H, Naber T, et al. (2000). Lactobacilli and acidosis in children with short small bowel. Journal of Pediatric Gastroenterology and Nutrition 30(3): 288-293.
Bongaerts G, Tolboom J, Naber T, Bakkeren J, Severijnen R, Willems H (1995). D-lactic acidemia and aciduria in pediatric and adult patients with short bowel syndrome. Clinical Chemistry 41(1): 107-110.
Brandt RB, Siegel SA, Waters MG, Bloch MH (1980). Spectrophotometric assay for D-(-)-lactate in plasma. Analytical Biochemistry 102(1): 39-46.
Casazza JP, Felver ME, Veech RL (1984). The metabolism of acetone in rat. Journal of Biological Chemistry 259(1): 231-236.
Chen LF, Kaye D (2009). Current Use for Old Antibacterial Agents: Polymyxins, Rifamycins, and Aminoglycosides. Infectious Disease Clinics of North America 23(4): 1053-1075.
Christensen M, Su AW, Snyder RW, Greco A, Lipschutz JH, Madaio MP (2006). Simvastatin protection against acute immune-mediated glomerulonephritis in mice. Kidney International 69(3): 457-463.
Christopher MM, Broussard JD, Fallin CW, Drost NJ, Peterson ME (1995). Increased serum D-lactate associated with diabetic ketoacidosis. Metabolism: Clinical and Experimental 44(3): 287-290.
Clugston SL, Yajima R, Honek JF (2004). Investigation of metal binding and activation of Escherichia coli glyoxalase I: Kinetic, thermodynamic and mutagenesis studies. Biochemical Journal 377(2): 309-316.
Cooper ME, Bonnet F, Oldfield M, Jandeleit-Dahm K (2001). Mechanisms of diabetic vasculopathy: An overview. American Journal of Hypertension 14(5 I): 475-486.
de Vrese M, Barth CA (1991). Postprandial plasma D-lactate concentrations after yogurt ingestion. Zeitschrift für Ernährungswissenschaft 30(2): 131-137.
Demircan M, Caglayan F, Deysine M, Fath JJ (2004). Plasma D-lactate level: A useful
86
marker to distinguish a perforated appendix from acute simple appendicitis. Journal of Investigative Surgery 17(3): 173-178.
Deng Y, Boomsma F, Yu PH (1998). Deamination of methylamine and aminoacetone increases aldehydes and oxidative stress in rats. Life Sciences 63(23): 2049-2058.
Dhar A, Desai K, Kazachmov M, Yu P, Wu L (2008). Methylglyoxal production in vascular smooth muscle cells from different metabolic precursors. Metabolism: Clinical and Experimental 57(9): 1211-1220.
Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, et al. (2000). Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proceedings of the National Academy of Sciences of the United States of America 97(22): 12222-12226.
Eller P, Eller K, Wolf AM, Reinstadler SJ, Tagwerker A, Patsch JR, et al. (2010). Atorvastatin attenuates murine anti-glomerular basement membrane glomerulonephritis. Kidney International 77(5): 428-435.
Erdem A, Gündoǧan NU, Usubütün A, Kilinç K, Erdem SR, Kara A, et al. (2000). The protective effect of taurine against gentamicin-induced acute tubular necrosis in rats. Nephrology Dialysis Transplantation 15(8): 1175-1182.
Ewaschuk JB, Naylor JM, Palmer R, Whiting SJ, Zello GA (2004). D-lactate production and excretion in diarrheic calves. Journal of Veterinary Internal Medicine 18(5): 744-747.
Ewaschuk JB, Naylor JM, Zello GA (2003). Anion Gap Correlates with Serum D- and DL-Lactate Concentration in Diarrheic Neonatal Calves. Journal of Veterinary Internal Medicine 17(6): 940-942.
Fried LF (2008). Effects of HMG-CoA reductase inhibitors (statins) on progression of kidney disease. Kidney International 74(5): 571-576.
Gnerer JP, Kreber RA, Ganetzky B (2006). wasted away, a Drosophila mutation in triosephosphate isomerase, causes paralysis, neurodegeneration, and early death. Proceedings of the National Academy of Sciences of the United States of America
87
103(41): 14987-14993.
Halperin ML, Kamel KS (1996). D-lactic acidosis: Turning sugar into acids in the gastrointestinal tract. Kidney International 49(1): 1-8.
Hamelin BA, Turgeon J (1998). Hydrophilicity/Lipophilicity: Relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends in Pharmacological Sciences 19(1): 26-37.
Haschke-Becher E, Baumgartner M, Bachmann C (2000). Assay of D-lactate in urine of infants and children with reference values taking into account data below detection limit. Clinica Chimica Acta 298(1-2): 99-109.
Hoare GS, Marczin N, Chester AH, Yacoub MH (1999). Role of oxidant stress in cytokine-induced activation of NF-κB in human aortic smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology 277(5 46-5): H1975-H1984.
Inoue Y, Kimura A (1995). Methylglyoxal and regulation of its metabolism in microorganisms. Advances in Microbial Physiology 37: 177-227.
Jagt DLV, Hunsaker LA, Jagt TJV, Gomez MS, Gonzales DM, Deck LM, et al. (1997). Inactivation of glutathione reductase by 4-hydroxynonenal and other endogenous aldehydes. Biochemical Pharmacology 53(8): 1133-1140.
Kalapos MP (2008). The tandem of free radicals and methylglyoxal. Chemico-Biological Interactions 171(3): 251-271.
Kasari TR (1999). Metabolic acidosis in calves. The Veterinary clinics of North America. Food animal practice 15(3): 473-486, v.
Kimitsuki T, Ohmori H (1993). Dihydrostreptomycin modifies adaptation and blocks the mechano-electric transducer in chick cochlear hair cells. Brain Research 624(1-2): 143-150.
Laurent G, Carlier MB, Rollman B (1982). Mechanism of aminoglycoside-induced lysosomal phospholipidosis: In vitro and in vivo studies with gentamicin and amikacin. Biochemical Pharmacology 31(23): 3861-3870.
88
Laurent G, Kishore BK, Tulkens PM (1990). Aminoglycoside-induced renal phospholipidosis and nephrotoxicity. Biochemical Pharmacology 40(11): 2383-2392.
Li C, Sun WL, Bum SC, Suk HL, Jung HC, In SK, et al. (2005). Inhibitory effect of pravastatin on transforming growth factor β1-inducible gene h3 expression in a rat model of chronic cyclosporine nephropathy. American Journal of Nephrology 25(6): 611-620.
Liao JK (2002a). Beyond lipid lowering: The role of statins in vascular protection. International Journal of Cardiology 86(1): 5-18.
Liao JK (2002b). Isoprenoids as mediators of the biological effects of statins. Journal of Clinical Investigation 110(3): 285-288.
Lin RY, Vera JC, Chaganti RS, Golde DW (1998). Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter. The Journal of biological chemistry 273(44): 28959-28965.
Lipsky JJ, Cheng L, Sacktor B, Lietman PS (1980). Gentamicin uptake by renal tubule brush border membrane vesicles. Journal of Pharmacology and Experimental Therapeutics 215(2): 390-393.
Liu W, Li WM, Gao C, Sun NL (2005). Effects of atorvastatin on the Th1/Th2 polarization of ongoing experimental autoimmune myocarditis in Lewis rats. Journal of Autoimmunity 25(4): 258-263.
Loidl-Stahlhofen A, Hannemann K, Spiteller G (1995). Detection of short-chain α-hydroxyaldehydic compounds as pentafluorbenzyloxime derivatives in bovine liver. Chemistry and Physics of Lipids 77(1): 113-119.
Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez FJ (2011). New insights into the mechanism of aminoglycoside nephrotoxicity: An integrative point of view. Kidney International 79(1): 33-45.
Lord LM, Schaffner R, DeCross AJ, Sax HC (2000). Management of the patient with short bowel syndrome. AACN clinical issues 11(4): 604-618.
Ma XL, Baraona E, Hernandez-Munoz R, Lieber CS (1989). High levels of acetaldehyde
89
in nonalcoholic liver injury after threonine or ethanol administration. Hepatology 10(6): 933-940.
Maglio D, Nightingale CH, Nicolau DP (2002). Extended interval aminoglycoside dosing: From concept to clinic. International Journal of Antimicrobial Agents 19(4): 341-348.
Marsilio R, Dall'Amico R, Giordano G, Murer L, Montini G, Ros M, et al. (1999). Rapid determination of creatinine in serum and urine by ion-pair high-performance liquid chromatography. International Journal of Clinical and Laboratory Research 29(3): 103-109.
Mayne AJ, Handy DJ, Preece MA, George RH, Booth IW (1990). Dietary management of D-lactic acidosis in short bowel syndrome. Archives of Disease in Childhood 65(2): 229-231.
McLellan AC, Phillips SA, Thornalley PJ (1992a). The assay of methylglyoxal in biological systems by derivatization with 1,2-diamino-4,5-dimethoxybenzene. Analytical Biochemistry 206(1): 17-23.
McLellan AC, Phillips SA, Thornalley PJ (1992b). Fluorimetric assay of D-lactate. Analytical Biochemistry 206(1): 12-16.
Miyata T, Van Ypersele de Strihou C, Imasawa T, Yoshino A, Ueda Y, Ogura H, et al. (2001). Glyoxalase I deficiency is associated with an unusual level of advanced glycation end products in a hemodialysis patient. Kidney International 60(6): 2351-2359.
Moore RD, Lietman PS, Smith CR (1987). Clinical response to aminoglycoside therapy: Importance of the ratio of peak concentration to minimal inhibitory concentration. Journal of Infectious Diseases 155(1): 93-99.
Nair PK, Mulukutla SR, Marroquin OC (2010). Stents and statins: History, clinical outcomes and mechanisms. Expert Review of Cardiovascular Therapy 8(9): 1283-1295.
Oh MS, Uribarri J, Alveranga D (1985). Metabolic utilization and renal handling of D-lactate in men. Metabolism: Clinical and Experimental 34(7): 621-625.
90
Ohmori S, Iwamoto T (1988). Sensitive determination of D-lactic acid in biological samples by high-performance liquid chromatography. Journal of Chromatography - Biomedical Applications 431(2): 239-247.
Onai Y, Suzuki JI, Kakuta T, Maejima Y, Haraguchi G, Fukasawa H, et al. (2004). Inhibition of IκB phosphorylation in cardiomyocytes attenuates myocardial ischemia/reperfusion injury. Cardiovascular Research 63(1): 51-59.
Ota T, Takamura T, Ando H, Nohara E, Yamashita H, Kobayashi K (2003). Preventive effect of cerivastatin on diabetic nephropathy through suppression of glomerular macrophage recruitment in a rat model. Diabetologia 46(6): 843-851.
Ozbek E, Cekmen M, Ilbey YO, Simsek A, Polat EC, Somay A (2009). Atorvastatin prevents gentamicin-induced renal damage in rats through the inhibition of p38-MAPK and NF-kB pathways. Renal Failure 31(5): 382-392.
Pérez V, Navarro-Muñoz M, Bayés B, Lauzurica R, Pastor MC, Troya M, et al. (2009). Effect of Low Doses of Atorvastatin on the Urinary Peptide Profile of Kidney Transplant Patients. Transplantation Proceedings 41(6): 2111-2114.
Pierno S, Didonna MP, Cippone V, De Luca A, Pisoni M, Frigeri A, et al. (2006). Effects of chronic treatment with statins and fenofibrate on rat skeletal muscle: A biochemical, histological and electrophysiological study. British Journal of Pharmacology 149(7): 909-919.
Polat A, Parlakpinar H, Tasdemir S, Colak C, Vardi N, Ucar M, et al. (2006). Protective role of aminoguanidine on gentamicin-induced acute renal failure in rats. Acta Histochemica 108(5): 365-371.
Priuska EM, Schacht J (1995). Formation of free radicals by gentamicin and iron and evidence for an iron/gentamicin complex. Biochemical Pharmacology 50(11): 1749-1752.
Racker E (1951). The mechanism of action of glyoxalase. The Journal of biological chemistry 190(2): 685-696.
Ramakrishnan T, Stokes P (1985). Beneficial effects of fasting and low carbohydrate
91
diet in D-lactic acidosis associated with short-bowel syndrome. Journal of Parenteral and Enteral Nutrition 9(3): 361-363.
Reisin E, Ebenezer PJ, Liao J, Lee BS, Larroque M, Hu X, et al. (2009). Effect of the HMG-Coa reductase inhibitor rosuvastatin on early chronic kidney injury in obese zucker rats fed with an atherogenic diet. American Journal of the Medical Sciences 338(4): 301-309.
Roberts JP, Shackford S, Peters RM (1989). Metabolism of D lactate in patients receiving hypertonic sodium lactate solution. Surgery Gynecology and Obstetrics 168(5): 429-432.
Rosenson RS (2004). Current Overview of Statin-Induced Myopathy. American Journal of Medicine 116(6): 408-416.
Rybak MJ, Abate BJ, Kang SL, Ruffing MJ, Lerner SA, Drusano GL (1999). Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity. Antimicrobial Agents and Chemotherapy 43(7): 1549-1555.
Samadian T, Dehpour AR, Amini S, Nouhnejad P (1993). Inhibition of gentamicin-induced nephrotoxicity by lithium in rat. Histology and Histopathology 8(1): 139-147.
Sassen MC, Kim SW, Kwon TH, Knepper MA, Miller RT, Frøkiær J, et al. (2006). Dysregulation of renal sodium transporters in gentamicin-treated rats. Kidney International 70(6): 1026-1037.
Shepherd J, Kastelein JJP, Bittner V, Deedwania P, Breazna A, Dobson S, et al. (2007). Effect of intensive lipid lowering with atorvastatin on renal function in patients with coronary heart disease: The Treating to New Targets (TNT) study. Clinical Journal of the American Society of Nephrology 2(6): 1131-1139.
Silverblatt FJ, Kuehn C (1979). Autoradiography of gentamicin uptake by the rat proximal tubule cell. Kidney International 15(4): 335-345.
Stepieo K, Tomaszewski M, Czuczwar SJ (2005). Neuroprotective properties of statins. Pharmacological Reports 57(5): 561-569.
92
Takada M, Schacht J (1982). Calcium antagonism and reversibility of gentamicin-induced loss of cochlear microphonics in the guinea pig. Hearing Research 8(2): 179-186.
Thornalley PJ (2002). Glycation in diabetic neuropathy: Characteristics, consequences, causes, and therapeutic options Vol. 50, pp 37-57.
Thornalley PJ (2003). Glyoxalase I - Structure, function and a critical role in the enzymatic defence against glycation. Biochemical Society Transactions 31(6): 1343-1348.
Thornalley PJ (1993). The glyoxalase system in health and disease. Molecular Aspects of Medicine 14(4): 287-371.
Thornalley PJ (1990). The glyoxalase system: New developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochemical Journal 269(1): 1-11.
Thornalley PJ (1988). Modification of the glyoxalase system in human red blood cells by glucose in vitro. Biochemical Journal 254(3): 751-755.
Tugcu V, Ozbek E, Tasci AI, Kemahli E, Somay A, Bas M, et al. (2006). Selective nuclear factor κ-B inhibitors, pyrolidium dithiocarbamate and sulfasalazine, prevent the nephrotoxicity induced by gentamicin. BJU International 98(3): 680-686.
Ullrich KJ, Rumrich G, Kloss S, Fasold H (1982). Reabsorption of monocarboxylic acids in the proximal tubule of the rat kidney. III. Specificity for aromatic compounds. Pflugers Archiv European Journal of Physiology 395(3): 227-231.
Uribarri J, Oh MS, Carroll HJ (1998). D-lactic acidosis: A review of clinical presentation, biochemical features, and pathophysiologic mechanisms. Medicine 77(2): 73-82.
Vander Jagt DL (1993). Glyoxalase II: Molecular characteristics, kinetics and mechanism. Biochemical Society Transactions 21(2): 522-527.
Volpini RA, Balbi APC, Costa RS, Coimbra TM (2006). Increased expression of p38 mitogen-activated protein kinase is related to the acute renal lesions induced by
93
gentamicin. Brazilian Journal of Medical and Biological Research 39(6): 817-823.
Wang H, Meng QH, Chang T, Wu L (2006). Fructose-induced peroxynitrite production is mediated by methylglyoxal in vascular smooth muscle cells. Life Sciences 79(26): 2448-2454.
Ward RA, McLeish KR (2004). Methylglyoxal: A stimulus to neutrophil oxygen radical production in chronic renal failure? Nephrology Dialysis Transplantation 19(7): 1702-1707.
Whaley-Connell A, Demarco VG, Lastra G, Manrique C, Nistala R, Cooper SA, et al. (2008). Insulin resistance, oxidative stress, and podocyte injury: Role of rosuvastatin modulation of filtration barrier injury. American Journal of Nephrology 28(1): 67-75.
Wright MR, Jamali F (1993). Methods for the analysis of enantiomers of racemic drugs application to pharmacological and pharmacokinetic studies. Journal of Pharmacological and Toxicological Methods 29(1): 1-9.
Wu L, Juurlink BHJ (2002). Increased methylglyoxal and oxidative stress in hypertensive rat vascular smooth muscle cells. Hypertension 39(3): 809-814.
Yanagida C, Ito K, Komiya I, Horie T (2004). Protective effect of fosfomycin on gentamicin-induced lipid peroxidation of rat renal tissue. Chemico-Biological Interactions 148(3): 139-147.
論文全文使用權限
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446