進階搜尋


  查詢北醫館藏
系統識別號 U0007-0708200715520500
論文名稱(中文) 利用經個別皮膚的生化參數因子標準化之皮膚滲透係數以建構滲透係數與結構特質之定量相關性
論文名稱(英文) Construction of Quantitative Structure Permeability Relationship (QSPR) with Skin Permeability Normalized to Biological Parameters of Individual Skin
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 95
學期 2
出版年 96
研究生(中文) 楊鈞仁
研究生(英文) Chun-Jen Yang
學號 M301094005
學位類別 碩士
語文別 中文
口試日期 2007-07-17
論文頁數 139頁
口試委員 委員-林山陽
委員-蔡義弘
委員-許明照
指導教授-何秀娥
中文關鍵字 滲透係數與結構特質之定量相關性  皮膚滲透係數 
英文關鍵字 Quantitative Structure Permeability Relationship  Skin Permeability 
學科別分類
中文摘要 由於皮膚滲透力 (permeability) 是描述滲透質經由皮膚吸收之效能的重要指標,所以藥物分子之皮膚滲透力常被用於評估藥物傳遞系統經由皮膚吸收的效力。而傳統結構與滲透力定量關係式(QSPR) 是建立在以平均的皮膚滲透力與滲透質之分子量、正辛醇與水分配係數(Ko/w)之間的定量關係。本研究擬以aspirin、diclofenac sodium、diflunisal、flufenamic acid、ibuprofen sodium、ketoprofen、nabumetone、naproxen、piroxicam和tenoxicam 為模式藥物進行體外穿皮實驗,計算其對個別鼠皮的皮膚滲透力以考慮到BALB/nu品系之裸鼠皮生理特性參數 (經皮水分散失、皮膚水分含量、皮膚油脂含量、真皮層彈性纖維量及皮膚彈性係數) 之可能影響性。而在QSPR 建構模式除考慮分子量與正辛醇與水分配係數之外,進一步將模式藥物依照分子極性分為兩群組 (clog P值小於2及clog P值大於2),分析探討藥物本身之分子量及分子極性與不同個體間皮膚結構差異性對於藥物皮膚滲透力之影響,並評估不同極性之模式藥物經由皮膚滲透吸收其可能的路徑與機制。

實驗結果顯示,如只將本次實驗所選用之十個模式藥物的分子量及分子極性與其體外穿皮吸收實驗所得之皮膚滲透係數進行回歸分析,可得到下列QSPR方程式:


kp:permeation coefficient;MW:molecular weight;
clog P:calculated octanol-water partition coefficient

本篇研究所得之QSPR方程式與文獻報導關係式相符合( ,Potts,1992),證明本實驗所獲得的皮膚穿透力數據具有足夠的可信度。若將上述QSPR方程式依照分子極性細分為兩群組探討,再一併考慮皮膚生理特性參數對於皮膚滲透力的影響,其分析結果如下:

clog P < 2 (ibuprofen sodium, diclofenac sodium, flufenamic aicd, aspirin and tenoxicam):


clog P > 2 (ketoprofen, naproxen, piroxicam, nabumetone and diflunisal)


由兩群組模式藥物之kp預測關係式皆可證實,除了藥物分子量與分子極性會影響皮膚滲透力以外,本研究所探討五種皮膚生理特性之中,與藥物皮膚滲透力最為相關的為經皮水分散失數值,兩者均呈現正相關之關係;此外,在依不同極性模式藥物分組而建立的kp預估關係式中,藥物分子量皆呈現負相關影響而藥物分子極性皆呈現正相關影響,其中clog P > 2之模式藥物受其分子特性的影響較clog P < 2之模式藥物更為顯著。另一方面,藥物穿透過角質層的路徑主要分為三種路徑:直接穿透過角質細胞 (transcellular)、穿透角質細胞間隙脂質部分 (intercellular) 與經由皮膚器官吸收(transappendageal);實驗結果顯示較為親水性之藥物 (clog P < 2) 其穿透角質層的路徑可能為直接穿透過角質細胞,較為親脂性之藥物(clog P > 2) 可能為穿透角質細胞間隙的脂質組成部分。其原因可能為在於intercellular滲透路徑多為脂質緻密組成,而transcellular滲透路徑則為親水性的纖維角質蛋白,因此經由intercellular路徑滲透的藥物其皮膚滲透力受到分子大小 (分子量) 與分子極性的影響較為顯著。總結來說,分析探討皮膚的生理特性參數將有助於改善以藥物的分子特性所建構之QSPR模式的預測結果。

英文摘要 Skin permeability is used as a key parameter for describing the percutaneous transport of solutes, and as such, it is essential for designing and evaluating the efficacy of drug delivery system through the skin. Historically, quantitative structure-permeability relationships (QSPR) have been constructed between the average permeability coefficient (kp) of solutes through the skin and their molecular weight (MW) and octanol water partition coefficient, Ko/w. However, it was recognized that QSPR model evaluation should take into consideration of the possible impact of biological parameters of skin (transepidermal water loss (TWEL), hydration content, lipid content, resonance running time, and elasticity) on drug permeation and the permeation through different penetration routes in the skin for those drugs with different lipophilicity (calculated octanol-water partition coefficient, clog P) was influenced by various physicochemical factors of drug at different extent. In this study, the in vitro permeation study of ten model drugs divided into two groups (clog P < 2, ibuprofen sodium, diclofenac sodium, flufenamic aicd, aspirin and tenoxicam; and clog P > 2, ketoprofen, naproxen, piroxicam, nabumetone and diflunisal) through individual nude mice skin was examined to determine individual kp and the biological parameters for each individual skin were measured as well. The MW and clog P of model drugs and the biological parameters of skin all were then taken into consideration in the construction of QSPR model for individual kp. The preliminary results show that a simple relationship between the kp and the MW and clogP of ten model drugs was obtainable:


kp:permeation coefficient;MW:molecular weight;
clog P:calculated octanol-water partition coefficient

The permeability data was considered to be validated since this relationship was found to be consistent with that reported in the literature ( ,Potts,1992). QSPR relationship was then constructed according to the lipophilicity of model drugs as defined above with including the biological parameters of individual nude mice skin as variables and results were obtained as followed:

clog P < 2:


clog P > 2:


Both relationships demonstrate that except MW and clog P, TEWL was the only biological parameters of the skin was statistically examined to be positively influential at the similar extent on kp for both groups of model drug. The MW and clog P of drugs have the same negative and positive effects, respectively, on kp for two groups of drugs with clog P > 2 and clog P < 2, but the influential extent for the former greater than that for the latter. In terms of three main routes for drugs penetration through the stratum corneum: transcellular, intercellular and transappendageal route, hydrophilic drugs (clog P < 2) might be mainly transported through the transcellular pathway while lipophilic drugs (clog P > 2) through the intercellular pathway. It was reasoned that lipid compositions and integrity in the intercellular route might have greater influence on drug permeation in term of molecular size (MW) and lipophilicity than that for the transcellular route that was filled with hydrophilic and fibrous keratin. In conclusion, QSPR model evaluation for kP based on the lipophilicity of model drugs could be statistically improved with taking into consideration of the biological parameters of the skin.
論文目次 目錄……………………………………………………………………………………1
附圖目錄………………………………………………………………………………3
附表目錄………………………………………………………………………………6
中文摘要………………………………………………………………………………8
Abstract……………………………………………………………………………...11
第一章 緒論………………………………………………………………………..14
第一節 研究背景介紹…………………………………………………………..14
一、 經皮給藥製劑之特性與給藥途徑……………………………………14
二、 影響經皮吸收之因素…………………………………………………17
三、 皮膚生理參數特質……………………………………………………23
四、 模式藥物之概述………………………………………………………25
五、 藥物穿透評估之實驗理論……………………………………………29
六、 藥物結構與滲透力定量關係式(QSPR)之原理與應用………………31
第二節 研究動機………………………………………………………………..33

第二章 實驗材料與方法…………………………………………………………34
第一節 實驗材料………………………………………………………………34
第二節 儀器設備………………………………………………………………35
第三節 實驗方法………………………………………………………………37
一、 模式藥物分析方法……………………………………………………37
二、 模式藥物溶解度分析…………………………………………………45
三、 模式藥物分子極性分析………………………………………………46
四、 裸鼠皮膚特性評估實驗………………………………………………47
五、 體外穿皮吸收試驗……………………………………………………53
六、 數據分析處理…………………………………………………………54

第三章 結果與討論………………………………………………………………55
第一節 模式藥物分析確效……………………………………………………55
第二節 模式藥物溶解度分析…………………………………………………86
第三節 模式藥物分子極性分析………………………………………………87
第四節 裸鼠皮膚參數評估及其關聯性研究…………………………………88
第五節 模式藥物體外穿皮吸收試驗…………………………………………99
第六節 滲透係數評估關係式之建立與探討…………………………………111

第四章 結論………………………………………………………………………128
第五章 參考文獻…………………………………………………………………131

附件1 統計資料……………………………………………………………………136
附件2 統計資料……………………………………………………………………138
附件3 統計資料……………………………………………………………………139

參考文獻 Abraham M., Chada H., Martins F., Mitchell R., Bradbury M.,Gratton J., Hydrogen bonding part 46 A review of thecorrelation and prediction of transport properties by an LFERmethod: physicochemical properties, brain penetration and skinpermeability. Pestic. Sci. (1999) 55:78–88.

Abraham M., Chada H., Martins F., Mitchell R., The factors that influence skin penetration of solutes. J. Pharm. Pharmacol. (1995) 47:8–16.

Abraham M., Chada H., Martins F., Human skin permeation partition: general linear free-energy relationship analyses. J.Pharm. Sci. (2004) 93:1508–1523.

Al-Saidan S. M., Transdermal self-permeation enhancement of
ibuprofen. J. Control. Release (2004) 100:199-209.

Bonte F., Pinguet P., Chevalier J. M., Meybeck A., Analysis of
all stratum corneum lipids by automated multiple development
high-performance thin-layer chromatography. J. Chromatogr. B
(1995) 664:311–316.

Elias P., Epidermal lipids, barrier function and desquamationJ.Invest. Dermatol. (1983) 80:44–49.

Fillet M., Heugen J. C., Servais A. C., Graeve J., Crommen J.,
Separation, identification and quantitation of ceramides
in human cancer cells by liquid chromatographyelectrospray
ionization tandem mass spectrometry. J. Chromatogr. A (2002)
949:225–233.

Fluhr J. W., Feingold K. R., Elias P. M., Transepidermal water loss
reflects permeability barrier status: validation in human and
rodent in vivo and ex vivo models. Exp. Dermatol. (2006) 15:
483–492.

Gaudin K., Chaminade P., Ferrier D., Baillet A., Tchapla A.,
Analysis of commercial ceramides by non-aqueous reversed
-phase liquid chromatography with evaporative light-scattering
detection. Chromatographia (1999) 49:241–248.

Gray G. M., Yardley H. J., Lipid compositions of cells isolated from
pig, human, and rat epidermis. J. Lipid Res. (1975) 16:434–440.

Hadgraft J., Plessis J., Goosen C., The selection of non-steroidal
anti-inflammatory agents for dermal delivery. Int. J. Pharm.
(2000) 207:1-7.

Hansch C., Dunn W., Linear relationships between lipophilic
character and biological activity of drugs, J. Pharm. Sci. (1972)
61:1–19.

Hany F., Johannes W., Reinhard H., Neuberta H., Klaus R.,
Profiling of human stratum corneum ceramides by means of
normal phase LC/APCI–MS. Anal. Bioanal. Chem. (2005) 383:
632–637.

Jackie L., Howard M., The correlation between transepidermal
water loss and percutaneous absorption: an overview. J. Control.
Release (2005) 103:291-299.

Lampe M. A., Burlingame A. L., J. Whitney, Williams M. L.,
Brown B. E., Roitman E., Elias P. M., Human stratum corneum
lipids: characterization and regional variations. J. Lipid Res.
(1983) 24:120–130.

Lee M. H., Lee G. H., Yoo J. S., Analysis of ceramides in cosmetics
by reversed-phase liquid chromatography / electrospray
ionization mass spectrometry with collisioninduced dissociation.
Rapid Commun. Mass Spectrom. (2003) 17:64–75.





Luisa M., Centi C., Cinque B., Masci S., Giuliani M., Arcieri A.,
Zicari L., Simone C., Cifone M., Effect of the lactic acid
bacterium streptococcus thermophilus on stratum corneum
ceramide levels and signs and symptoms of atopic dermatitis
patients. Exp. Dermatol. (2003) 12: 615–620.

Magnusson B. M., Anissimov Y. G., Cross S. E., Roberts M. S., Molecular size as the main determinant of solute maximum flux across the skin. J. Invest. Dermatol. (2004) 122:993-999.

Melnik B. C., Hollmann J., Erler E., Verhoeven B., Plewig G.,
Microanalytical screening of all major stratum corneum lipids by
sequential high-performance thin-layer chromatography. J. Invest.
Dermatol. (1989) 92:231–234.

Miteva M., Richter S., Elsner P., Fluhr J. W., Approaches for
optimizingthe calibration standard of Tewameter TM 300. Exp.
Dermatol. (2006) 15:904–912.

Mills P. C., Cross S. E., Transdermal drug delivery: basic principles
for the veterinarian. Vet J. (2006) 172:218–233.

Motta S., Monti M., Sesana S., Caputo R., Carelli S., Ghidoni R.,
Ceramide composition of the psoriatic scale. Biochim. Biophys.
Acta (1993) 1182:147–151.

Pettus B. J., Bielawska A., Kroesen B. J., Moeller P. D., Szulc Z. M.,
Hannun Y. A., Busman M., Observation of different ceramide
species from crude cellular extracts by normalphase high-
performance liquid chromatography coupled to atmospheric
pressure chemical ionization mass spectrometry. Rapid Commun.
Mass Spectrom. (2003) 17:1203–1211.

Ponec M., Weerheim A., Retinoids and lipid changes in
keratinocytes. Methods Enzymol. (1990) 190:30–41.


Potts R. O., Guy R. H., Predicting skin permeability. Pharm. Res.
(1992) 9:663–669.

Previati M., Bertolaso L., Tramarin M., Bertagnolo V., Capitani S.,
Low nanogram range quantitation of diglycerides and ceramide by
high-performance liquid chromatography. Anal. Biochem. (1996)
233:108–114.

Reimar R., Eckhard K., Corneometric, sebumetric and TEWL
measurements following the cleaning of atopic skin with a urea
emulsion versus a detergent cleanser. Contact Dermatitis. (2004)
50: 354–358

Rode B., Ivens U., Serup J., Degreasing method for the seborrheicareas with respect to regaining sebum excretion rate to casual level. Skin Res. Technol. (2000) 6:92–97.

Sugita M., Iwamori M., Evans J., McCluer R. H., Dulaney J. T.,
Moser H. W., High performance liquid chromatography of
ceramides: application to analysis in human tissues and
demonstration of ceramide excess in Farber’s disease. J. Lipid
Res. (1974). 15 223–226.

Sylvia A., Rainer H., The influence of solid lipid nanoparticles on skin hydration and viscoelasticity--in vivo study. Eur. J. Pharm. Biopharm. (2003) 56:67-72.

Tagami H., Yoshikuni K., Interrelationship between water barrier
and reservoir functions of pathologic stratum corneum. Arch.
Dermatol. (1985) 121: 642–645.

Tepper A. D., Blitterswijk W. J., Ceramide mass analysis by
normal-phase high-performance liquid chromatography. Methods
Enzymol. (2000) 312:16–22.



Vavrova K., Zbytovska J., Hrabalek A., Amphiphilic transdermal
permeation enhancers: structure-activity relationships. Curr.Med.
Chem. (2005) 12:2273-2291.

Wertz P. W., Downing D. T., Ceramides of pig epidermis: structure
determination. J. Lipid Res. (1983) 24:759–765.

Wertz P. W., Miethke M. C., Long S. A., Strauss J. S., Downing D. T.
, The composition of the ceramides from human stratum corneum
and from comedones. J. Invest. Dermatol. (1985) 84:410–412.

Yano M., Kishida E., Muneyuki Y., Masuzawa Y., Quantitative
analysis of ceramide molecular species by high performance
liquid chromatography. J. Lipid Res. (1998) 39:2091–2098.

Zellmer S., Lasch J., Individual variation of human plantar stratum
corneum lipids, determined by automated multiple development of
high-performance thin-layer chromatography plates. J.
Chromatogr. B (1997) 691:321–329.

Zhou J. Y., Chaminade P., Gaudin K., Prognon P., Baillet A., Ferrier
D., Postcolumn fluorescence as an alternative to evaporative light
scattering detection for ceramide analysis with gradient elution in
non-aqueous reversed-phase liquid chromatography. J.
Chromatogr. A (1999) 859:99–105.

論文全文使用權限
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446