進階搜尋


  查詢北醫館藏
系統識別號 U0007-0702201016034500
論文名稱(中文) 磁性冷凍對牙髓幹細胞數量與特性之影響
論文名稱(英文) Influences of Magnetic Cryopreservation On the Dental Pulp Stem Cells
校院名稱 臺北醫學大學
系所名稱(中) 牙醫學系碩博士班
系所名稱(英) School of Dentistry
學年度 98
學期 1
出版年 99
研究生(中文) 蔣寶漳
研究生(英文) Pao-Chang Chiang
學號 M204095009
學位類別 碩士
語文別 中文
口試日期 2010-01-26
論文頁數 79頁
口試委員 委員-鄭景暉
委員-郭宗甫
指導教授-李勝揚
共同指導教授-黃豪銘
委員-黃彥華
中文關鍵字 牙髓幹細胞  冷凍保存  牙齒銀行  再生醫療  多元分化 
英文關鍵字 Dental pulp stem cells  Cryopreservation  Tooth bank  Regenerative medicine  Multi-lineage differentiation 
學科別分類
中文摘要 研究背景及目的:近年來,科學界已研發出能夠成功保存牙周韌帶的特殊磁性冷凍法,可在降溫中形成玻璃化而避免因冰晶產生所造成的細胞傷害。藉由此技術可保存因齒顎矯正需求或感染預防而拔下的健康牙齒,作為未來自體再植。而隨著幹細胞科技發展,人類牙髓間葉幹細胞已被成功培養並鑑定,有機會被應用於再生醫療。本研究旨在擴大磁性冷凍的應用範圍,讓此一技術不只是能完整冷凍保存牙周韌帶以供解凍後再植,更能長期保存齒內牙髓組織,以供未來解凍後其中間葉幹細胞之分離與應用。

研究材料及方法:在牙齒銀行中保存的牙齒設定為程式降溫冷凍組,同一患者之對側牙齒不予冷凍,設為未冷凍組。另外,並設計傳統冰箱-20 ℃冷凍組(以-20 ℃冰箱取代磁性程式降溫儀)。三組牙齒皆以組織塊酶解法培養出牙髓幹細胞。首先評估三組牙髓幹細胞之培養成功率(以未冷凍組作為標準,評估程式降溫冷凍組與傳統冰箱-20 ℃冷凍組是否受到冷凍影響),進而比較分析程式降溫冷凍組與未冷凍組之生長曲線(以MTT 法),形態差異(掃描式電子顯微鏡影像),表面特徵蛋白(CD44與STRO-1之免疫螢光染色)以及分化能力(脂肪化與骨化)。

結果:程式降溫冷凍組有73 %的牙齒並未受到冷凍影響,仍然能夠成功培養牙髓幹細胞,而傳統冰箱-20 ℃則僅有20 %的牙齒能夠成功培養牙髓幹細胞。以MTT法評估程式降溫冷凍組與未冷凍組之生長曲線無統計上顯著差異(p < 0.05);電子顯微鏡之影像在程式降溫冷凍組與未冷凍組間亦無明顯差異;程式降溫冷凍組與未冷凍組之牙髓幹細胞也都能表現CD44和 STRO-1兩種表面特徵蛋白以及脂肪化與骨化的能力。

結論:本研究結果顯示磁性冷凍可將齒內牙髓組織以整顆牙齒的方式進行程式降溫冷凍保存,並培養出同樣生長潛力與表面特徵蛋白之牙髓間葉幹細胞,也能同樣表現多元分化能力。牙科患者未來儲存牙齒在程式降溫冷凍牙齒銀行內,不僅可供未來解凍後再植,亦可望視需要而培養其中牙髓幹細胞以提供臨床利用。
英文摘要 Background & Objectives: Recently, scientists have successfully cryopreserved the periodontal ligament with a special magnetic cryopreservation method, which could induce vitrification to avoid the injuries from ice crystals to the cells. Consequently, the healthy teeth extracted for orthodontic treatment or prevention of infection could be potential donor teeth for future auto-transplantation. With the advancement of stem cell technology, human dental pulp stem cells have been cultured and could be used in regenerative medicine. This study was aiming to expand the application of Tooth Bank from cryopreservation for auto-transplantation to long-term storage of dental pulp stem cells.

Materials & Methods: The teeth stored in Tooth Bank were designed as the programming cryopreserved group. The non-cryopreserved group was teeth on contralateral side of the same patient. Besides, there was a traditionally freezing group (cryopreserved with -20 ℃ traditional freezer instead of program freezer with magnetic field used in the programming cryopreserved group). Dental pulp stem cells were isolated with enzyme digestion method from these 3 groups. First, the successful rate of culturing dental pulp stem cells in these 3 groups would be evaluated (by the standard set in non-cryopreserved group). Furthermore, the growth curve (by MTT method), morphology (by scanning electronic microscope, SEM), surface markers of stem cells (by immunostaining of CD44 and STRO-1) and ability of differentiation (adipogenic and osteogenic differentiation) of the dental pulp stem cells in the programming cryopreserved group and the non-cryopreserved group were evaluated and compared.

Results: The dental pulp stem cells in 73 % of the teeth in the programming cryopreserved group were considered as not been influenced after cryopreservation, since they could be normally cultured. However, the dental pulp stem cells in only 20 % of the teeth in the traditionally freezing group could be normally cultured. The growth curves evaluated by MTT method had no statistical differences between programming cryopreserved and non-cryopreserved groups. The morphology observed from SEM showed similar variety of cells in both groups. Both of dental pulp stem cells isolated from the programming cryopreserved group and the non-cryopreserved groups showed positive surface markers of stem cells (CD44+ and STRO-1+) and ability of adipogenic and osteogenic differentiation.

Conclusion: The results of this study indicated that dental pulp stem cells would remain their growth potential, surface markers and multi-lineage differentiation ability even after magnetic programming cryopreservation of the whole teeth. Patients who store teeth in Tooth Bank will have teeth not only for auto-transplantation but also have the chance of later isolation of dental pulp stem cells in the future needs.
論文目次 目錄
致 謝……………………………………………………………………Ⅰ
中文摘要………………………………………………………………II
英文摘要………………………………………………………………IV
目 錄…………………………………………………………………VII

第一章、緒論
第一節 研究動機與重要性……………………………………………1
第二節 研究目的………………………………………………………5
第三節 研究假設………………………………………………………7
第四節 名詞界定………………………………………………………8

第二章、文獻回顧與查證
第一節 牙齒銀行的觀念與重要性……………………………………10
第二節 磁性冷凍程式降溫儀在牙醫學的利用………………………13
第三節 牙齒冷凍保存對其牙髓組織之影響…………………………15
第四節 牙髓幹細胞的發展與應用……………………………………17

第三章、研究材料與方法
第一節 實驗牙齒之選取與製備………………………………………19
第二節 牙髓幹細胞的初級培養與繼代培養…………………………21
第三節 評估各組牙髓幹細胞培養受冷凍影響程度…………………24
第四節 牙髓幹細胞活性MTT的測量…………………………………25
第五節 牙髓幹細胞生長曲線之製作…………………………………26
第六節 牙髓幹細胞在電子顯微鏡下之形態觀察……………………27
第七節 牙髓幹細胞表面特徵蛋白之螢光免疫染色…………………28
第八節 牙髓幹細胞的脂肪化能力測試………………………………31
第九節 牙髓幹細胞的骨化能力測試…………………………………33
第十節 統計分析………………………………………………………35

第四章、實驗結果
第一節 評估各組牙髓幹細胞培養受冷凍影響程度…………………36
第二節 冷凍保存前後牙髓幹細胞的生長曲線………………………36
第三節 冷凍保存前後牙髓幹細胞形態差異…………………………37
第四節 冷凍保存前後牙髓幹細胞表面特徵蛋白之表現……………37
第五節 冷凍保存前後牙髓幹細胞脂肪化之能力……………………38
第六節 冷凍保存前後牙髓幹細胞骨化之能力………………………38

第五章、研究討論………………………………………………………40

第六章、結論與未來展望………………………………………………45

第七章、參考文獻………………………………………………………47

附錄………………………………………………………………………52
參考文獻 About, I., M. J. Bottero, P. de Denato, J. Camps, J. C. Franquin, and T. A. Mitsiadis. 2000. Human dentin production in vitro. Exp Cell Res 258 (1):33-41.

Almushayt, A., K. Narayanan, A. E. Zaki, and A. George. 2006. Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Ther 13 (7):611-620.

Andreasen, J. O., H. U. Paulsen, Z. Yu, T. Bayer, and O. Schwartz. 1990. A long-term study of 370 autotransplanted premolars. Part II. Tooth survival and pulp healing subsequent to transplantation. Eur J Orthod 12 (1):14-24.

Arthur, A., G. Rychkov, S. Shi, S. A. Koblar, and S. Gronthos. 2008. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 26 (7):1787-1795.

Broxmeyer, H. E., E. F. Srour, G. Hangoc, S. Cooper, S. A. Anderson, and D. M. Bodine. 2003. High-efficiency recovery of functional hematopoietic progenitor and stem cells from human cord blood cryopreserved for 15 years. Proc Natl Acad Sci U S A 100 (2):645-650.

Burbridge, L., B. O. Cole, R. S. Hobson, and R. R. Welbury. 2005. Auto-transplantation in the restorative management of traumatized anterior teeth: a case report. Dent Update 32 (9):529-530, 532-524.

Chang, J., C. Zhang, N. Tani-Ishii, S. Shi, and C. Y. Wang. 2005. NF-kappaB activation in human dental pulp stem cells by TNF and LPS. J Dent Res 84 (11):994-998.

Coburn, R. J., B. L. Henriques, and L. E. Francis. 1966. The development of an experimental tooth bank using deep freeze and tissue culture techniques. J Oral Ther Pharmacol 2 (6):445-450.

Cordeiro, M. M., Z. Dong, T. Kaneko, Z. Zhang, M. Miyazawa, S. Shi, A. J. Smith, and J. E. Nor. 2008. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 34 (8):962-969.

Couble, M. L., J. C. Farges, F. Bleicher, B. Perrat-Mabillon, M. Boudeulle, and H. Magloire. 2000. Odontoblast differentiation of human dental pulp cells in explant cultures.Calcif Tissue Int 66 (2):129-138.

Donovan, P. J., and J. Gearhart. 2001. The end of the beginning for pluripotent stem cells. Nature 414 (6859):92-97.

Fraser, J. K., R. E. Schreiber, P. A. Zuk, and M. H. Hedrick. 2004. Adult stem cell therapy for the heart. Int J Biochem Cell Biol 36 (4):658-666.

Frederik, P. M., and W. M. Busing. 1981. Ice crystal damage in frozen thin sections: freezing effects and their restoration. J Microsc 121 (Pt 2):191-199.

Gandia, C., A. Arminan, J. M. Garcia-Verdugo, E. Lledo, A. Ruiz, M. D. Minana, J. Sanchez-Torrijos, R. Paya, V. Mirabet, F. Carbonell-Uberos, M. Llop, J. A. Montero, and P. Sepulveda. 2008. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells 26 (3):638-645.

Gronthos, S., J. Brahim, W. Li, L. W. Fisher, N. Cherman, A. Boyde, P. DenBesten, P. G. Robey, and S. Shi. 2002. Stem cell properties of human dental pulp stem cells. J Dent Res 81 (8):531-535.

Gronthos, S., M. Mankani, J. Brahim, P. G. Robey, and S. Shi. 2000. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97 (25):13625-13630.

Huang, A. H., Y. K. Chen, L. M. Lin, T. Y. Shieh, and A. W. Chan. 2008a. Isolation and characterization of dental pulp stem cells from a supernumerary tooth. J Oral Pathol Med 37 (9):571-574.

Huang, A. H., B. R. Snyder, P. H. Cheng, and A. W. Chan. 2008b. Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice. Stem Cells 26 (10):2654-2663.

Ikeda, E., K. Yagi, M. Kojima, T. Yagyuu, A. Ohshima, S. Sobajima, M. Tadokoro, Y. Katsube, K. Isoda, M. Kondoh, M. Kawase, M. J. Go, H. Adachi, Y. Yokota, T. Kirita, and H. Ohgushi. 2008. Multipotent cells from the human third molar: feasibility of cell-based therapy for liver disease. Differentiation 76 (5):495-505.

Iohara, K., M. Nakashima, M. Ito, M. Ishikawa, A. Nakasima, and A. Akamine. 2004. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res 83 (8):590-595.

Iohara, K., L. Zheng, M. Ito, A. Tomokiyo, K. Matsushita, and M. Nakashima. 2006. Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells 24 (11):2493-2503.

Iohara, K., L. Zheng, H. Wake, M. Ito, J. Nabekura, H. Wakita, H. Nakamura, T. Into, K. Matsushita, and M. Nakashima. 2008. A novel stem cell source for vasculogenesis in ischemia: subfraction of side population cells from dental pulp. Stem Cells 26 (9):2408-2418.

Jonsson, T., and T. J. Sigurdsson. 2004. Autotransplantation of premolars to premolar sites. A long-term follow-up study of 40 consecutive patients. Am J Orthod Dentofacial Orthop 125 (6):668-675.

Kaku, M., H. Kamata, T. Kawata, M. Tai, S. Kohno, M. Motokawa, Y. Tohma, T. Fujita, J. Ohtani, N. Tsuka, T. Ohwada, and K. Tanne. 2007. Cryopreservation of PDL Cells by Use of Program Freezer with Magnetic Field for Teeth Banking. Dentistry in Japan 43:82-86.

Kawasaki, N., Y. Hamamoto, T. Nakajima, K. Irie, and H. Ozawa. 2004. Periodontal regeneration of transplanted rat molars after cryopreservation. Arch Oral Biol 49 (1):59-69.

Kawazoe, Y., S. Katoh, Y. Onodera, T. Kohgo, M. Shindoh, and T. Shiba. 2008. Activation of the FGF signaling pathway and subsequent induction of mesenchymal stem cell differentiation by inorganic polyphosphate. Int J Biol Sci 4 (1):37-47.

Kristerson, L., L. A. Johansson, J. Kisch, and L. E. Stadler. 1991. Autotransplantation of third molars as treatment in advanced periodontal disease. J Clin Periodontol 18 (7):521-528.

Lass, A., F. Akagbosu, and P. Brinsden. 2001. Sperm banking and assisted reproduction treatment for couples following cancer treatment of the male partner. Hum Reprod Update 7 (4):370-377.

Laureys, W., H. Beele, R. Cornelissen, and L. Dermaut. 2001. Revascularization after cryopreservation and autotransplantation of immature and mature apicoectomized teeth. Am J Orthod Dentofacial Orthop 119 (4):346-352.

Lee, S. J., I. Y. Jung, C. Y. Lee, S. Y. Choi, and K. Y. Kum. 2001. Clinical application of computer-aided rapid prototyping for tooth transplantation. Dent Traumatol 17
50 (3):114-119.

Leibo, S. P., and P. Mazur. 1971. The role of cooling rates in low-temperature preservation. Cryobiology 8 (5):447-452.
Lovell-Badge, R. 2001. The future for stem cell research. Nature 414 (6859):88-91.

Mazur, P. 1984. Freezing of living cells: mechanisms and implications. Am J Physiol 247 (3 Pt 1):C125-142.

Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65 (1-2):55-63.

Oh, Y. H., Z. M. Che, J. C. Hong, E. J. Lee, S. J. Lee, and J. Kim. 2005. Cryopreservation of human teeth for future organization of a tooth bank--a preliminary study. Cryobiology 51 (3):322-329.

Ohazama, A., S. A. Modino, I. Miletich, and P. T. Sharpe. 2004. Stem-cell-based tissue engineering of murine teeth. J Dent Res 83 (7):518-522.

Otaki, S., S. Ueshima, K. Shiraishi, K. Sugiyama, S. Hamada, M. Yorimoto, and O. Matsuo. 2007. Mesenchymal progenitor cells in adult human dental pulp and their ability to form bone when transplanted into immunocompromised mice. Cell Biol Int 31 (10):1191-1197.

Price, P. J., and M. Cserepfalvi. 1972. Pulp viability and the homotransplantation of frozen teeth. J Dent Res 51 (1):39-43.

Robinson, P. P. 1983. An electrophysiological study of the reinnervation of reimplanted and autotransplanted teeth in the cat. Arch Oral Biol 28 (12):1139-1147.

Rota, A., M. Martini, C. Milani, and S. Romagnoli. 2005. Evaluation of dog semen quality after slow (biological freezer) or rapid (nitrogen vapours) freezing. Reprod Nutr Dev 45 (1):29-37.

Schwartz, O., and J. O. Andreasen. 1983. Cryopreservation of mature teeth before replantation in monkeys (I). Effect of different cryoprotective agents and freezing devices. Int J Oral Surg 12 (6):425-436.

Schwartz, O., J. O. Andreasen, and T. Greve. 1985. Cryopreservation before replantation of mature teeth in monkeys. (II). Effect of preincubation, different freezing and equilibration rates and endodontic treatment upon periodontal healing. Int J Oral Surg 14 (4):350-361.

Segers, V. F., and R. T. Lee. 2008. Stem-cell therapy for cardiac disease. Nature 451 (7181):937-942.

Seo, B. M., M. Miura, W. Sonoyama, C. Coppe, R. Stanyon, and S. Shi. 2005. Recovery of stem cells from cryopreserved periodontal ligament. J Dent Res 84 (10):907-912.

Servili, A., M. R. Bufalino, R. Nishikawa, I. S. de Melo, J. A. Munoz-Cueto, and L. E. Lee. 2008. Establishment of long term cultures of neural stem cells from adult sea bass, Dicentrarchus labrax. Comp Biochem Physiol A Mol Integr Physiol.

Shi, S., P. M. Bartold, M. Miura, B. M. Seo, P. G. Robey, and S. Gronthos. 2005. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 8 (3):191-199.

Shimono, M., T. Ishikawa, H. Ishikawa, H. Matsuzaki, S. Hashimoto, T. Muramatsu, K. Shima, K. Matsuzaka, and T. Inoue. 2003. Regulatory mechanisms of periodontal regeneration. Microsc Res Tech 60 (5):491-502.

Temmerman, L., G. A. De Pauw, H. Beele, and L. R. Dermaut. 2006. Tooth transplantation and cryopreservation: state of the art. Am J Orthod Dentofacial Orthop 129 (5):691-695.

Temmerman, L., L. R. Dermaut, M. De Mil, G. Van Maele, H. Beele, and G. A. De Pauw. 2008. Influence of cryopreservation on human periodontal ligament cells in vitro. Cell Tissue Bank 9 (1):11-18.

Tsutsui, K., M. Kaku, M. Motokawa, Y. Tohma, T. Kawata, T. Fujita, S. Kohno, J. Ohtani, K. Tenjoh, M. Nakano, H. Kamada, and K. Tanne. 2007. Influences of reduced masticatory sensory input from soft-diet feeding upon spatial memory/learning ability in mice. Biomed Res 28 (1):1-7.

Tziafas, D., A. J. Smith, and H. Lesot. 2000. Designing new treatment strategies in vital pulp therapy. J Dent 28 (2):77-92.

Yin, L. X., K. F. Pan, L. Wang, J. L. Wang, J. D. Yang, P. Y. Ge, and P. Wang. 2001. [The experimental study of the delayed replantation after cryopreservation of mature tooth in dogs]. Shanghai Kou Qiang Yi Xue 10 (2):128-131.
論文全文使用權限
  • 同意授權瀏覽/列印電子全文服務,於2010-02-22起公開。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446