進階搜尋


  查詢北醫館藏
系統識別號 U0007-0607201017210400
論文名稱(中文) 以白內障之體外疾病模式探討藥物之生化機制
論文名稱(英文) Biochemical Mechanisms of Pirenoxine and Carnosine Investigated by in vitro Cataract Models
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 98
學期 2
出版年 99
研究生(中文) 林怡伶
研究生(英文) I-Lin Lin
學號 M301097009
學位類別 碩士
語文別 中文
口試日期 2010-06-23
論文頁數 96頁
口試委員 指導教授-吳姿樺
委員-吳世雄
委員-何昭德
中文關鍵字   諾克辛;肌肽  ;水晶體混濁度;鈣離子;外生性依鈣蛋白質分解酵素;紫外線 
英文關鍵字 Pirenoxine;Carnosine;lens turbidity;calcium;exogenous calpain;UV 
學科別分類
中文摘要 白內障是導致世界人口失明最主要的原因,其中致白內障因素中又以老化或過度暴露於紫外線下為最為常見。因此本研究欲建立白內障之體外 (in vitro) 疾病模式,用以探討臨床常用但仍缺乏學理之Pirenoxine (Px) 以及市場上逐漸推展的CAR (CAR) 之效用及其生化機制。本研究使用豬水晶體蛋白萃取溶液,以高濃度鈣離子、外加calpainⅡ或不同波長段的紫外線誘發水晶體蛋白混濁,繼而以波長405nm偵測混濁度變化或利用蛋白質電泳 (SDS-PAGE) 分析水晶體蛋白之分子變化情形。研究結果顯示豬水晶體蛋白萃取溶液 (50mg/mL) 與10 mM鈣離子連續觀察五日,其溶液混濁度可由0.135± 0.004上升至0.617± 0.002,具統計上顯著差異 (p< 0.05)。豬水晶體蛋白萃取溶液 (5mg/mL) 外加2 mM鈣離子及每毫克蛋白加7.5單位calpainⅡ經60分鐘加熱後,混濁度可由0.069± 0.004上升至0.247± 0.021,具統計上顯著差異 (p< 0.05);由PAGE顯示β水晶體蛋白表現減少而α水晶體蛋白有降解產生。以UVB連續照射γ水晶體蛋白 (20mg/mL),於6小時可觀察到混濁度由0.061± 0.008上升至0.800± 0.006,具統計上顯著差異 (p< 0.05);而由PAGE顯示γ水晶體蛋白有二聚物及降解產生。以UVC連續照射γ水晶體蛋白 (0.4mg/mL),於4小時可觀察到混濁度由0.055± 0.006上升至0.544± 0.006,具統計上顯著差異 (p< 0.05);而由PAGE顯示γ水晶體蛋白產生明顯降解。Px (0, 0.03, 0.1, 0.3, 1 μM) 對於10 mM鈣誘發之水晶體蛋白連續觀察五日混濁度值之數值分別上升0.482± 0.002、0.321± 0.042、0.272± 0.091、0.229± 0.001、0.202± 0.004,相較於未加藥組均達統計上顯著差異 (p< 0.05),且其作用與劑量呈正相關;另UVC (14 J/cm2/hr) 誘導之γ水晶體蛋白混濁現象形成及降解之效果,其4小時混濁度值在Px (0、1 mM)分別增加0.489± 0.007、0.401± 0.015,彼此間具統計上顯著差異 (p< 0.05),而由PAGE觀察到Px組其在21kDa位置附近蛋白質表現增加;但對UVB所誘導之蛋白變性現象無改善作用。CAR (10、100、300 mM) 可減少水晶體蛋白受鈣活化calpainⅡ所誘發之蛋白質降解,同時延緩其受熱誘導所產生之水晶體混濁度上升的現象,且此保護作用與劑量呈正相關;其未加藥組及CAR (0、10、100、300 mM) 之60分鐘混濁度值分別增加0.199± 0.019、0.142± 0.019、0.043± 0.004、0.030± 0.005,相較於未加藥組均達統計上顯著差異 (p< 0.05),而由PAGE觀察到CAR組在29kDa位置附近蛋白質表現量增加,另外在19kDa位置則無新增蛋白質表現。而高濃度之CAR則具延緩UVB或UVC所誘導之γ水晶體蛋白混濁現象形成及降解之效果:在UVB (4 J/cm2/hr) 照射6小時,其混濁度值在CAR (0、200、300 mM) 分別增加0.661± 0.024、0.295± 0.006、0.077± 0.008,相較於未加藥組均達統計上顯著差異 (p< 0.05),由PAGE觀察到CAR組在44, 15~18kDa位置附近較無新增蛋白質表現;在UVC (14 J/cm2/hr) 照射4小時,其混濁度值在CAR (0、100、300 mM) 分別增加0.510± 0.058、0.356± 0.020、0.191± 0.003,相較於未加藥組均達統計上顯著差異 (p< 0.05),而由PAGE觀察到CAR組其在21kDa位置附近蛋白質表現增加。結論: 本研究顯示Px對高濃度鈣離子或UVC所造成的蛋白損傷有延緩的作用;而CAR則可能對於細胞內鈣離子上升、UVB及UVC三者不同生化病理機制所造成的蛋白損傷有預防或延緩的作用,未來可利用白內障活體模式來證實其藥物活性。
英文摘要 Cataract is a leading cause of blindness in the world. Aging and ultraviolet light (UV) exposure are common causes of cataract. This study aimed to set up a series of in vitro cataract models, and to investigate the efficacy and biochemical mechanisms of pirenoxine (Px) and carnosine (CAR). Three in vitro models including high calcium, exogenous calpainⅡ or UV-induced porcine lens protein turbidity were established. Turbidity was assayed by measuring optical density (OD) at 405nm and proteolysis was then analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Results showed that the turbidity of solution containing 50mg lens protein/mL and 10 mM calcium was increased from 0.135± 0.004 to 0.617± 0.002 after 5 day incubation (p< 0.05). The turbidity of solution containing 5mg lens protein/mL, 2 mM calcium and 7.5 units exogenous calpainⅡ/mg protein was increased from 0.135± 0.004 to 0.617± 0.002 after heating for 60 min (p< 0.05). PAGE showed that incubation with calpain resulted in loss of β-and α-crystallin. The turbidity of solution containing 20mg γ-crystallin/mL was increase from 0.061± 0.008 to 0.800± 0.006 after 6 hr UVB exposure (p< 0.05). PAGE showed that exposure to UVB resulted in γ-crystallin dimer formation. The turbidity of solution containing 0.4mg γ-crystallin/mL was increased from 0.055± 0.006 to 0.544± 0.006 after 4 hr UVC exposure (p< 0.05). PAGE showed that exposure to UVC resulted in loss of γ-crystallin. In 10 mM calcium-induced lens turbidity system, results showed that Px (0.03, 0.1, 0.3, 1 μM) possesses dose-dependent protective effect. The changes of OD for control and Px (0.03, 0.1, 0.3, 1 μM) following 5 day incubation were 0.482± 0.002, 0.321± 0.042, 0.272± 0.091, 0.229± 0.001, 0.202± 0.004, respectively. All above Px groups showed significant statistically differences compared to the control (p<0.05). As to UVC (14 J/cm2/hr) –induced γ-crystallin turbidity system, the changes of OD for control and Px (1 mM) following 4 hr UVC exposure were 0.489± 0.007, 0.401± 0.015, respectively. There was a significant statistically differences between control and Px group (p<0.05). PAGE showed that γ-crystallin at 21kDa maintained in Px group. However, this protective effect was not shown in UVB-induced γ-crystallin turbidity system. CAR (10, 100, 300 mM) showed protective effects in calcium activated exogenous calpainⅡ-induced proteolysis and delayed turbidity after heating at the same time. The changes of OD for control and CAR (10, 100, 300 mM) treatments following 60 min heating were 0.199± 0.019, 0.142± 0.019, 0.043± 0.004, 0.030± 0.005, respectively. PAGE showed that treatments with CAR resulted in protein expression increase at 29kDa and decrease at 19kDa. In UVB (4 J/cm2/hr)-induced turbidity system, the changes of OD for control and CAR (200, 300 mM) groups following 6 hr UVB exposure were 0.661± 0.024, 0.295± 0.006, 0.077± 0.008, respectively. PAGE showed that treatments with CAR resulted in less protein expression at 44, 15~18kDa. The changes of OD induced by UVC (4 J/cm2/hr) turbidity for control and CAR (100, 300 mM) groups following 4 hr were 0.510± 0.058, 0.356± 0.020, 0.191± 0.003, respectively. In all above turbidity study, CAR groups showed significant statistically differences compared to the controls (p<0.05). PAGE showed that γ-crystallin at 21kDa maintained in CAR group. In conclusion, our in vitro experimental results suggest that Px may delay the progression of cataract which caused by high concentration of calcium or UVC exposure. CAR may be useful in prevent or delay the progression of cataract which caused by intracellular calcium elevation or ultraviolet light exposure. In vivo effects of Px and CAR are needed to be confirmed by in vivo cataract animal models in the future.
論文目次 目錄 I
中文摘要 III
Abstract IV
表目錄 V
圖目錄 VI
第一章 緒論 1
第一節 研究背景 2
第一項、世界人口視障趨勢 2
第二項、白內障流行病學 3
第三項、水晶體構造與功能 8
第四項、水晶體蛋白質組成 9
第五項、白內障成因探討 12
第六項、白內障現行療法 16
第七項、藥物介紹 18
第二節 研究動機與目的 22
第二章 研究材料與方法 23
第一節 藥品材料與儀器設備來源 24
第一項、藥品材料 24
第二項、儀器設備 26
第二節 研究設計及進行方法 27
第一項、豬眼睛水晶體蛋白之製備 27
第二項、水晶體蛋白之純化 27
第三項、水晶體蛋白濃度之測量 27
第四項、體外白內障疾病模式之建立及臨床用藥之活性測試 28
第五項、蛋白質電泳分析 30
第三節 資料分析與統計 32
第三章 研究結果 33
第一節 鈣誘導白內障形成之疾病體外模式 34
第一項、高濃度鈣誘導白內障形成與藥物作用 34
第二項、CalpainⅡ誘導白內障形成與藥物影響 34
第二節 紫外線誘導白內障之體外模式 37
第一項、中波紫外線(UVB)誘導γ水晶體蛋白變異模式與藥物作用 37
第二項、短波紫外線(UVC)誘導γ水晶體蛋白變異模式與藥物作用 38
第四章 討論 39
第五章 結論與展望 46
第六章 圖表與附錄說明 49
參考文獻 88
參考文獻 Adelman R, Saul RL & Ames BN (1988) Oxidative damage to DNA: relation to species metabolic rate and life span. Proc Natl Acad Sci U S A 85, 2706-2708.
Ajaz MS, Ma Z, Smith DL & Smith JB (1997) Size of human lens beta-crystallin aggregates are distinguished by N-terminal truncation of betaB1. J Biol Chem 272, 11250-11255.
Andersson M, Sjostrand J, Andersson AK, Andersen B & Karlsson JO (1994) Calpains in lens epithelium from patients with cataract. Exp Eye Res 59, 359-364.
Andley UP & Clark BA (1988) Spectroscopic studies on the photooxidation of calf-lens gamma-crystallin. Curr Eye Res 7, 571-579.
Andley UP & Clark BA (1989) Generation of oxidants in the near-UV photooxidation of human lens alpha-crystallin. Invest Ophthalmol Vis Sci 30, 706-713.
Andley UP, Mathur S, Griest TA & Petrash JM (1996) Cloning, expression, and chaperone-like activity of human alphaA-crystallin. J Biol Chem 271, 31973-31980.
Angra SK, Mohan M & Saini JS (1983) Medical therapy of cataract (evaluation of Catalin). Indian J Ophthalmol 31, 5-8.
Attanasio F, Cataldo S, Fisichella S, Nicoletti S, Nicoletti VG, Pignataro B, Savarino A & Rizzarelli E (2009) Protective effects of L- and D-carnosine on alpha-crystallin amyloid fibril formation: implications for cataract disease. Biochemistry 48, 6522-6531.
Azuma M, Fukiage C, David LL & Shearer TR (1997) Activation of calpain in lens: a review and proposed mechanism. Exp Eye Res 64, 529-538.
Azuma M & Shearer TR (1992) Involvement of calpain in diamide-induced cataract in cultured lenses. FEBS Lett 307, 313-317.
Azuma M, Shearer TR, Matsumoto T, David LL & Murachi T (1990) Calpain II in two in vivo models of sugar cataract. Exp Eye Res 51, 393-401.
Babizhayev MA (1989) Antioxidant activity of L-carnosine, a natural histidine-containing dipeptide in crystalline lens. Biochim Biophys Acta 1004, 363-371.
Babizhayev MA, Burke L, Micans P & Richer SP (2009) N-Acetylcarnosine sustained drug delivery eye drops to control the signs of ageless vision: glare sensitivity, cataract amelioration and quality of vision currently available treatment for the challenging 50,000-patient population. Clin Interv Aging 4, 31-50.
Babizhayev MA, Deyev AI, Yermakova VN, Brikman IV & Bours J (2004) Lipid peroxidation and cataracts: N-acetylcarnosine as a therapeutic tool to manage age-related cataracts in human and in canine eyes. Drugs R D 5, 125-139.
Babizhayev MA, Deyev AI, Yermakova VN, Semiletov YA, Davydova NG, Doroshenko VS, Zhukotskii AV & Goldman IM (2002) Efficacy of N-acetylcarnosine in the treatment of cataracts. Drugs R D 3, 87-103.
Babizhayev MA, Seguin MC, Gueyne J, Evstigneeva RP, Ageyeva EA & Zheltukhina GA (1994) L-carnosine (beta-alanyl-L-histidine) and carcinine (beta-alanylhistamine) act as natural antioxidants with hydroxyl-radical-scavenging and lipid-peroxidase activities. Biochem J 304 ( Pt 2), 509-516.
Bando M, Mikuni I & Obazawa H (1982) Acceleration of calcium-induced aggregation of rat lens soluble protein by photosensitization with 8-methoxypsoralen and 3-hydroxy-L-kynurenine O-beta-glucoside. Exp Eye Res 34, 953-960.
Bhat SP & Nagineni CN (1989) alpha B subunit of lens-specific protein alpha-crystallin is present in other ocular and non-ocular tissues. Biochem Biophys Res Commun 158, 319-325.
Biswas NR, Mongre PK, Das GK, Sen S, Angra SK & Vajpayee RB (1999) Animal study on the effects of catalin on aftercataract and posterior capsule opacification. Ophthalmic Res 31, 140-142.
Black RL, Oglesby RB, Von Sallmann L & Bunim JJ (1960) Posterior subcapsular cataracts induced by corticosteroids in patients with rheumatoid arthritis. JAMA 174, 166-171.
Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingsby C & Tardieu A (2004) Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys Mol Biol 86, 407-485.
Boldyrev A, Fedorova T, Stepanova M, Dobrotvorskaya I, Kozlova E, Boldanova N, Bagyeva G, Ivanova-Smolenskaya I & Illarioshkin S (2008) Carnosine [corrected] increases efficiency of DOPA therapy of Parkinson's disease: a pilot study. Rejuvenation Res 11, 821-827.
Boldyrev AA (1994) Carnosine and free-radical defence mechanisms. Trends Neurosci 17, 468.
Brow CE (1979) Chelation Chemistry of Carnosine. Evidence that Mixed Complexes May Occur In Vivo. J. Phys. Chem. 83, 3314-3319.
Brownson C & Hipkiss AR (2000) Carnosine reacts with a glycated protein. Free Radic Biol Med 28, 1564-1570.
Bulakh PM, Chandorkar AG, Balsara JJ, Ranade SM & Albal MV (1980) Effect of 'catalin' an anticataract agent on alloxan induced hyperglycaemia and diabetic cataract in rats. Indian J Ophthalmol 28, 1-3.
Cantore M, Siano S, Coronnello M, Mazzetti L, Franchi-Micheli S, Boldrini E, Ciuffi M & Failli P (2005) Pirenoxine prevents oxidative effects of argon fluoride excimer laser irradiation in rabbit corneas: biochemical, histological and cytofluorimetric evaluations. J Photochem Photobiol B 78, 35-42.
Chen CS, Wu SH, Wu YY, Fang JM & Wu TH (2007) Properties of astaxanthin/Ca2+ complex formation in the deceleration of cis/trans isomerization. Org Lett 9, 2985-2988.
Chiou SH, Chylack LT, Jr., Bunn HF & Kinoshita JH (1980) Role of nonenzymatic glycosylation in experimental cataract formation. Biochem Biophys Res Commun 95, 894-901.
Ciuffi M, Neri S, Franchi-Micheli S, Failli P, Zilletti L, Moncelli MR & Guidelli R (1999) Protective effect of pirenoxine and U74389F on induced lipid peroxidation in mammalian lenses. An in vitro, ex vivo and in vivo study. Exp Eye Res 68, 347-359.
Ciuffi M, Pisanello M, Pagliai G, Raimondi L, Franchi-Micheli S, Cantore M, Mazzetti L & Failli P (2003) Antioxidant protection in cultured corneal cells and whole corneas submitted to UV-B exposure. J Photochem Photobiol B 71, 59-68.
Collins JG & Corder CN (1977) Aldose reductase and sorbitol dehydrogenase distribution in substructures of normal and diabetic rat lens. Invest Ophthalmol Vis Sci 16, 242-243.
Cumming RG, Mitchell P & Leeder SR (1997) Use of inhaled corticosteroids and the risk of cataracts. N Engl J Med 337, 8-14.
David LL, Azuma M & Shearer TR (1994) Cataract and the acceleration of calpain-induced beta-crystallin insolubilization occurring during normal maturation of rat lens. Invest Ophthalmol Vis Sci 35, 785-793.
David LL & Shearer TR (1986) Purification of calpain II from rat lens and determination of endogenous substrates. Exp Eye Res 42, 227-238.
David LL & Shearer TR (1993) Beta-crystallins insolubilized by calpain II in vitro contain cleavage sites similar to beta-crystallins insolubilized during cataract. FEBS Lett 324, 265-270.
Delaye M & Tardieu A (1983) Short-range order of crystallin proteins accounts for eye lens transparency. Nature 302, 415-417.
Dilsiz N, Olcucu A & Atas M (2000) Determination of calcium, sodium, potassium and magnesium concentrations in human senile cataractous lenses. Cell Biochem Funct 18, 259-262.
Ellwein LB & Urato CJ (2002) Use of eye care and associated charges among the Medicare population: 1991-1998. Arch Ophthalmol 120, 804-811.
Fagerholm PP, Philipson BT & Lindstrom B (1981) Normal human lens - the distribution of protein. Exp Eye Res 33, 615-620.
Foster A & Resnikoff S (2005) The impact of Vision 2020 on global blindness. Eye (Lond) 19, 1133-1135.
Frick KD & Foster A (2003) The magnitude and cost of global blindness: an increasing problem that can be alleviated. Am J Ophthalmol 135, 471-476.
Fujii N, Uchida H & Saito T (2004) The damaging effect of UV-C irradiation on lens alpha-crystallin. Mol Vis 10, 814-820.
Fukiage C, Azuma M, Nakamura Y, Tamada Y & Shearer TR (1997) Calpain-induced light scattering by crystallins from three rodent species. Exp Eye Res 65, 757-770.
Garner MH & Kuszak JR (1993) Cations, oxidants, light as causative agents in senile cataracts. P R Health Sci J 12, 115-122.
Goosey JD, Zigler JS, Jr. & Kinoshita JH (1980) Cross-linking of lens crystallins in a photodynamic system: a process mediated by singlet oxygen. Science 208, 1278-1280.
Gritz DC, Srinivasan M, Smith SD, Kim U, Lietman TM, Wilkins JH, Priyadharshini B, John RK, Aravind S, Prajna NV, Duraisami Thulasiraj R & Whitcher JP (2006) The Antioxidants in Prevention of Cataracts Study: effects of antioxidant supplements on cataract progression in South India. Br J Ophthalmol 90, 847-851.
Group TFOES (1994) Familial aggregation of lens opacities: the Framingham Eye Study and the Framingham Offspring Eye Study. Am J Epidemiol 140, 555-564.
Hammond CJ, Duncan DD, Snieder H, de Lange M, West SK, Spector TD & Gilbert CE (2001) The heritability of age-related cortical cataract: the twin eye study. Invest Ophthalmol Vis Sci 42, 601-605.
Hammond CJ, Snieder H, Spector TD & Gilbert CE (2000) Genetic and environmental factors in age-related nuclear cataracts in monozygotic and dizygotic twins. N Engl J Med 342, 1786-1790.
Heijl A, Leske MC, Bengtsson B, Hyman L & Hussein M (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120, 1268-1279.
Hidasi V & Muszbek L (1995) Transglutaminase activity in normal human lenses and in senile cataracts. Ann Clin Lab Sci 25, 236-240.
Hipkiss AR (2007) Could carnosine or related structures suppress Alzheimer's disease? J Alzheimers Dis 11, 229-240.
Hipkiss AR, Brownson C & Carrier MJ (2001) Carnosine, the anti-ageing, anti-oxidant dipeptide, may react with protein carbonyl groups. Mech Ageing Dev 122, 1431-1445.
Hipkiss AR, Michaelis J & Syrris P (1995) Non-enzymatic glycosylation of the dipeptide L-carnosine, a potential anti-protein-cross-linking agent. FEBS Lett 371, 81-85.
Hollows F & Moran D (1981) Cataract--the ultraviolet risk factor. Lancet 2, 1249-1250.
Horwitz J (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A 89, 10449-10453.
Imaizumi K (1973) [A study on etiology and treatment of cataract]. Nippon Ganka Gakkai Zasshi 77, 192-215.
Jacques PF, Moeller SM, Hankinson SE, Chylack LT, Jr., Rogers G, Tung W, Wolfe JK, Willett WC & Taylor A (2003) Weight status, abdominal adiposity, diabetes, and early age-related lens opacities. Am J Clin Nutr 78, 400-405.
Johnson P & Hammer JL (1989) Effects of L-1-methyl-histidine and the muscle dipeptides carnosine and anserine on the activities of muscle calpains. Comp Biochem Physiol B 94, 45-48.
Kador PF (1983) Overview of the current attempts toward the medical treatment of cataract. Ophthalmology 90, 352-364.
Kadoya K, Azuma M, David LL & Shearer TR (1993) Role of calpain in hydrogen peroxide induced cataract. Curr Eye Res 12, 341-346.
Kahn HA, Leibowitz HM, Ganley JP, Kini MM, Colton T, Nickerson RS & Dawber TR (1977) The Framingham Eye Study. I. Outline and major prevalence findings. Am J Epidemiol 106, 17-32.
Kelley MJ, David LL, Iwasaki N, Wright J & Shearer TR (1993) alpha-Crystallin chaperone activity is reduced by calpain II in vitro and in selenite cataract. J Biol Chem 268, 18844-18849.
Kohen R, Yamamoto Y, Cundy KC & Ames BN (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci U S A 85, 3175-3179.
Korte I, Hockwin O, Tullius H & Diederich D (1975) Proceedings: Effect of catalin (1-hydroxy-(3,2alpha)-5-phenoxazone-3-carboxylic acid) on the reduced coenzymes NADH and NADPH. Exp Eye Res 20, 180.
Koteiche HA & McHaourab HS (2006) Mechanism of a hereditary cataract phenotype. Mutations in alphaA-crystallin activate substrate binding. J Biol Chem 281, 14273-14279.
Leske MC, Connell AM, Wu SY, Hyman L & Schachat A (1997) Prevalence of lens opacities in the Barbados Eye Study. Arch Ophthalmol 115, 105-111.
Leske MC, Wu SY, Hennis A, Connell AM, Hyman L & Schachat A (1999) Diabetes, hypertension, and central obesity as cataract risk factors in a black population. The Barbados Eye Study. Ophthalmology 106, 35-41.
Leske MC, Wu SY, Nemesure B & Hennis A (2002) Risk factors for incident nuclear opacities. Ophthalmology 109, 1303-1308.
Lou MF & Dickerson JE, Jr. (1992) Protein-thiol mixed disulfides in human lens. Exp Eye Res 55, 889-896.
Maraini G, Santori M & Carta F (1967) Modifications of adenosine triphosphate and of some enzymatic activities during the development of human senile cataract. Exp Eye Res 6, 126-129.
Matsukura T & Tanaka H (2000) Applicability of zinc complex of L-carnosine for medical use. Biochemistry (Mosc) 65, 817-823.
McCarty CA, Mukesh BN, Fu CL & Taylor HR (1999) The epidemiology of cataract in Australia. Am J Ophthalmol 128, 446-465.
McCarty CA & Taylor HR (1996) Recent developments in vision research: light damage in cataract. Invest Ophthalmol Vis Sci 37, 1720-1723.
McCarty CA & Taylor HR (2001) The genetics of cataract. Invest Ophthalmol Vis Sci 42, 1677-1678.
McNeil JJ, Robman L, Tikellis G, Sinclair MI, McCarty CA & Taylor HR (2004) Vitamin E supplementation and cataract: randomized controlled trial. Ophthalmology 111, 75-84.
Monnier VM, Stevens VJ & Cerami A (1979) Nonenzymatic glycosylation, sulfhydryl oxidation, and aggregation of lens proteins in experimental sugar cataracts. J Exp Med 150, 1098-1107.
Mukesh BN, Le A, Dimitrov PN, Ahmed S, Taylor HR & McCarty CA (2006) Development of cataract and associated risk factors: the Visual Impairment Project. Arch Ophthalmol 124, 79-85.
Murata (1980) Double blind study on the effectiveness of a pirenoxine eye drop to senile cataract. Nippon Ganka kiyo 31, 1217-1222.
Newell FW (1988) Ophthalmology: principles and concepts, sixth ed: 環球書社.
Ogino S & Ichihara T (1957) Biochemical studies on cataract. V. Biochemical genesis of senile cataract. Am J Ophthalmol 43, 754-764.
Panchapakesan J, Rochtchina E & Mitchell P (2003) Myopic refractive shift caused by incident cataract: the Blue Mountains Eye Study. Ophthalmic Epidemiol 10, 241-247.
Pascolini D, Mariotti SP, Pokharel GP, Pararajasegaram R, Etya'ale D, Negrel AD & Resnikoff S (2004) 2002 global update of available data on visual impairment: a compilation of population-based prevalence studies. Ophthalmic Epidemiol 11, 67-115.
Polianskii NB, Biniukov VI & Mil E (1994) [The effect of catalin on generation of radicals in aqueous solutions and formation of "cross-links" in the deoxyribonucleoprotein complex]. Biull Eksp Biol Med 118, 142-144.
Qian W & Shichi H (2000) Cataract formation by a semiquinone metabolite of acetaminophen in mice: possible involvement of Ca(2+)and calpain activation. Exp Eye Res 71, 567-574.
Reddy VN (1990) Glutathione and its function in the lens--an overview. Exp Eye Res 50, 771-778.
Resnikoff S, Pascolini D, Etya'ale D, Kocur I, Pararajasegaram R, Pokharel GP & Mariotti SP (2004) Global data on visual impairment in the year 2002. Bull World Health Organ 82, 844-851.
Sanderson J, Marcantonio JM & Duncan G (2000) A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification. Invest Ophthalmol Vis Sci 41, 2255-2261.
Seidler NW, Yeargans GS & Morgan TG (2004) Carnosine disaggregates glycated alpha-crystallin: an in vitro study. Arch Biochem Biophys 427, 110-115.
Shearer TR, Azuma M, David LL & Murachi T (1991) Amelioration of cataracts and proteolysis in cultured lenses by cysteine protease inhibitor E64. Invest Ophthalmol Vis Sci 32, 533-540.
Shearer TR, Ma H, Fukiage C & Azuma M (1997) Selenite nuclear cataract: review of the model. Mol Vis 3, 8.
Shih M, David LL, Lampi KJ, Ma H, Fukiage C, Azuma M & Shearer TR (2001) Proteolysis by m-calpain enhances in vitro light scattering by crystallins from human and bovine lenses. Curr Eye Res 22, 458-469.
Shridas P, Sharma Y & Balasubramanian D (2001) Transglutaminase-mediated cross-linking of alpha-crystallin: structural and functional consequences. FEBS Lett 499, 245-250.
Shui YB, Fu JJ, Garcia C, Dattilo LK, Rajagopal R, McMillan S, Mak G, Holekamp NM, Lewis A & Beebe DC (2006) Oxygen distribution in the rabbit eye and oxygen consumption by the lens. Invest Ophthalmol Vis Sci 47, 1571-1580.
Solomon R & Donnenfeld ED (2003) Recent advances and future frontiers in treating age-related cataracts. JAMA 290, 248-251.
Sommerburg O, Ullrich O, Sitte N, von Zglinicki D, Siems W & Grune T (1998) Dose- and wavelength-dependent oxidation of crystallins by UV light--selective recognition and degradation by the 20S proteasome. Free Radic Biol Med 24, 1369-1374.
Spector A & Roy D (1978) Disulfide-linked high molecular weight protein associated with human cataract. Proc Natl Acad Sci U S A 75, 3244-3248.
Steinberg EP, Javitt JC, Sharkey PD, Zuckerman A, Legro MW, Anderson GF, Bass EB & O'Day D (1993) The content and cost of cataract surgery. Arch Ophthalmol 111, 1041-1049.
Taylor HR, West SK, Rosenthal FS, Munoz B, Newland HS, Abbey H & Emmett EA (1988) Effect of ultraviolet radiation on cataract formation. N Engl J Med 319, 1429-1433.
Thylefors B, Negrel AD, Pararajasegaram R & Dadzie KY (1995) Global data on blindness. Bull World Health Organ 73, 115-121.
Tianyang Z, Ling Z, Liya W & Junjie Z (2010) Ocular Pharmacokinetics of Carnosine 5% Eye Drops Following Topical Application in Rabbit. J Ocul Pharmacol Ther.
Toh T, Morton J, Coxon J & Elder MJ (2007) Medical treatment of cataract. Clin Experiment Ophthalmol 35, 664-671.
Torreggiani A, Tamba M & Fini G (2000) Binding of copper(II) to carnosine: Raman and IR spectroscopic study. Biopolymers 57, 149-159.
Tsai SY, Hsu WM, Cheng CY, Liu JH & Chou P (2003) Epidemiologic study of age-related cataracts among an elderly Chinese population in Shih-Pai, Taiwan. Ophthalmology 110, 1089-1095.
Varma R & Torres M (2004) Prevalence of lens opacities in Latinos: the Los Angeles Latino Eye Study. Ophthalmology 111, 1449-1456.
Vavvas D, Azar NF & Azar DT (2002) Mechanisms of disease: cataracts. Ophthalmol Clin North Am 15, 49-60.
West SK, Munoz B, Schein OD, Duncan DD & Rubin GS (1998) Racial differences in lens opacities: the Salisbury Eye Evaluation (SEE) project. Am J Epidemiol 148, 1033-1039.
West SK & Valmadrid CT (1995) Epidemiology of risk factors for age-related cataract. Surv Ophthalmol 39, 323-334.
Wu K, Kojima M, Shui YB, Sasaki K & Hockwin O (1997) In vitro UV-B effect on lens protein solutions. Ophthalmic Res 29, 75-82.
Wu TH, Liao JH, Hou WC, Huang FY, Maher TJ & Hu CC (2006) Astaxanthin protects against oxidative stress and calcium-induced porcine lens protein degradation. J Agric Food Chem 54, 2418-2423.
Xi JH, Bai F, Gross J, Townsend RR, Menko AS & Andley UP (2008) Mechanism of small heat shock protein function in vivo: a knock-in mouse model demonstrates that the R49C mutation in alpha A-crystallin enhances protein insolubility and cell death. J Biol Chem 283, 5801-5814.
Yan H & Harding JJ (2005) Carnosine protects against the inactivation of esterase induced by glycation and a steroid. Biochim Biophys Acta 1741, 120-126.
Yan H & Harding JJ (2006) Carnosine inhibits modifications and decreased molecular chaperone activity of lens alpha-crystallin induced by ribose and fructose 6-phosphate. Mol Vis 12, 205-214.
Yoshimasa NN, Hong CAI, Maki TAKEDA, Yuchi KOIZUMI (2006) Preventive effect of eye drops of liposomes cantaining disulfiram and cefmetazole on selenite-induced cataract in rat pups. J Oleo Sci. 55, 15-22.
Younan C, Mitchell P, Cumming RG, Panchapakesan J, Rochtchina E & Hales AM (2002) Hormone replacement therapy, reproductive factors, and the incidence of cataract and cataract surgery: the Blue Mountains Eye Study. Am J Epidemiol 155, 997-1006.
Zigman S, Paxhia T, McDaniel T, Lou MF & Yu NT (1991) Effect of chronic near-ultraviolet radiation on the gray squirrel lens in vivo. Invest Ophthalmol Vis Sci 32, 1723-1732.
論文全文使用權限
  • 同意授權瀏覽/列印電子全文服務,於2013-07-09起公開。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446