進階搜尋


  查詢北醫館藏
系統識別號 U0007-0607201010523200
論文名稱(中文) 含氮之[6,5] 雜環類緣物之合成與抗癌活性研究
論文名稱(英文) Synthesis of Nitrogen-containing [6,5]-fused heterocycles as Anticancer Agents
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 99
學期 2
出版年 99
研究生(中文) 沈柏榕
研究生(英文) Po-Jung Shen
學號 M301097019
學位類別 碩士
語文別 中文
口試日期 2010-06-03
論文頁數 237頁
口試委員 指導教授-劉景平
委員-林仁混
委員-林美香
中文關鍵字 含氮之[6,5] 雜環  組織蛋白去乙醯酶  抑制劑 
英文關鍵字 Nitrogen-containing [6,5]-fused heterocycles  Histone deacetylase inhibitors 
學科別分類
中文摘要 組織蛋白去乙醯酶抑制劑(Histone deacetylase inhibitor, HDACi)目前廣泛的用於治療癌症,其中已有多種藥物上市,例如默克藥廠的小分子化合物ZolinzaR(vorinostat, SAHA, FDA approved for treatment of refractory cutaneous T-call lymphoma in 2006)和Gloucester藥廠的RomidepsinR(FK-228, FDA approved for treatment of refractory cutaneous T-call lymphoma in 2009),以上都證明此類藥物為治療癌症之有效策略。
本實驗室觀察相關HDACi後發現,N-hydroxyacrylamide和benzamide等官能基在抑制活性上扮演重要角色;含氮之[6,5] 雜環,例如indole,在許多抗癌小分子化合物中為重要骨架,因此本實驗室決定探討含氮之[6,5] 雜環在其N位以苯磺胺類或是苯烷基連結,導入N-hydroxyacrylamide和benzamide官能基,合成二系列化合物,進一步了解HDAC抑制活性與結構之間關係。
實驗室合成出的二系列化合物對口腔上皮細胞癌KB cell line做生物活性試驗,目前已知的資料中12d、17d、24c、28b有相似的活性,其中以24c IC50 = 604.6 nM最好。目前其他化合物活性實驗仍在進行中,此後將會作HDAC抑制活性試驗與結構修飾。
英文摘要 Histone deacetylase inhibitors (HDACi) have been used for anticancer drugs broadly. Some of them were approved by FDA, for example ZolinzaR and RomidepsinR for treatment of refractory cutaneous T-call lymphoma. Therefore, to target histone deacetylase provides a potential methodology to develop potent anticancer agents.
To cording to the structures of HDACi, our laboratory found benzamide and N-hydroxyacrylamide important to HDAC inhibition activity. Besides, we observed some small molecular anticancer drugs containing nitrogen-containing [6,5]-fused heterocycles as major composition, for instance indole . So we introduced benzenesulfonamide or benzene motif on the N position of the nitrogen-containing [6,5]-fused heterocycles as the linker region and utilized N-hydroxyacrylamide and benzamide group for chelating region to discuss the relationship between structures and HDAC inhibition activity.
The two series of compounds are going to test KB cell line. According to the result, compound 12d, 17d, 24c and 28b have similar activity. Compound 24c possess the most potent inhibitory activity (IC50 = 604.6 nM). The evaluation of biological activities is still in progress. The further structural optimization and HDAC inhibition activity tests are going to be investigated.
論文目次 附圖目錄 9
中文摘要 15
英文摘要 16
研究背景 17
實驗目的與設計 28
生物活性結果與討論 40
結論 41
實驗儀器 44
試藥與試劑 46
試藥與試劑簡寫表 49
合成步驟 50
indoline (1) 50
7-chloro-4-azaindole (2) 51
4-azaindole (3) 52
7-chloro-6-azaindole (4) 53
6-azaindole (5) 54
5-azaindole (6) 55
3-(chlorosulfonyl)benzoate (7) 56
methyl 3-(1H-indol-1-ylsulfonyl)benzoate (8a) 57
3-(1H-indol-1-ylsulfonyl)benzaldehyde (8b) 58
(E)-tert-butyl 3-(3-(1H-indol-1-ylsulfonyl)phenyl)acrylate (8c) 59
(E)-3-(3-(1H-indol-1-ylsulfonyl)phenyl)acrylic acid (8d) 60
(E)-3-(3-(1H-indol-1-ylsulfonyl)phenyl)-N-hydroxyacrylamide (8e) 61
methyl 3-(indolin-1-ylsulfonyl)benzoate (9a) 62
3-(indolin-1-ylsulfonyl)benzaldehyde (9b) 63
(E)-tert-butyl 3-(3-(indolin-1-ylsulfonyl)phenyl)acrylate (9c) 64
(E)-3-(3-(indolin-1-ylsulfonyl)phenyl)acrylic acid (9d) 65
(E)-N-hydroxy-3-(3-(indolin-1-ylsulfonyl)phenyl)acrylamide (9e) 66
1-(3-bromophenylsulfonyl)-1H-pyrrolo[3,2-b]pyridine (10a) 67
(E)-tert-butyl-3-(3-(1H-pyrrolo[3,2-b]pyridin-1-ylsulfonyl)phenyl)acrylate (10b) 68
(E)-3-(3-(1H-pyrrolo[3,2-b]pyridin-1-ylsulfonyl)phenyl)acrylic acid (10c) 69
(E)-3-(3-(1H-pyrrolo[3,2-b]pyridin-1-ylsulfonyl)phenyl)-N-hydroxyacrylamide (10d) 70
1-(3-bromophenylsulfonyl)-1H-pyrrolo[2,3-c]pyridine (11a) 71
(E)-tert-butyl-3-(3-(1H-pyrrolo[2,3-c]pyridin-1-ylsulfonyl)phenyl)acrylate (11b) 72
(E)-3-(3-(1H-pyrrolo[2,3-c]pyridin-1-ylsulfonyl)phenyl)acrylic acid (11c) 73
(E)-3-(3-(1H-pyrrolo[2,3-c]pyridin-1-ylsulfonyl)phenyl)-N-hydroxyacrylamide (11d) 74
1-(3-bromophenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine (12a) 75
(E)-tert-butyl-3-(3-(1H-pyrrolo[2,3-b]pyridin-1-ylsulfonyl)phenyl)acrylate (12b) 76
(E)-3-(3-(1H-pyrrolo[2,3-b]pyridin-1-ylsulfonyl)phenyl)acrylic acid (12c) 77
(E)-3-(3-(1H-pyrrolo[2,3-b]pyridin-1-ylsulfonyl)phenyl)-N-hydroxyacrylamide (12d) 78
1-(3-bromophenylsulfonyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine (13a) 79
(E)-tert-butyl-3-(3-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-ylsulfonyl)phenyl)acrylate (13b) 80
(E)-3-(3-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-ylsulfonyl)phenyl)acrylic acid (13c) 81
(E)-3-(3-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-ylsulfonyl)phenyl)-N-hydroxyacrylamide (13d) 82
1-(3-bromophenylsulfonyl)-1H-indazole (14a) 83
(E)-tert-butyl 3-(3-(1H-indazol-1-ylsulfonyl)phenyl)acrylate (14b) 84
(E)-3-(3-(1H-indazol-1-ylsulfonyl)phenyl)acrylic acid (14c) 85
(E)-3-(3-(1H-indazol-1-ylsulfonyl)phenyl)-N-hydroxyacrylamide (14d) 86
1-(4-bromophenylsulfonyl)-1H-pyrrolo[3,2-b]pyridine (15a) 87
(E)-tert-butyl-3-(4-(1H-pyrrolo[3,2-b]pyridin-1-ylsulfonyl)phenyl)acrylate (15b) 88
(E)-3-(4-(1H-pyrrolo[3,2-b]pyridin-1-ylsulfonyl)phenyl)acrylic acid (15c) 89
(E)-3-(4-(1H-pyrrolo[3,2-b]pyridin-1-ylsulfonyl)phenyl)-N-hydroxyacrylamide (15d) 90
1-(4-bromophenylsulfonyl)-1H-pyrrolo[2,3-c]pyridine (16a) 91
(E)-tert-butyl-3-(4-(1H-pyrrolo[2,3-c]pyridin-1-ylsulfonyl)phenyl)acrylate (16b) 92
(E)-3-(4-(1H-pyrrolo[2,3-c]pyridin-1-ylsulfonyl)phenyl)acrylic acid (16c) 93
(E)-3-(4-(1H-pyrrolo[2,3-c]pyridin-1-ylsulfonyl)phenyl)-N-hydroxyacrylamide (16d) 94
1-(4-bromophenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine (17a) 95
(E)-tert-butyl-3-(4-(1H-pyrrolo[2,3-b]pyridin-1-ylsulfonyl)phenyl)acrylate (17b) 96
(E)-3-(4-(1H-pyrrolo[2,3-b]pyridin-1-ylsulfonyl)phenyl)acrylic acid (17c) 97
(E)-3-(4-(1H-pyrrolo[2,3-b]pyridin-1-ylsulfonyl)phenyl)-N-hydroxyacrylamide (17d) 98
1-(4-bromophenylsulfonyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine (18a) 99
(E)-tert-butyl-3-(4-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-ylsulfonyl)phenyl)acrylate (18b) 100
(E)-3-(4-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-ylsulfonyl)phenyl)acrylic acid (18c) 101
(E)-3-(4-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-ylsulfonyl)phenyl)-N-hydroxyacrylamide (18d) 102
1-(4-bromophenylsulfonyl)-1H-indazole (19a) 103
(E)-tert-butyl 3-(4-(1H-pyrazolo[3,4-b]pyridin-1-ylsulfonyl)phenyl) -acrylate (19b) 104
(E)-3-(4-(1H-indazol-1-ylsulfonyl)phenyl)acrylic acid (19c) 105
(E)-3-(4-(1H-indazol-1-ylsulfonyl)phenyl)-N-hydroxyacrylamide (19d) 106
4-(indolin-1-ylsulfonyl)benzoic acid (20a) 107
N-(2-aminophenyl)-4-(indolin-1-ylsulfonyl)benzamide (20b) 108
methyl 4-((1H-pyrrolo[3,2-b]pyridin-1-yl)methyl)benzoate (21a) 109
4-((1H-pyrrolo[3,2-b]pyridin-1-yl)methyl)benzoic acid (21b) 110
4-((1H-pyrrolo[3,2-b]pyridin-1-yl)methyl)-N-(2-aminophenyl)benzamide (21c) 111
methyl 4-((1H-pyrrolo[3,2-c]pyridin-1-yl)methyl)benzoate (22a) 112
4-((1H-pyrrolo[3,2-c]pyridin-1-yl)methyl)benzoic acid (22b) 113
4-((1H-pyrrolo[3,2-c]pyridin-1-yl)methyl)-N-(2-aminophenyl)benzamide (22c) 114
methyl 4-((1H-pyrrolo[2,3-c]pyridin-1-yl)methyl)benzoate (23a) 115
4-((1H-pyrrolo[2,3-c]pyridin-1-yl)methyl)benzoic acid (23b) 116
4-((1H-pyrrolo[2,3-c]pyridin-1-yl)methyl)-N-(2-aminophenyl)benzamide (23c) 117
methyl 4-((1H-pyrrolo[2,3-b]pyridin-1-yl)methyl)benzoate (24a) 118
4-((1H-pyrrolo[2,3-b]pyridin-1-yl)methyl)benzoic acid (24b) 119
4-((1H-pyrrolo[2,3-b]pyridin-1-yl)methyl)-N-(2-aminophenyl)benzamide (24c) 120
methyl 4-((1H-indazol-1-yl)methyl)benzoate (25a) 121
4-((1H-indazol-1-yl)methyl)benzoic acid (25b) 122
4-((1H-indazol-1-yl)methyl)-N-(2-aminophenyl)benzamide (25c) 123
methyl 4-((1H-indol-1-yl)methyl)benzoate (26a) 124
4-((1H-indol-1-yl)methyl)benzoic acid (26b) 125
4-((1H-indol-1-yl)methyl)-N-(2-aminophenyl)benzamide (26c) 126
4-(indolin-1-ylmethyl)benzoic acid (27a) 127
N-(2-aminophenyl)-4-(indolin-1-ylmethyl)benzamide (27b) 128
4-((2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-yl)methyl)benzoic acid (28a) 129
N-(2-aminophenyl)-4-((2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-yl)methyl)benzamide (28b) 130
附圖部分 131
參考文獻 230
參考文獻 1. 行政院衛生署http://www.doh.gov.tw/
2. Davie, J. R. Covalent modifications of histones: expression from chromatin templates. Curr. Opin. Genet. Dev. 1998, 8, 173-178.
3. Strahl, B. D.; Allis, C. D. The language of covalent histone modifications. Nature. 2000, 403, 41-45.
4. Roth, S. Y.; Denu, J. M.; Allis, C. D. Histone acetyltransferases. Annu. Rev. Biochem. 2001, 70, 81-120.
5. Andrew, A. L.; Bruce A. C. Histone deacetylase inhibitors in cancer therapy. J. Clin. Oncol. 2009, 27, 5459-5468.
6. Bolden, J. E.; Peart, M. J.; Johnstone, R. W. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006, 5, 769-784.
7. Ito, K.; Barnes, P. J.; Adcock, I. M. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1β induced histone H4 acetylation on lysines 8 and 12. Mol. Cell Biol. 2000, 20, 6891-6903.
8. Cai, R. L.; Yan, Y. N.; Maria, A. C.; Hong, X.; Dalia, C. HDAC1, a histone deacetylase, forms a complex with Hus1 and Rad9, two G2/M checkpoint Rad proteins. J. Biol. Chem. 2000, 275, 27909-27916.
9. Robertson, K. D. ; Slimane, A-S-A.; Tomoki, Y.; Paul, A. W.; Peter, L. J.; Alan, P. W. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2Fresponsive promoters. Nature Genet. 2000, 25, 338-342.
10. Smirnov, D. A.; Hou, S.; Ricciardi, R. P. Association of histone deacetylase with COUP-TF in tumorigenic Ad12- transformed cells and its potential role in shut-off of MHCclass I transcription. Virology. 2000, 268, 319-328.
11. Cress, W. D.; Seto, E. Histone deacetylases, transcriptional control and cancer. J. Cell. Physiol. 2000, 184, 1-16.
12. Ng, H-H.; Bird, A. DNA methylation and chromatin modification. Curr. Opin. Genet. Dev. 1999, 9, 158-63.
13. Kurkjian1, C.; Kummar S.; Murgo, A. J. DNA methylation: its role in cancer development and therapy. Curr. Probl. Cancer. 2008, 32, 187-235.
14. Yang, X.; Yan, L.; Davidson, N. E., DNA methylation in breast cancer. Endocr. Relat. Cancer. 2001, 8, 115-127.
15. Miller, T. A.; Witter, D. J.; Belvedere, S. Histone deacetylase inhibitors. J. Med. Chem. 2003, 46, 5097-5116.
16. Gottlicher, M.; Minucci, S.; Kramer, H. O.; Schimpf, A.; Giavara, S.; Sleeman, P. J.; Coco, F.L.; Nervi, C.; Pelicci, P. G.; Heinzel, T. Valproic acid a novel class of HDAC inhibitorsinducing differentiation of transformed cells. EMBO. J. 2001, 20, 6969-6978.
17. Atmaca , A.; Al-Batran, S-E.; Maurer, A.; Neumann, A.; Heinzel, T.; Hentsch, B.; Schwarz, S. E.; Hovelmann, S.; Gottlicher, M.; Knuth, A.; Jager, E. Valproic acid (VPA) in patients with refractory advanced cancer: a dose escalating phase I clinical trial. Br. J. Cancer. 2007, 97, 177-182.
18. Sharma, S.; Symanowski, J.; Wong, B.; Dino, P.; Manno, P.; Vogelzang, N. A phase II clinical trial of oral valproic acid in patients with castration-resistant prostate cancers using an intensive biomarker sampling strategy. Transl. Oncol. 2008, 1, 141-147.
19. Itazaki, H.; Nagashima, K.; Sugita, K.; Yoshida, H.; Kawamura, Y.; Yasuda, Y.; Matsumoto, K.; Ishii, K.; Uotani, N.; Nakai, H.; Terui, A.; Yoshimatsu, S. Isolation and structural elucidation of new cyclotetrapeptides, Trapoxins A And B, having detransformation activities as antitumor agents. J. Antibiot. 1990, 43, 1524-1532.
20. Shute R.E.; Dunlap, B.; Rich, D. H. Analogues of the cytostatic and antimitogenic agents chlamydocin and HC-toxin: synthesis and biological activity of chloromethyl ketone and diazomethyl ketone functionalized cyclic tetrapeptides. J. Med. Chem. 1987, 30, 71-78.
21. Kijima, M.; YoshidaS, M.; Siugitae K.; Horinouchi, S.; Beppu, T. Trapoxin, an antitumor cyclic tetrapeptide, Is an irreversible inhibitor of mammalian histone deacetylase. J. Biol. Chem. 1993, 268, 22429-22435.
22. Suzuki, T.; Ando, T.; Tsuchiya, K.; Fukazawa, N. Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives. J. Med. Chem. 1999, 42, 3001-3003.
23. Kato, Y.; Yoshimura, K.; Shin, T.; Verheul, H.; Hammers, H.; Sanni, T. B.; Salumbides, B. C.; Van Erp, K.; Schulick, R.; Pili, R. Synergistic in vivo antitumor effect of the histone deacetylase inhibitor MS-275 in combinationwith interleukin 2 in a murine model of renal cell carcinoma. Clin. Cancer Res. 2007, 13, 4538-4546
24. Khandelwal, A.; Gediya, L.K.; Njar, V. C. O. MS-275 synergistically enhances the growth inhibitory effects of RAMBA VN/66-1 in hormone-insensitive PC-3 prostate cancer cells and tumours. Br. J. Cancer. 2008, 98, 1234-1243.
25. Baradari, V.; Hopfner, M.; Huether, A.; Schuppan, D.; Scherubl, H. Histone deacetylase inhibitor MS-275 alone or combined with bortezomib or sorafenib exhibits strong antiproliferative action in human cholangiocarcinoma cells. World J. Gastroenterol. 2007, 13, 4458-4466.
26. Gore, Lia.; Rothenberg, L. M.; O’Bryant, L. C.; Schultz, M. K.; Sandler, B.; Coffin, D. A.; McCoy, Candice.; Schott, A.; Scholz, C.; Eckhardt, S. Gail. A phase I and pharmacokinetic study of the oral histone deacetylase inhibitor,MS-275, in patients with refractory solid tumors and lymphomas. Clin. Cancer Res. 2008, 14, 4517-4525.
27. Zhou, N.; Moradei, O.; Raeppel, S.; Leit, S.; Frechette, S.; Gaudette, F.; Paquin, I.; Bernstein, N.; Bouchain, G.; Vaisburg, A.; Jin, Z. Gillespie, J.; Wang, J.; Fournel, M.; Yan, T. P.; Trachy-Bourget, M-C.; Kalita, A.; Lu, A.; Rahil, J.; MacLeod, R. A.; Li, Z.; Besterman, M. J.; Delorme, D. Discovery of N-(2-aminophenyl)-4-[(4-pyridin-3- lpyrimidin-2-ylamino)methyl]benzamide (MGCD0103),an orally active histone deacetylase inhibitor. J. Med. Chem. 2008, 51, 4072-4075.
28. G, G-M.; Yang, A.; Klimek, V.; Luger, S.; Newsome, W.; Berman, N.; Patterson, T.; Maroun, C.; Li, Z.; Ward, R.; Martell, R. E. Phase I/II study of the novel oral isotype-selective histone deacetylase (HDAC) inhibitor MGCD0103 in combination with azacitidine in patients with high risk myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). J. Clin. Oncol. 2007, 25, 7062.(abstr.).
29. Blum, A. K.; Advani, A.; Fernandez, L.; Van Der Jagt, R.; Brandwein, J.; Kambhampati, S.; Kassis, J.; Davis, M.; Bonfils, C.; Dubay, M.; Dumouchel, J.; Drouin, M.; Lucas, M. D.; Marte, E. R.; Byrd, J. C. Phase II study of the histone deacetylase inhibitor MGCD0103 in patients with previously treated chronic lymphocytic leukemia. Br. J. Haematol. 2009, 147, 507-514.
30. Marks, P. A,; Rifkind, R. A.; Jursic, B. Novel potent inducers of terminal differentiation and methods of use thereof. PCT Int. Appl. WO 93107148. (abstr.).
31. U.S. Food and Drug Administration. http://www.fda.gov/
32. Yoshida, M.; Nomura, S.; Beppu, T. Effects of trichostatins on differentiation of murine erythroleukemia cells. Cancer Res. 1987, 47, 3688-3691.
33. Yoshida, M.; Kijima, M.; Akita, M.; Beppu, T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 1990, 265, 17174-17179.
34. Atadja, P.; Lin, G.; Kwon, P.; Trogani, N.; Heather, W.; Hsu, M.; Yeleswarapu, L.; Chandramouli, N.; Perez, L.; Versace, R.; Wu, A.; Sambucetti, L.; Lassota, P.; Cohen, D.;Bair, K.; Wood, A.; Remiszewski, S. Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor NVP-LAQ824 Cancer Res. 2004, 64, 689-695.
35. Catley, L.; Weisberg, E.; Tai, Y-T.; Atadja, P.; Remiszewski, S.; Hideshima, T.; Mitsiades, N.; Shringarpure, R.; LeBlanc, R.; Chauhan, D.; Munshi, NC.; Schlossman, R.; Richardson, P.; Griffin, J.; Anderson, KC. NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood. 2003, 102, 2615-22.
36. Nimmanapalli, R.; Fuino, L,; Bali, P,; Gasparetto, M.; Glozak, M.; Tao, J.; Moscinski, L.; Smith, C.; Wu, J.; Jove, R.; Atadja, P.; Bhalla, K. Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate- sensitive or -refractory chronic myelogenous leukemia-blast crisis cells. Cancer Res. 2003, 63, 5126-5135.
37. Qian, D.Z.; Kato, Y.; Shabbeer, S.; Wei, Y.; Verheul, H.W.; Salumbides, B.; Sanni, T.; Atadja, P.; Pili1, R. Targeting tumor angiogenesis with histone deacetylase inhibitors: the hydroxamic acid derivative LBH589. Clin. Cancer Res. 2006, 12, 634-642.
38. Catley, L.; Weisberg, E.; Kiziltepe, T.; Tai, Y-T.; T Hideshima,.; Neri, P.; Tassone, P.; Atadja, P.; Chauhan, D.; Munshi, N. C.; Anderson, K. C..Aggresome induction by proteasome inhibitor bortezomib and α-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood. 2006, 108, 3441-3449.
39. Prince, H.M.; Bishton. M. Panobinostat (LBH589):a novel pan-deacetylase inhibitor with activity in T cell lymphoma. Hematology Meeting Reports 2009, 3, 33-38.
40. Bertolini, G.; Biffi, M.; Leoni, F.; Mizrahi, J.; Pavich, G.; Mascagni, P. Compounds with anti-inflammatory and immunosuppressive activities. PCT Int. Appl. WO 6034096 (abstr.).
41. Leoni, F.; Fossati, G.; Lewis, C. E.; Lee, J-K.; Porro, G.; Pagani, P.; Modena, D. Moras, M. L.; Pozzi, P.; Reznikov, L. L.; Siegmund, B.; Fantuzzi, G.; Dinarello, A.C.; Mascagni, P. The Histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol. Med. 2005, 11, 1-15.
42. Armeanua, S.; Pathil, A.; Venturelli, S.; Mascagni, P.; Weiss, S. T.; Gottlicher, M.; Gregor, M.; Lauer, M. U.; Bitzer, M. Apoptosis on hepatoma cells but not on primary hepatocytes by histone deacetylase inhibitors valproate and ITF2357. J. Hepatol. 2005, 42, 2210-217.
43. Furumai, R.; Matsuyama, A.; Kobashi, N.; Lee, K.H.; Nishiyama, M.; Nakajima, H.; Tanaka, A.; Komatsu, Y.; Nishino, N.; Yoshida, M.; Horinouchi, S. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 2002, 62, 4916-21.
44. Ueda, H.; Nakajima, H.; Hori, Y.; Fujita. T.; Nishimura, M.; Goto, T.; Okuhara, M. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. J. Antibiot. (Tokyo). 1994, 47, 301-310 (abstr.).
45. Zhang, Z.; Yang, Z.; Meanwell, A. N.; Kadow, F. J.; Wang, T. A general method for the preparation of 4- and 6-azaindoles. J. Org. Chem. 2002, 67, 2345-2347.
46. Li, J. J. et al. (2005). Name reactions in heterocyclic chemistry.
47. Huestis, P. M.; Fagnou , K. Site-selective azaindole arylation at the azine and azole rings via N-oxide activation. Org. Lett. 2009, 11, 1357-1360.
48. Mahboobi, S.; Sellmer, A,; Hocher, H.; Garhammer, C.; Pongratz, H.; Maier, T.; Ciossek, T.; Beckers, T. 2-Aroylindoles and 2-aroylbenzofurans with N-hydroxyacrylamide substructures as a novel series of rationally designed histone deacetylase inhibitors. J. Med. Chem. 2007, 50, 4405-4418.
49. Vinodkumar R.; Vaidya, S. D.; Kumar, B. V. S.; Bhise, U. N.; Bhirud, S. B.; Mashelkar, U. C. Synthesis, anti-bacterial, anti-asthmatic and anti-diabetic activities of novel N-substituted 2-(4-styrylphenyl)-1H- benzimidazole and N-substituted-3-[4-(1H-benzimidazole-2-yl)- phenyl]-acrylic acid tert-butyl ester. J. Polym. Sci. A. 2008, 14, 37-49.
50. Deng, X.; Mani, S. N. A facile, environmentally benign sulfonamide synthesis in water. Green Chem. 2006, 8, 835-838.
論文全文使用權限
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446