進階搜尋


  查詢北醫館藏
系統識別號 U0007-0507201015574600
論文名稱(中文) 微生物轉換Isostevic acid
論文名稱(英文) Microbial Transformation of Isostevic acid
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 98
學期 2
出版年 99
研究生(中文) 林文光
研究生(英文) Wen-Kuang Lin
學號 M301097030
學位類別 碩士
語文別 中文
口試日期 2010-06-24
論文頁數 182頁
口試委員 委員-李水盛
委員-黃偉展
指導教授-林淑娟
中文關鍵字 微生物轉換;四環雙萜  類;甜菊 
英文關鍵字 microbial transformation  tetracyclic diterpene  stevia 
學科別分類
中文摘要 微生物轉換技術具有位置(regio-)及立體(stereo-)選擇性,因此被用來修飾天然及合成化合物的構造。Isosteviol (2)為四環雙萜類化合物,具有ent-beyerane架構,且其活性及微生物轉換已廣泛被研究。文獻指出,將微生物轉換的受質稍微改變其結構,可修飾或引出新的生物活性,因此,isosteviol (2) 經由Wolff-Kishner reduction反應,以製備isostevic acid (ent-beyeran-19-oic acid) (3),接著再進行微生物轉換研究,產生新的衍生物,以進行新的生物活性之探討。經由菌種篩選實驗發現Aspergillus niger BCRC 32720、Bacillus megaterium ATCC 14581及Mortierella isabellina ATCC 38063具有反應再現性,因此選擇這些菌種進行大量發酵培養,並經由萃取及各種分離純化之方式得到不同代謝產物。研究發現,受質 3經由A. niger代謝得到
ent-1beta,7alpha,11alpha-trihydroxybeyeran-19-oic acid (4)、ent-1beta,7alpha,17-trihydroxybeyeran-19-oic acid (5)、
ent-1beta,17-dihydroxybeyeran-19-oic acid (6)、ent-11alpha-hydroxy-7-oxobeyeran-19-oic acid (7)、ent-1beta-
hydroxy-7-oxobeyeran-19-oic acid (8)、ent-7alpha-hydroxy-1-oxobeyeran-19-oic acid (9)、ent-1beta,7alpha-dihydroxybeyeran-19-oic acid (10) 和ent-7alpha,11alpha-dihydroxybeyeran-19-oic acid (11);經由B. megaterium代謝得到ent-12beta-hydroxybeyeran-19-oic acid (12)、
ent-12beta,15beta-dihydroxybeyeran-19-oic acid (13)、
ent-17-hydroxybeyeran-19-oic acid (14)和ent-12beta,17-dihydroxybeyeran-19-oic acid (15);經由M. isabellina代謝得到13、15、ent-9alpha,12beta-dihydroxybeyeran-19-oic acid (16) 和ent-12beta-hydroxy-16-oxobeyeran-19-oic acid (17)。這些生化反應包括選擇性羥化及羥化反應後進一步進行氧化反應,其中4-16為新的化合物,所得之新化合物皆經由低、高解析質譜及一維、二維核磁共振光譜等鑑定其結構,4、10、15和16則進一步透過X-ray單晶繞射分析確認其結構。此外,受質3及分離所得之化合物,其藥理活性實驗,目前正在進行中。
英文摘要 Microbial transformation has been used for structurally modification of natural and synthetic compounds due to its significant regio- and stereoselectivities. Isosteviol (2), an ent-beyerane tetracyclic diterpene possessing many biological activities, has been detailed studies of the biotransformation. According to the literature, small modifications in the chemical structure of a compound can modify its biological activities. Therefore, isostevic acid (ent-beyeran-19-oic acid) (3) was prepared by the Wolff-Kishner reduction of 2 and subjected to microbial transformation to produce new derivatives for developing new biological activity. Screening 18 strains of microorganisms revealed that Aspergillus niger BCRC 32720,Bacillus megaterium ATCC 14581, and Mortierella isabellina ATCC 38063 were able to reproducibly produce several compounds. Thus, they were selected for the preparative-scale biotransformation of 3. Incubation of 3 with A. niger afforded ent-1beta,7alpha,11alpha-trihydroxybeyeran-19-oic acid (4), ent-1beta,7alpha,17-trihydroxybeyeran- 19-oic acid (5), ent-1beta,17-dihydroxybeyeran-19-oic acid (6), ent-11alpha- hydroxy-7-oxobeyeran-19-oic acid (7), ent-1beta-hydroxy-7-oxobeyeran- 19-oic acid (8), ent-7alpha-hydroxy-1-oxobeyeran-19-oic acid (9), ent-1beta,7alpha-dihydroxybeyeran-19-oic acid (10), and ent-7alpha,11alpha- dihydroxybeyeran-19-oic acid (11). Incubation of 3 with B. megaterium yielded ent-12beta-hydroxybeyeran-19-oic acid (12), ent-12beta,15beta- dihydroxybeyeran-19-oic acid (13), ent-17-hydroxybeyeran-19-oic acid (14), and ent-12beta,17-dihydroxybeyeran-19-oic acid (15). Incubation of 3 with M. isabellina produced 13, 15, ent-9alpha,12beta-dihydroxybeyeran- 19-oic acid (16), and ent-12beta-hydroxy-16-oxobeyeran-19-oic acid (17). The biochemical reactions involved hydroxylation followed by selective oxidation. Among the isolated compounds, 4-16 were previously unreported and the structures of new compounds were elucidated by LR- and HRMS, and 1D and 2D NMR. Structures of 4, 10, 15, and 16 were further confirmed by a single-crystal diffraction experiment. Besides, the pharmacological testing of these compounds is still in progress.
論文目次 目錄.................................................I
附表目錄.............................................III
附圖目錄.............................................IV
流程目錄.............................................XI
詞彙.................................................1
中文摘要.............................................2
英文摘要.............................................4
第一章 緒論
第一節 微生物轉換之研究背景..........................6
第二節 甜菊成分研究與活性探討........................16
第三節 研究目的......................................20
第二章 結果與討論
第一節 受質isostevic acid (3)之製備與結構判定........23
第二節 Isostevic acid (3)與Aspergillus niger BCRC 32720之微
生物轉換與代謝物結構判定......................25
第三節 Isostevic acid (3)與Bacillus megaterium ATCC 14581之
微生物轉換與代謝物結構判定....................35
第四節 Isostevic acid (3)與Mortierella isabellina ATCC 38063
之微生物轉換與代謝物結構判定..................40
第五節 結論..........................................43
第三章 實驗部分
第一節 實驗之儀器與藥品..............................46
第二節 受質Isostevic acid (3)之製備..................50
第三節 微生物轉換實驗................................52
(一)培養及發酵程序...................................52
(二) Isostevic acid (3)之微生物轉換實驗..............55
(三) Isostevic acid (3)與Aspergillus niger BCRC 32720之微生
物轉換..........................................55
(四) Isostevic acid (3)與Bacillus megaterium ATCC 14581之微
生物轉換........................................61
(五) Isostevic acid (3)與Mortierella isabellina ATCC 38063之
微生物轉換......................................64
第四章 光譜數據......................................73
附錄 產率附表........................................172
參考文獻.............................................174

參考文獻 1.劉英俊, 最新微生物應用工業, 第四版, 中央圖書出版社, 1996
2.Liese A., Seelbach K., Wandrey C. Industrial
biotransformations. Wiley-VCH: Germany, 2000.
3.Carballeira J. D., Quezada M. A., Hoyos P., Simeó Y.,
Hernaiz M. J., Alcantara A. R., Sinisterra J. V.
Microbial cells as catalysts for stereoselective red–ox
reactions. Biotechnol. Adv., 2009, 27, 686–714
4.Faber K. Biotransformations in organic chemistry, 4th Ed.
Springer-Vierlag: Germany, 2000.
5.Pasteur, L. Compt. Rend., 1857, 45, 913.
6.Büchner, E. Ber. Dysch. Chem. Ges. 1897, 30, 117.
7.蘇遠志及黃世佑,應用微生物學;華香園出版社,台北,1999,初
版.
8.Clark, A. M.; Hufford, C. D. Use of microorganisms for
the study of drug metabolism an update. Med. Res. Rev.,
1991, 11, 473–501.
9.Hanc, O.; Capek, A.; Tadra, M.; Macek, K.; Simek, A.
Microbial transformation of steroids. III. Direct
conversion of progesterone into testosterone.
Arzneimittelforschung, 1957, 7, 175-176.
10.Marsheck, W. J.; Karim, A. Preparation of metabolites of
spironolactone by microbial oxygenation. Appl.
Microbiol., 1973, 25, 647-649.
11.Smith, R. V.; Rosazza, J. P. Microbial models of
mammalian metabolism. Aromatic hydroxylation. Arch.
Biochem. Biophys., 1974, 161, 551-558.
12.Abourashed, E. A.; Clark, A. M.; Hufford, C. D.
Microbial models of mammalian metabolism of xenobiotics:
an updated review. Curr. Med. Chem., 1999, 6, 359–374.
13.Marshall, V. P.; McGovren, J. P.; Richard, F. A.;
Richard, R. E.; Wiley, P. F. Microbial metabolism of
anthracycline antibiotics daunomycin and adriamycin. J.
Antibiot., 1987, 31, 336-342.
14.Hufford, C. D.; Capiton, G. A.; Clark, A. M.; Baker, J.
K. Metabolism of imipramine by microorganisms. J. Pharm.
Sci., 1981, 70, 151-155.
15.Davis, P. J.; Rizzo, J. D. Microbial transformations of
warfarin: stereoselective reduction by Nocardia corallia
and Arthrobacter species. Appl. Environ. Microbiol.,
1982, 43, 884-890.
16.Davis, P. J.; Guenthner, L. E. Sulindac
oxidation/reduction by microbial cultures; microbial
models of mammalian metabolism. Xenobiotica, 1985, 15,
845-857.
17.Yang, W.; Davis, P. J. Microbial models of mammalian
metabolism. Biotransformations of N-methylcarbazole
using the fungus Cunninghamella echinulata. Drug Metab.
Dispos., 1992, 20, 38-46.
18.Hezari, M.; Davis, P. J. Microbial models of mammalian
metabolism. Furosemide glucoside formation using the
fungus Cunninghamella elegans. Drug Metab. Dispos.,
1993, 21, 259-267.
19.Maatooq, G. T.; Marzouk, A. M.; Gray, A. I.; Rosazza, J.
P. Bioactive microbial metabolites from glycyrrhetinic
acid. Phytochemistry, 2010, 71, 262-270.
20.Venisetty, R. K.; Ciddi, V. Application of microbial
biotransformation for the new drug discovery using
natural drugs as substrates. Curr. Pharm. Biotech.,
2003, 4, 153-167.
21.Sun, L.; Huang, H. H.; Liu, L.; Zhong, D. F.
Transformation of verapamil by Cunninghamella
blakesleeana. Appl. Environ. Microbiol., 2004, 70, 2722-
2727.
22.Kim, H. J.; Park, H. S.; Lee, I. S. Microbial
transformation of silybin by Trichoderma koningii.
Bioorg. Med. Chem. Lett., 2006, 16, 790–793.
23.Das, S.; Rosazza, J. P. N. Microbial and enzymatic
transformations of flavonoids. J. Nat. Prod., 2006, 69,
499-508.
24.Chen, G. T.; Yang, M. Song, Y.; Lu, Z. Q.; Zhang, J. Q.;
Huang, H. L.; Wu, L. J.; Guo, D. A. Microbial
transformation of ginsenoside Rb1 by Acremonium
strictum. Appl. Microbiol. Biotechnol., 2008, 77, 1345–
1350.
25.Marquina, S.; Parra, J. L., González, M.; Zamilpa, A.;
Escalante, J.; Trejo-Hernández, M. R.; Álvarez, L.
Hydroxylation of the diterpenes ent-kaur-16-en-19-oic
and ent-beyer-15-en-19-oic acids by the fungus
Aspergillus niger. Phytochemistry, 2009, 70, 2017–2022.
26.Zhao, Y.; Sun, M. L.; Wang, N. X.; Shen, T.; Ji, M.; Li,
X.; Lou, X. H. Microbial transformation of diosgenin by
Syncephalastrum racemosum (Cohn) Schroeter. Chin. Chem.
Lett., 2010, 21, 76–80.
27.Zhu, Y. L.; Huang, W.; Ni, J. R.; Liu, W.; Li, H.
Production of diosgenin from Dioscorea zingiberensis
tubers through enzymatic saccharification and microbial
transformation. Appl. Microbiol. Biotechnol., 2010, 85,
1409–1416
28.Srisailam, K.; Kumar, V. R.; Veeresham, C. Predicting
drug interaction of clopidogrel on microbial metabolism
of diclofenac. Appl. Biochem. Biotechnol., 2010, 160,
1508–1516.
29.Peterson, D. H.; Murray, H. C. Microbial oxygenation of
steroids at carbon 11. J. Am. Chem. Soc., 1952, 74,
1871–1872.
30.Patel, R. N. Synthesis of chiral pharmaceutical
intermediates by biocatalysis. Coord. Chem. Rev., 2008,
252, 659-701.
31.Zhang, W.; Ni, Y.; Sun, Z.; Zheng, P.; Lin, W.; Zhu, P.;
Ju, N. Biocatalytic synthesis of ethyl (R)-2-hydroxy-4-
phenylbutyrate with Candida krusei SW2026: A practical
process for high enantiopurity and product titer.
Process Biochem., 2009, 44, 1270-1275.
32.Wackett, L. P.; Hershberger, C. D. Biocatalysis and
biodegradation. ASM Press: Washington, D.C., 2001.
33.Sepuri, A.; Maravajhala, V. Cunninghamella – A
microbial model for drug metabolism studies – A review.
Biotechnol. Adv., 2009, 27, 16–29.
34.Borgne, S. L.; Quintero, R. Biotechnological processes
for the refining of petroleum. Fuel Processing
Technology, 2003, 81, 155-169.
35.Kulkarni, M.; Chaudhari, A. Microbial remediation of
nitro-aromatic compounds: An overview. J. Environ.
Manage., 2007, 85, 496-512.
36.Gassanova, L.G.; Netrusov, A. I.; Teplyakov, V. V.;
Modigell, M. Fuel gases from organic wastes using
membrane bioreactors. Desalination, 2006, 198, 56–66.
37.Hanson, J. R.; De Oliveira, B. H. Stevioside and related
sweet diterpenoid glycosides. Nat. Prod. Rep., 1993, 10,
301−309.
38.Goyal, S. K.; Samsher; Goyal, R. K. Stevia (Stevia
rebaudiana) a bio-sweetener: a review. Int. J. Food Sci.
Nutr., 2010, 61, 1-10.
39.Kinghorn, A. D.; Soejarto, N. P. D.; Nanayakkara, C. M.
A phytochemical screening procedure for sweet ent-
kaurene glycosides in the genus stevia. J. Nat. Prod.,
1984, 47, 439-444.
40.Genus, J. M. C. Stevioside. Phytochemistry, 2003, 64,
913-921.
41.Crammer, B.; Ikan, R. Sweet glycosides from the stevia
plant. Chem. Br., 1986, 22, 915−917.
42.Chen, T. H.; Chen, S. C.; Chan, P.; Chu, Y. L.; Yang, H.
Y.; & Cheng, J. T. Mechanism of the hypoglycemic effect
of stevioside, a glycoside of Stevia rebaudiana. Planta
Med., 2005, 71, 108-113.
43.Jeppesen, P. B.; Gregersen, S.; Alstrup, K. K.;
Hermansen, K. Stevioside induces antihyperglycaemic,
insulinotropic and glucagonostatic effects in vivo:
studies in the diabetic Goto-Kakizaki (GK) rats.
Phytomedicine, 2002, 9, 9-14.
44.Chatsudthipong, V.; Muanprasat, C. Stevioside and
related compounds: Therapeutic benefits beyond
sweetness. Pharmacol. Ther., 2009, 121, 41-54.
45.Lee, C. N.; Wong, K. L.; Liu, J. C.; Chen, Y. J.; Cheng,
J. T.; & Chan, P. Inhibitory effect of stevioside on
calcium influx to produce antihypertension. Planta Med.,
2001, 67, 796-799.
46.Chatsudthipong, V.; Thongouppakarn, P. Effects and
mechanism of stevioside on rat renal function. FASEB.
J., 1995, 9, 917.
47.Geuns, J. M.; Buyse, J.; Vankeirsbilck, A.; Temme, E. H.
Metabolism of stevioside by healthy subjects. Exp. Biol.
Med. (Maywood), 2007, 232, 164-173.
48.Yasukawa, K.; Kitanaka, S.; Seo, S. Inhibitory effect of
stevioside on tumor promotion by 12-O-
tetradecanoylphorbol-13-acetate in two-stage
carcinogenesis in mouse skin. Biol. Pharm. Bull., 2002,
25, 1488-1490.
49.Mizushina, Y.; Akihisa, T.; Ukiya, M.; Hamasaki, Y.;
Murakami- Nakai, C.; Kuriyama, I. Structural analysis of
isosteviol and related compounds as DNA polymerase and
DNA topoisomerase inhibitors. Life Sci., 2005, 77, 2127-
2140.
50.Boonkaewwan, C.; Toskulkao, C.; Vongsakul, M. Anti-
inflammatory and immunomodulatory activities of
stevioside and its metabolite steviol on THP-1cells. J.
Agric. Food. Chem., 2006, 54, 785-789.
51.Takasaki, M.; Konoshima, T.; Kozuka, M.; Tokuda, H.;
Takayasu, J.; Nishino, H.; Miyakoshi, M.; Mizutani, K.;
Lee, K. H. Cancer preventive agents. Part 8:
Chemopreventive effects of stevioside and related
compounds. Bioorg. Med. Chem., 2009, 17, 600–605.
52.de Oliverira, B. H.; Dos Santos, M. C.; Leal, P. C.
Biotransformation of diterpenoid, isosteviol by
Aspergillus niger, Penicillium chrysogenum and Rhizopus
arrhizus. Phytochemistry, 1999, 51, 737-741.
53.Akihisa, T.; Hamasaki, Y.; Tokuda, H.; Ukiya, M.;
Kimura, Y.; Nishino, H. Microbial transformation of
isosteviol and inhibitory effects on Epstein?{Barr virus
activation of the transformation products. J. Nat.
Prod., 2004, 67, 407–410.
54.Choudhary, M. I.; Siddiqui, Z. A.; Hussain, S.; Rahman,
A. Structure elucidation and antibacterial activity of
new fungal metabolites of sclareol. Chem. Biodiv., 2006,
3, 54-61.
55.Hsu, F. L.; Hou, C. C.; Yang, L. M.; Cheng, J. T.; Chi,
T. C.; Liu, P. C.; Lin, S. J. Microbial transformation
of isosteviol. J. Nat. Prod., 2002, 65, 273-277.
56.Chang, S. F.; Yang, L. M.; Hsu, F. L.; Hsu, J. Y.; Liaw,
J. H.; Lin, S. J. Transformation of steviol-16??,17-
epoxide by Streptomyces griseus and Cunninghamella
bainieri. J. Nat. Prod., 2006, 69, 1450-1455.
57.Yang, L. M.; Hsu, F. L.; Chang, S. F.; Cheng, J. T.;
Hsu, J. Y.; Hsu, C. Y.; Liu, P. C.; Lin, S. J. Microbial
metabolism of steviol and steviol-16??,17-epoxide.
Phytochemistry, 2007, 68, 562-570..
58.Chang, S. F.; Yang, L. M.; Lo, C. H.; Liaw, J. H.; Wang,
L. H.; Lin, S. J. Microbial transformation of isosteviol
and bioactivities against the glucocorticoid/androgen
response elements. J. Nat. Prod., 2008, 71, 87-92.
59.Chou, B. H.; Yang, L. M.; Chang, S. F.; Hsu, F. L.; Lo,
C. H.; Liaw, J. H.; Liu, P. C.; Lin, S. J. Microbial
transformation of isosteviol lactone and evaluation of
the transformation products on androgen response
element. J. Nat. Prod., 2008, 71, 602-607.
60.Chou, B. H.; Yang, L. M.; Chang, S. F.; Hsu, F. L.; Lo,
C. H.; Lin, W. K.; Wang, L. H.; Liu, P. C.; Lin, S. J.
Transformation of isosteviol lactone and its biological
evaluation for inhibiting the AP-1 transcription factor.
Phytochemistry, 2009, 70, 759-764.
61.Chang, S. F.; Chou, B. H.; Yang, L. M.; Hsu, F. L.; Lin,
W. K.; Ho, Y.; Lin, S. J. Microbial transformation of
isosteviol oxime and the inhibitory effects on NF-kB and
AP-1 activation in LPS-stimulated macrophages. Bioorg.
Med. Chem., 2009, 17, 6348-6353.
62.周柏宏, 微生物轉換D環修飾之異甜菊醇及生物活性評估. 台北醫
學大學藥學系博士論文, 2009.
63.Mosetting, E.; Beglinger, U.; Dolder, F.; Lichti, H.;
Quitt, P.; Waters, J. A. The absolute configuration of
steviol and isosteviol. J. Am. Chem. Soc., 1963, 85,
2305-2309.
64.Avent, A. G.; Hanson, J. R.; de Oliverira, B. H.
Hydrolysis of the diterpenoid glycoside, stevioside.
Phytochemistry, 1990, 29, 2712-2713.
65.Mosettig E., Nes W. R. Stevioside II. The structure of
aglucon. J. Org. Chem., 1955, 20, 884-899.
66.Lehman, L. R.; Stewart, J. D. Filamentous fungi:
Potentially useful catalysts for the biohydroxylations
of non-activated carbon centers. Curr. Org. Chem., 2001,
5, 439-470.
67.Ghisalberti, E. L. The biological activity of naturally
occurring kaurane diterpenes. Fitoterapia, 1997, 68, 303-
325.
68.Ali, M. S.; Hanson, J. R.; de Oliverira, B. H. The
biotransformation of some ent-beyeran-19-oic acids by
Gibberella fujikuroi. Phytochemistry, 1992, 31, 507-510.
69.Bearder, J. R.; Frydman, V. M.; Gaskin, P.; MacMillan,
J.; Wels, C. M.; Phinney, B. O. Fungal products. Part
XVI. Conversion of isosteviol and steviol acetate into
gibberellin analogues by mutant B1–41a of Gibberella
fujikuroi and the preparation of [3H]gibberellin A20. J.
Chem. Soc. Perkin Trans. 1, 1976, 173–178.
70.Diaz, C. E., Fraga, B. M., Gonzalez, A. G., Hanson, J.
R., Hernandez, M. G. and Martin, A. S. The
microbiological transformation of some ent-beyeran
diterpenoids by Gibberella fujikuroi to
beyergibberellins and beyerenolides. Phytochemistry,
1985, 24, 1489-1491.
71.Ghisalberti, E. L.; Jefferies, P. R.; Sefton, M. A.;
Sheppard P. N. Microbiological transformations of 19-
oxygenated ent-kauranes. Tetrahedron 1977, 33, 2451–
2456.
72.de Oliveira, B. H.; Strapasson, R.A. Biotransformation
of isosteviol by Fusarium verticilloides.
Phytochemistry, 1996, 43, 393-395.
73.Lin, C. L.; Lin, S. J.; Huang, W. J.; Ku, Y. L.; Tsai,
T. H.; Hsu, F. L. Novel ent-beyeran-19-oic acids from
biotransformation of isosteviol metabolites by
Mortierella isabellina. Planta Med., 2007, 73, 1581-?{
1587.
74.蔡亞恩, 微生物轉換ent-13-hydroxy-kaur-15-en-19-oic acid.
台北醫學大學藥學系碩士論文, 2009.
論文全文使用權限
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446