進階搜尋


  查詢北醫館藏
系統識別號 U0007-0502201420172300
論文名稱(中文) 吳茱茰鹼於惡性神經膠質細胞瘤U87-MG細胞誘發細胞凋亡與存活性細胞自嗜之分子訊息探討
論文名稱(英文) Molecular Signals of Evodiamine-Induced Apoptosis and Survival Autophagy in Human U87-MG Glioma Cells
校院名稱 臺北醫學大學
系所名稱(中) 臨床醫學研究所
系所名稱(英) Graduate Institute of Clinical Medicine
學年度 102
學期 1
出版年 103
研究生(中文) 劉安正
研究生(英文) Ann-Jeng Liu
學號 D118096009
學位類別 博士
語文別 中文
口試日期 2014-01-14
論文頁數 94頁
口試委員 委員-葉添順
委員-施勇綸
共同指導教授-施純明
委員-馮琮涵
委員-黃惠美
委員-蕭勝煌
指導教授-邱文達
中文關鍵字 惡性膠質細胞瘤  吳茱萸鹼  細胞自噬  細胞凋亡  鈣離子  TRPV1  JNK 
英文關鍵字 Malignant glioma  evodiamine  autophagy  apoptosis  calcium  TRPV1  JNK 
學科別分類
中文摘要 惡性膠質細胞瘤(malignant gliomas)為最常見之成人原發性惡性腦瘤,然而因為腦瘤好發於腦部重要位置,無法完全以手術切除,因此給予化療藥物或放射療法做為手術之外的治療方式。由於臨床使用之化癌藥物往往昂貴並有副作用,且因血腦障壁的存在而降低抗癌藥對腦癌之作用,因此科學家致力於從中草藥中發展具有抗癌作用之藥物。吳茱萸鹼(evodiamine, Evo)是由中草藥吳茱萸萃取出來具有生物活性之生物鹼,分子量僅303.3 Daltons,因此具有通過血腦障壁之可能性。文獻證實Evo可導致癌細胞進行細胞凋亡(apoptosis)而具有抗癌作用,並可誘導細胞進行細胞自噬(autophagy),然其詳細機轉仍不明。因此本論文研究Evo誘導人類惡性神經膠質細胞瘤U87-MG細胞死亡的型式,並探討其中可能參與之訊息傳遞因子。本研究首先利用MTT assay證實Evo可抑制U87-MG細胞生長。利用流式細胞儀搭配annexin V/PI及acridine orange染劑分別偵測細胞apoptosis、necrosis與autophagy比例,並利用immunoblotting方式偵測autophagy之marker蛋白microtubule-associated protein light chain 3 (LC3)-II,證實Evo可誘導腦癌細胞同時進行autophagy及apoptosis。Autophagy雖被歸類為第二型計畫性細胞死亡形式,然而在生理上autophagy可藉分解細胞質內蛋白質或胞器如粒線體或內質網,來維持胞內平衡(homeostasis)及細胞存活,是細胞面對不佳環境的適應生存機制。本實驗證實autophagy inhibitor (3-methyladenine)與Evo併用後,apoptosis比例進一步增加,且存活率降低,顯示Evo所誘導之autophagy扮演保護細胞角色。鈣離子為二級訊息傳遞因子之一,文獻指出,細胞遭受外來刺激時鈣離子濃度會上升而導致apoptosis或autophagy,然而鈣離子在Evo誘導細胞死亡中扮演之角色尚不明確,因此本研究即進一步探討。利用Fluo-3 AM染劑配合流式細胞儀偵測細胞內鈣離子濃度([Ca2+]i),結果發現Evo作用1小時後,U87-MG細胞內鈣離子濃度即明顯上升。以粒線體膜電位專一性染劑JC-1偵測粒線體膜電位,結果顯示Evo作用會造成粒線體膜電位下降。給予內質網IP3 receptor (IP3R)的抑制劑2-aminoethoxydiphenyl borate (2-APB) 可有效抑制Evo造成的[Ca2+]i上升、粒線體膜去極化及apoptosis等現象,顯示Evo藉由增加鈣離子濃度以造成粒線體傷害,最終導致細胞死亡。此外,2-APB亦可抑制Evo所誘導之autophagy,顯示鈣離子濃度增加亦參與autophagy之訊息傳遞路徑。給予細胞內鈣離子螯合劑BAPTA-AM之實驗結果證實Evo藉鈣離子而促進c-Jun N-terminal kinases (JNK)蛋白活化,而給予JNK抑制劑(SP600125)後則可降低autophagy,並增加apoptosis,顯示Evo透過細胞內鈣離子/JNK之分子機制誘導細胞進行保護性autophagy。文獻指出在glioma cell lines中,細胞膜陽離子通道蛋白transient receptor potential vanilloid 1 (TRPV1)的表現量較一般細胞為高,且其活化會促使鈣離子流入細胞,進而引發細胞凋亡或autophagy,然而其詳細分子機制仍不清楚。Evo為TRPV1之agonist,但TRPV1於Evo所誘導apoptosis或autophagy之角色仍不明,因此本研究探討TRPV1於Evo誘導細胞死亡中之重要性。實驗結果指出,細胞外鈣離子螯合劑EGTA、TRPV1抑制劑capsazepine (CPZ)或轉染TRPV1 siRNA後可抑制Evo造成的[Ca2+]i上升、JNK活化及autophagy,同時apoptosis比例增加,並降低細胞存活率,顯示Evo可活化TRPV1,促使細胞外鈣離子進入細胞內以誘導U87-MG細胞進行保護性autophagy。綜合上述實驗結果,本論文證實Evo促進細胞內質網IP3R釋放鈣離子,或活化TRPV1使鈣離子進入細胞,促使JNK活化,因而誘導腦癌細胞進行保護性autophagy,同時鈣離子濃度增加導致粒線體傷害而造成細胞凋亡。此研究之進行有助於瞭解Evo對抗腦癌細胞之分子機轉,以利提供臨床上抗癌藥物開發之新方向,增加腦癌患者的存活率。
英文摘要 Malignant gliomas are the primary malignant brain tumors which are difficult to be treated with surgery completely. Adjuvant chemotherapy or radiation is the alternative treatments in addition to surgery. The clinical medicines for treating gliomas have serious side effects, and the presence of blood-brain barrier diminishes the therapeutic effect. These drugs merely extend the survival time for a number of months. Therefore, development of new agents from Chinese herbs against gliomas is worthy of studying. Evodiamine (Evo), an alkaloid with alkaloids biological activity, is extracted from Chinese herbal medicine Evodiae fructus. Evo may have an ability to pass through BBB since the molecular weight of Evo is only 303.3 Daltons. It was reported that Evo has anti-cancer effects through inducing apoptosis. Evo can induce autophagy in tumor cells. However, the detail mechanism is still unclear. Accordingly, in this study, we aimed to investigate the underlying molecular mechanism of Evo-induced cytotoxicity in glioma cells. Firstly, the MTT assay showed that Evo decreased the U87-MG cell viability. Evo induced glioma cells to undergo dose- and time-dependent apoptosis and autophagy in U87-MG cells as examined using flow cytometry with annexin V/PI staining, PI staining, acridine orange staining, respectively, and immunoblotting. Although autophagy is classed as a type II cell death, it is also a crucial process for cells to maintain homeostasis and survival through degradation of cellular proteins and organelles, including mitochondria and endoplasmic reticula (ER). Therefore, the autophagy inhibitor (3-methyladenine) was employed to investigate the role of Evo-induced autophagy. Pharmacological inhibition of autophagy resulted in increased apoptosis and reduced cell viability. The results indicated that Evo induced pro-survival autophagy. Variation of intracellular calcium concentration may involve in the regulation of apoptosis and autophagy. However, the detail molecular mechanism is not well-understood. Using flow cytometry with Fluo-3 AM and JC-1 staining, we showed that the intracellular calcium ([Ca2+]i) increased from 1 h, and mitochondrial depolarization was induced after treatment with Evo. Blockade of ER calcium channel (IP3 receptor) by 2-aminoethoxydiphenyl borate (2-APB) significantly reduced Evo-induced cytosolic calcium elevation, apoptosis, and mitochondrial depolarization, which suggests that Evo induces a calcium-mediated intrinsic apoptosis pathway. Inhibition of ER calcium channel activation also significantly reduced Evo-induced autophagy. Inactivation of c-Jun N-terminal kinases (JNK) suppressed Evo-mediated autophagy accompanied by increased apoptosis. Furthermore, Evo-mediated JNK activation was abolished by BAPTA-AM, an intracellular calcium scavenger, suggesting that Evo mediates autophagy via a calcium-JNK signaling pathway. It has been reported that transient receptor potential vanilloid type 1 (TRPV1) receptor, a non-selective ligand-gated cation channel, is highly expressed in glioma cells. The activation of TRPV1 may lead to apoptosis, as well as lead to autophagy through calcium-mediated signaling. Evo is a TRPV1 agonist, but the role of TRPV1 in Evo-induced apoptosis and autophagy is unclear. Here, we proved that inhibition of extracellular calcium influx by the scavenger (EGTA) or inhibition of TRPV1 by capsazepine (CPZ) or TRPV1 siRNA reduced EVO-induced increase of [Ca2+]i, JNK activation and autophagy accompanied with increase of apoptosis, suggesting that Evo-induced JNK-mediated autophagy was resulted from influx of extracellular calcium through TRPV1 channel. Taken together, these results suggest that Evo increases the intracellular calcium through ER calcium channel or TRPV1 to induce JNK signaling-mediated autophagy and calcium/mitochondria-mediated apoptosis in U87-MG cells. This study reveals the molecular mechanism of Evo-induced cell death and provides a strategy for development of new chemotherapeutic agents against brain cancer.
論文目次 縮寫表(List of Abbreviations)----------7
中文摘要(Abstract in Chinese)-----------8
英文摘要(Abstract in English)----------11
I. Introduction ----------------14
II. Materials and Methods--------21
III. Results----------------------29
IV. Discussion-------------------38
V. Conclusion and Perspective---48
VI. Reference--------------------49
VII. Figures----------------------62
參考文獻 Alberdi E, Wyssenbach A, Alberdi M, Sanchez-Gomez MV, Cavaliere F, Rodriguez JJ, Verkhratsky A, Matute C. Ca(2+) -dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid β-treated astrocytes and in a model of Alzheimer's disease. Aging Cell. 2012; 12: 292-302.
Amantini C, Ballarini P, Caprodossi S, Nabissi M, Morelli MB, Lucciarini R, Cardarelli MA, Mammana G, Santoni G. Triggering of transient receptor potential vanilloid type 1 (TRPV1) by capsaicin induces Fas/CD95-mediated apoptosis of urothelial cancer cells in an ATM-dependent manner. Carcinogenesis. 2009; 30: 1320-1329.
Amantini C, Mosca M, Nabissi M, Lucciarini R, Caprodossi S, Arcella A, Giangaspero F, Santoni G. Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. J. Neurochem. 2007; 102: 977-990.
Berridge MJ, Bootman MD, Roderick HL. Calcium signaling: dynamics, homeostasis and remodeling. Nat. Rev. Mol. Cell. Biol. 2003; 4: 517-529.
Bootman MD, Berridge MJ, Lipp P. Cooking with calcium: the recipes for composing global signals from elementary events. Cell 1997; 91: 367-373.
Boya P, Gonzalez-Polp RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimore T, Pierron G, Codogno P, Kroemer G. Inhibition of macroautophagy triggers apoptosis. Mol. Cell. Biol. 2005; 25: 1025-1040.
Brady NR, Hamacher-Brady A, Yuan H, Gottlieb RA. The autophagic response to nutrient deprivation in the hl-1 cardiac myocyte is modulated by Bcl-2 and sarco/endoplasmic reticulum calcium stores. FEBS J. 2007; 274: 3184-3197.
Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008; 9: 453-461.
Brnjic S, Olofsson MH, Havelka AM, Linder S. Chemical biology suggests a role for calcium signaling in mediating sustained JNK activation during apoptosis. Mol. Biosyst. 2010; 6: 767-774.
Buytaert E, Callewaert G, Hendrickx N, Scorrano L, Hartmann D, Missiaen L, Vandenheede JR, Heirman I, Grooten J, Agostinis P. Role of endoplasmic reticulum depletion and multidomain proapoptotic Bax and Bak proteins in shaping cell death after hypericin-mediated photodynamic therapy. FASEB J. 2006; 20: 756-758.
Chen SY, Chiu LY, Ma MC, Wang JS, Chien CL, Lin WW. zVAD-induced autophagic cell death requires c-Src-dependent ERK and JNK activation and reactive oxygen species generation. Autophagy.2011; 7: 217-228.
Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ. 2008; 15: 171-182.
Ching LC, Kou YU, Shyue SK, Sul KH, Wei J, Cheng LC, Yu YB, Pan CC, Lee TS. Molecular mechanisms of activation of endothelial nitric oxide synthase mediated by transient receptor potential vanilloid type 1. Cardiovasc. Res. 2011; 91: 492-501.
Chiou WF, Chou CJ, Shum AY, Chen CF. The vasorelaxant effect of evodiamine in rat isolated mesenteric arteries: mode of action. Eur. J. Pharmacol. 1992; 215: 277-283.
Choi CH, Jung YK, Oh SH. Autophagy induction by capsaicin in malignant human breast cells is modulated by p38 and extracellular signal-regulated mitogen-activated protein kinases and retards cell death by suppressing endoplasmic reticulum stress-mediated apoptosis. Mol. Pharmacol. 2010; 78: 114-125.
Chuang WC, Cheng CM, Chang HC, Chen YP, Sheu SJ. Contents of constituents in mature and immature fruits of Evodia species. Planta Medica. 1999; 65: 567-571.
Dai JP, Li WZ, Zhao XF, Wang GF, Yang JC, Zhang L, Chen XX, Xu YX, Li KS. A drug screening method based on the autophagy pathway and studies of the mechanism of evodiamine against influenza A virus. PLoS One. 2012; 7: e42706.
Deniaud A, Sharaf-El-Dein O, Maillier E, Poncet D, Kroemer G, Lemaire, C, Brenner C. Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene. 2008; 27: 285-299.
Farfariello V, Amantini C, Santoni G. Transient receptor potential vanilloid 1 activation induces autophagy in thymocytes through ROS-regulated AMPK and Atg4C pathways. J. Leukoc. Biol. 2012; 92: 421-431.
Fei XF, Wang BX, Li TJ, Tashiro S, Minami M, Xing DJ, Ikejima T. Evodiamine, a constituent of Evodia Fructus, induces anti-proliferating effects in tumor cells. Cancer Sci. 2003; 94: 92-98.
Friedman HS, Kerby T, Calvert H. Temozolomide and treatment of malignant glioma. Clin. Cancer Res. 2000; 6: 2585-2597.
Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 2004; 23: 2891-2906.
Gunther W, Pawlak E, Damasceno R, Arnold H, Terzis AJ. Temozolomide induces apoptosis and senescence in glioma cells cultured as multicellular spheroids. Br. J. Cancer. 2003; 88: 463-469.
Hippert MM, O’Toole PS, Thorburn A. Autophagy in cancer: good, bad, or both? Cancer Res. 2006; 66: 9349-9351.
Ip SW, Lan SH, Lu HF, Huang AC, Yang JS, Lin JP, Huang HY, Lien JC, Ho CC, Chiu CF, Wood W, Chung JG. Capsaicin mediates apoptosis in human nasopharyngeal carcinoma NPC-TW 039 cells through mitochondrial depolarization and endoplasmic reticulum stress. Hum. Exp. Toxicol. 2012; 31: 539-549.
Jia Y, Wu LJ, Tashino SI, Onodera S, Ikejima T. Critical roles of reactive oxygen species in mitochondrial permeability transition in mediating evodiamine-induced human melanoma A375-S2 cell apoptosis. Free Radical Res. 2007; 41: 1099-1108.
Jouanneau E. Angiogenesis and gliomas: current issues and development of surrogate markers. Neurosurgery 2008; 62: 31-52.
Kan SF, Huang WJ, Lin LC, Wang PS. Inhibitory effects of evodiamine on the growth of human prostate cancer cell line LNCaP. Int. J. Cancer 2004; 110: 641-651.
Kan SF, Yu CH, Pu HF, Hsu JM, Chen MJ, Wang PS. Anti-proliferative effects of evodiamine on human prostate cancer cell lines DU145 and PC3. J. Cell Biochem. 2007; 101: 44-56.
Kang KB, Zhu C, Yong SK, Gao Q, Wong MC. Enhanced sensitivity of celecoxib in human glioblastoma cells: Induction of DNA damage leading to p53-dependent G1 cell cycle arrest and autophagy. Mol. Cancer 2009; 8: 66.
Kanzawa T, Zhang L, Xiao L, Germano IM, Kondo Y, Kondo S. Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene 2005; 24: 980-991.
Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys. 2007; 462: 245-253.
King CL, Kong YC, Wong NS, Yeung HW, Fong HH, Sankawa U. Uterotonic effect of Evodia rutascarpa alkaloids. J. Nat. Prod. 1980; 43: 577-582.
Kobayashi Y. The nociceptive and anti-nociceptive effects of evodiamine from fruits of Evodia rutaecarpa in mice. Planta Med. 2003; 69: 425-428.
Lee TJ, Kim EJ, Kim S, Jung EM, Park JW, Jeong SH, Park SE, Yoo YH, Kwon TK. Caspase-dependent and caspase-independent apoptosis induced by evodiamine in human leukemic U937 cells. Mol. Cancer Ther. 2006; 5: 2398-2407.
Li Q, Li L, Wang F, Chen J, Zhao Y, Wang P, Nilius B, Liu D, Zhu Z. Dietary capsaicin prevents nonalcoholic fatty liver disease through transient receptor potential vanilloid 1-mediated peroxisome proliferator-activated receptor δ activation. Pflugers Arch. 2013; 465: 1303-1316.
Lin CJ, Lee CC, Shih YL, Lin CH, Wang SH, Chen TH, Shih CM. Inhibition of mitochondria- and endoplasmic reticulum stress-mediated autophagy augments temozolomide-induced apoptosis in glioma cells. PLoS One. 2012; 7: e38706.
Lockshin RA, Zakeri Z. Apoptosis, autophagy, and more. Int. J. Biochem. Cell Biol. 2004; 36: 2405-2419.
Lorin S, Pierron G, Ryan KM, Codogno P, Djavaheri-Mergny M. Evidence for the interplay between JNK and p53-DRAM signalling pathways in the regulation of autophagy. Autophagy 2010; 6: 153-154.
Low S, Vougioukas VI, Hielscher T, Schmidt U, Unterberg A, Halatsch ME. Pathogenetic pathways leading to glioblastoma multiforme: association between gene expressions and resistance to erlotinib. Anticancer Res. 2008; 28: 3729-3732.
Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005; 120: 237-248.
Ogasawara M, Matsunaga T, Takahashi S, Saiki I, Suzuki H. Anti-invasive and metastatic activities of evodiamine. Biol Pharm Bull. 2002; 25: 1491-1493.
Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol. 2003; 4: 552-565.
Ravagnan L, Roumier T, Kroemer G. Mitochondria, the killer organelles and their weapons. J Cell Physiol. 2002; 192: 131-137.
Riccardi C, Nicoletti I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protocols 2006; 1: 1458-1461.
Robertson JD, Orrenius S. Molecular mechanisms of apoptosis induced by cytotoxic chemicals. Crit Rev Toxicol. 2000; 30: 609-627.
Sabolic I. Common mechanisms in nephropathy induced by toxic metals. Nephron Physiol. 2006; 104: 107-114.
Schleicher SM, Moretti L, Varki V, Lu B. Progress in the unraveling of the endoplasmic reticulum stress/autophagy pathway and cancer: implications for future therapeutic approaches. Drug Resist Updat. 2010; 13:79-86.
Schwab BL, Guerini D, Didszun C, Bano D, Ferrando-May E, Fava E, Tam J, Xu D, Xanthoudakis S, Nicholson DW, Carafoli E, Nicotera P. Cleavage of plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death Differ. 2002; 9: 818-831.
Shih CM, Wu JS, Ko WC., Wang LF, Wei YH, Liang HF, Chen YC, Chen CT. Mitochondria mediated caspase-independent apoptosis induced by cadmium in normal human lung cells. J Cell Biochem. 2003; 89: 335-347.
Shih YL, Lin CJ, Hsu SW, Wang SH, Chen WL, Lee MT, Wei YH, Shih CM. Cadmium toxicity toward caspase-independent apoptosis through the mitochondria-calcium pathway in mtDNA-depleted cells. Ann NY Acad Sci. 2005; 1042: 497-505.
Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science 2004; 306: 990-995.
Shirakawa H, Yamaoka T, Sanpei K, Sasaoka H, Nakagawa T, Kaneko S. TRPV1 stimulation triggers apoptotic cell death of rat cortical neurons. Biochem Biophys Res Commun. 2008; 377: 1211-1215.
Simizu S, Takada M, Umezawa K, Imoto M. Requirement of caspase-3(-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs. J Biol Chem. 1998; 273: 26900-26907.
Song J, Lee JH, Lee SH, Park KA, Lee WT, Lee JE. TRPV1 activation in primary cortical neurons induces calcium-dependent programmed cell death. Exp Neurobiol. 2013; 22: 51-57.
Stewart L.A. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 2002; 359: 1011-1018.
Sung B, Prasad S, Ravindran J, Yadav VR, Aggarwal BB. Capsazepine, a TRPV1 antagonist, sensitizes colorectal cancer cells to apoptosis by TRAIL through ROS-JNK-CHOP-mediated upregulation of death receptors. Free Radic Biol Med. 2012; 53: 1977-1987.
Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO reports 2006; 7: 880-885.
Tu YJ, Fan X, Yang X, Zhang C, Liang HP. Evodiamine activates autophagy as a cytoprotective response in murine Lewis lung carcinoma cells. Oncol Rep. 2013; 29: 481-490.
Wang SH, Shih YL, Ko WC, Wei YH, Shih CM. Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway. Cell Mol Life Sci. 2008; 65: 3640-3652.
Wang SH, Shih YL, Kuo TC, Ko WC, Shih CM. Cadmium toxicity toward autophagy through ROS-activated GSK-3b in mesangial cells. Toxicol Sci. 2009; 108: 124-131.
Wang Z, Sun L, Yu H, Zhang Y, Gong W, Jin H, Zhang L, Liang H. Binding mode prediction of evodiamine within vanilloid receptor TRPV1. Int J Mol Sci. 2012; 13: 8958-8969.
Wong ML, Kaye AH, Hovens CM. Targeting malignant glioma survival signaling to improve clinical outcome. J Clin Neurosci. 2007; 14: 301-308.
Wu J, Kaufman RJ. From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ. 2006; 13: 374-384.
Yamahara J, Yamada T, Kitani T, Naitoh Y, Fujimura H. Antianoxic action of evodiamine, an alkaloid in Evodia rutaecarpa fruit. J Ethnopharmacol. 1989; 27: 185-192.
Yang J, Wu LJ, Tashino SI, Onodera S, Ikejima T. Reactive oxygen species and nitric oxide regulate mitochondria-dependent apoptosis and autophagy in evodiamine-treated human cervix carcinoma HeLa cells. Free Radical Res. 2008; 42: 492-504.
Yang YP, Liang ZQ, Gu ZL, Qin ZH. Molecular mechanism and regulation of autophagy. Acta Pharmacol Sin. 2005; 26: 1421-1434.
Zhang Y, Wu Y, Cheng Y, Zhao Z, Tashiro S, Onodera S, Ikejima T. Fas-mediated autophagy requires JNK activation in HeLa cells. Biochem Biophys Res Commun. 2008; 377: 1205-1210.
論文全文使用權限
  • 同意授權瀏覽/列印電子全文服務,於2019-02-11起公開。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446