進階搜尋


  查詢北醫館藏
系統識別號 U0007-0108201111544100
論文名稱(中文) 台灣株真菌Arecophila saccharicola YMJ96022401 及Nectria balsamea YMJ94052402成分之研究
論文名稱(英文) Studies on chemical constituents of Arecophila saccharicola YMJ96022401 and Nectria balsamea YMJ94052402 from Taiwan
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 99
學期 2
出版年 100
研究生(中文) 林彥彣
研究生(英文) YEN-WEN LIN
學號 M303098016
學位類別 碩士
語文別 中文
口試日期 2011-07-07
論文頁數 161頁
口試委員 委員-張芳榮
委員-李慶國
委員-盧重光
指導教授-李宗徽
中文關鍵字 真菌  誘導型一氧化氮合成酶  Arecophila saccharicola  Nectria balsamea  RAW264.7  NF-κB  A549 
英文關鍵字 Arecophila saccharicola  Nectria balsamea  NO production  fungus  RAW264.7  NF-κB  A549 
學科別分類
中文摘要 本研究利用抑制一氧化氮生成的活性分析平台來篩選真菌培養株,藉以篩檢出具有抗發炎活性的真菌株,發現某些真菌株的醱酵培養液或菌絲體萃取物,對於RAW264.7細胞的產生一氧化氮具有顯著的抑制作用,後續選定Arecophila saccharicola YMJ96022401及Nectria balsamea YMJ94052402 兩株進行其成分研究。在以麥芽抽取物 (malt extract) 為培養基擴大培養後,針對醱酵液所含代謝產物進行分析與分離,計獲得17個化合物,分別為: arecoic acid A (1)、 arecoic acid B (2)、arecoic acid C (3)、arecoic acid D (4)、arecoic acid E (5)、arecoic acid F (6)、arecolactone (7)、eremophilanolide 1 (8)、eremophilanolide 6 (9)、penipratynolene (10)、 5-hydroxymethyl-2-furoic acid (11)、radicicol (12)、nectrilide (13)、coriloxin (14)、zythiostromic acid A (15)、2-methyl-furan (16)、(22E,24R)-ergosta-7,9(11),22-triene-3β,5α,6β-triol (17),其中drimane-type倍半萜化合物1-6,及eremophilane-type倍半萜化合物7為新化合物。在生物活性測試上,化合物8和14對於RAW264.7細胞之一氧化氮產生中到強度的抑制活性,其半抑制濃度 (IC50) 分別為16.49 和2.72 μM,且對於RAW264.7細胞不具毒性,後續探討此訊息傳遞路徑的抗發炎作用機轉,證實14 對於NF-κB具抑制活性,其半抑制濃度 (IC50) 為15.48 μM,至於它是否能抑制下游iNOS的活性,仍有待進一步的探究,此外,化合物7、12和14對於肺腺癌A549細胞的生長具些微與強的抑制活性,其生長半抑制濃度 (GI50) 分別為27.62、1.43及27.83 μM。
英文摘要 The extracts of the fermented broths of Arecophila saccharicola YMJ96022401 and Nectria balsamea YMJ94052402 were found to exhibit significant inhibitory activity of NO production in our preliminary screening. Extraction and separation of the active components from these two broths were thus carried out, which resulted in the isolation of seventeen compounds. Their structures were elucidated to be arecoic acid A (1)、arecoic acid B (2)、arecoic acid C (3)、arecoic acid D (4)、arecoic acid E (5)、arecoic acid F (6)、arecolactone (7)、eremophilanolide 1 (8)、eremophilanolide 6 (9)、penipratynolene (10)、5-hydroxymethyl-2-furoic acid (11)、radicicol (12)、nectrilide (13)、coriloxin (14)、zythiostromic acid A (15)、2-methyl-furan (16) and (22E,24R)-ergosta-7,9(11),22-triene-3β,5α,6β-triol (17). Of these compounds identified, drimane-type sesquiterpenes 1-6, and an eremophilane-type sesquiterpene 7, were novel chemical entities., Compounds 8 and 14 exhibited moderate to potent inhibitory activities on NO production with IC50 values of respective 16.49 and 2.72 μM without any cytotoxicity. Further clarified this anti-inflammation signal transduction pathway that compound 14 showed an inhibitory activity with an IC50 value of 15.48 μM, and its inhibitory activity toward iNOS remained to be investigated. Additionally, compounds 7, 12 and 14 inhibited the growth of A549 cell line with GI50 values of 27.62, 1.43 and 27.83 μM, respectively。
論文目次 目錄 (Contents)
臺北醫學大學碩士學位考試委員審定書 ii
臺北醫學大學學位考試保密同意書暨簽到表 iv
臺北醫學大學電子暨紙本學位論文書目同意公開申請書 vi
誌謝 (Acknowledgements) viii
目錄 (Contents) ix
表目錄 (Table of Contents) xiii
圖目錄 (Figure of Contents) xvi
中文摘要 (Abstract in Chinese) xxi
英文摘要 (Abstract in English) xxii
縮寫表 (Abbreviations) xxiii
壹 序論與研究目的 (Introduction and Purpose) 1
序論 (Introduction) 1
研究目的 (Purpose) 7
貳 文獻回顧(Review) 8
2.1分類地位 8
2.2 黑盤孢科 (Amphisphaeriaceae) 真菌成分之文獻回顧 9
2.3 叢赤殼科 (Nectriaceae‭) 真菌成分之文獻回顧‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬ 14‬‬‬‬‬‬‬‬
參 實驗結果與討論 (Results and Discussions) 31
3.1真菌培養液分離流程 31
3.1.1 A. saccharicola YMJ96022401培養液分離流程 31
3.1.2 N. balsamea YMJ94052402培養液分離流程 33
3.1.3依骨架分類化合物1-17 35
3.2 天然物結構解析 36
3.2.1 Arecoic acid A (1) 之結構解析 36
3.2.2 Arecoic acid B (2) 之結構解析 43
3.2.3 Arecoic acid C (3) 之結構解析 50
3.2.4 Arecoic acid D (4) 之結構解析 57
3.2.5 Arecoic acid E (5) 之結構解析 64
3.2.6 Arecoic acid F (6) 之結構解析 71
3.2.7 Arecolactone (7) 之結構解析 78
3.2.8 Eremophilanolide 1 (8) 與eremophilanolide 6 (9) 之結構解析 85
3.2.9 Penipratynolene (10) 之結構解析 97
3.2.10 Radicicol (12) 與nectrilide (13) 之結構解析 102
3.2.11 Coriloxin (14) 之結構解析 114
3.3一氧化氮濃度及細胞存活度測定:Griess reagent assay 120
3.4 NF-κB活性測定:Luciferase reporter gene assay 123
3.5 A549細胞毒性測定:Sulforhodamine B (SRB) 124
肆 實驗部份 (Experimental) 125
4.1儀器設備與試劑 125
4.1.1化合物之物理性質測定儀器: 125
4.1.2高效能液相層析系統: 125
4.1.3管柱色層層析系統: 125
4.1.4試劑耗材與溶劑: 126
4.1.5真菌培養基: 126
4.2真菌材料 126
4.3真菌培養成分分離流程 126
4.3.1 培養基配製 126
4.3.2 醱酵液萃取及菌絲體萃取 126
4.3.3 A. saccharicola 培養液分離流程 128
4.3.4 N. balsamea培養液分離流程 132
4.4一氧化氮 (NO) 濃度測定:Griess reagent assay 135
4.4.1目的及原理 135
4.4.2 RAW264.7細胞培養 136
4.4.3活性檢測方法步驟 136
4.5細胞存活率測定:AlamarBlue assay 137
4.5.1目的及原理 137
4.5.2活性檢測方法步驟 138
4.6 NF-κB活性測定:Luciferase reporter gene assay 139
4.6.1目的及原理 139
4.6.2 Jurkat/NF-κB stable cells model 140
4.6.3活性檢測方法步驟 140
4.7 A549細胞毒性測定:Sulforhodamine B (SRB) 141
4.7.1目的及原理 141
4.7.2 A549細胞培養 142
4.7.3活性檢測方法步驟 142
伍 討論 (Discussion) 144
5.1 結構解析方面 144
5.2 質譜(ESI-MS)與紅外光譜(IR)方面 145
陸 結論與展望 (Conclusion and Perspective) 146
柒 各成分之物理數據 (Physical Data) 147
Arecoic acid A (1) 147
Arecoic acid B (2) 147
Arecoic acid C (3) 147
Arecoic acid D (4) 147
Arecoic acid E (5) 148
Arecoic acid F (6) 148
Arecolactone (7) 148
Eremophilanolide 1 (8) 148
Eremophilanolide 6 (9) 148
Penipratynolene (10) 149
5-Hydroxymethyl-2-furoic acid (11) 149
Radicicol (12) 149
Nectrilide (13) 149
Coriloxin (14) 149
Zythiostromic acid A (15) 150
2-Methyl-furan (16) 150
(22E,24R)-Ergosta-7,9(11),22-triene-3β,5α,6β-triol (17) 150
捌 參考文獻 (References) 151
玖 附錄 (Appendix) 159
附錄一、化合物14之X-ray結晶繞射數據 159
Table 1. Crystal data and structure refinement for Coriloxin (14) 159
Table 2. Atomic coordinates [ x 104 ] and equivalent isotropic displacement parameters [ A2 x 103 ] for Coriloxin (14). 160
Table 3. Bond lengths [A] and angles [°] for Coriloxin (14). 161
Table 4. Anisotropic displacement parameters [ A2 x 103 ] for Coriloxin (14). 162
參考文獻 [1] D. L. Hawksworth. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycological Research, 95, 641-655, (1990).
[2] 朱宇敏,白蟻、雞肉絲菇和炭角菌間的恩怨情仇。中央研究院週報,1167,(2011)。
[3] 吳美麗,台灣真菌多樣性資源與研究現況。環境教育學刊,143-163,(2002)。
[4] B. Orru. Giuseppe Brotzu and the discovery of cephalosporins. Clinical Microbiology and Infection, 6 Suppl 3, 6-9, (2000).
[5] M. E. Pichichero. Cephalosporins can be prescribed safely for penicillin-allergic patients. The Journal of Family Practice, 55, 106-112, (2006).
[6] A. Endo, Monacolin, K. A new hypocholesterolemic agent produced by Monascus species. The Journal of Antibiotics 32, 852-854, (1979).
[7] R. N. Moore, G. Bigam, J. K. Chan, A. M. Hogg, T. T. Nakashima & J. C. Vederas. Biosynthesis of the hypocholesterolemic agent mevinolin by Aspergillus terreus. Determination of the origin of carbon, hydrogen, and oxygen atoms by carbon-13 NMR and mass spectrometry. Journal of the American Chemical Society, 107, 3694-3701, (1985).
[8] J. Chen. A. W. Alberts, G. Kuron, V. Hunt, J. Huff, C. Hoffman, J. Rothrock, M. Lopez, H. Joshua, E. Harris, A. Patchett, R. Monaghan, S. Currie, E. Stapley, G. Albers-Schonberg, O. Hensens, J. Hirshfield, K. Hoogsteen, J. Liesch, and J. Springer. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proceedings of the National Academy of Sciences, 77, 3957-3961, (1980).
[9] V. M. Lazarova, K. Georgieva, Tz. Atanassova. fermentation broth of Aspergillus terreus ATCC 20542. . Pharmazie, 53, 727-728, (1998).
[10] K. Sawada. Descriptive catalogue of Taiwan (Formosan) fungi. Part XI. Special Publication, College of Agriculture, National Taiwan University, 268, (1959).
[11] 吳聲華,菌類多樣性。行政院農委會林務局委託研究報告,(2003)。
[12] 邵廣昭、彭鏡毅、吳文哲。台灣物種名錄,iv,(2008)。
[13] C. Nathan. Nitric oxide as a secretory product of mammalian cells. The FASEB Journal, 6, 3051-3064, (1992).
[14] Y. C. Chen, S. Y. Lin-Shiau and J. K. Lin. Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. Journal of Cellular Physiology, 177, 324-333, (1998).
[15] S. M. Dauphinee and A. Karsan. Lipopolysaccharide signaling in endothelial cells. Laboratory Investigation, 86, 9-22, (2006).
[16] C. Bogdan. Nitric oxide and the immune response. Nature Immunology, 2, 907-916, (2001).
[17] D. Fukumura, S. Kashiwagi, R. K. Jain. The role of nitric oxide in tumour progression. Nature Reviews Cancer, 6, 521-534, (2006).
[18] D. A. Wink and J. B. Mitchell. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radical Biology & Medicine, 25, 434-456, (1998).
[19] P. A. Baeuerle and D. Baltimore. NF-kappa B: ten years after. Cell, 87, 13-20, (1996).
[20] A. S. Baldwin, Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annual Review of Immunology, 14, 649-683, (1996).
[21] M. Karin and Y. Ben-Neriah. Phosphorylation meets ubiquitination: The control of NF-kappa B activity. Annual Review of Immunology, 18, 621-663, (2000).
[22] S. Ghosh, M. J. May and E. B. Kopp. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annual Review of Immunology, 16, 225-260, (1998).
[23] G. J. Harry, K. Tyler, C. L. d'Hellencourt, H. A. Tilson and W. E. Maier. Morphological alterations and elevations in tumor necrosis factor-alpha, interleukin (IL)-1alpha, and IL-6 in mixed glia cultures following exposure to trimethyltin: modulation by proinflammatory cytokine recombinant proteins and neutralizing antibodies. Toxicology and Applied Pharmacology, 180, 205-218, (2002).
[24] Q. Li and I. M. Verma. NF-kappaB regulation in the immune system. Nature Reviews Immunology, 2, 725-734, (2002).
[25] F. Chen and X. Shi. Signaling from toxic metals to NF-kappaB and beyond: not just a matter of reactive oxygen species. Environmental Health Perspectives, 110 Suppl 5, 807-811, (2002).
[26] M. Valko, H. Morris and M. T. Cronin. Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12, 1161-1208, (2005).
[27] R. G. Knowles and S. Moncada. Nitric oxide synthases in mammals. Biochemical Journal, 298, 249-258, (1994).
[28] F. S. Laroux, K. P. Pavlick, I. N. Hines, S. Kawachi, H. Harada, S. Bharwani, J. M. Hoffman and M. B. Grisham. Role of nitric oxide in inflammation. Acta Physiologica Scandinavica, 173, 113-118, (2001).
[29] L. Sautebin. Prostaglandins and nitric oxide as molecular targets for anti-inflammatory therapy. Fitoterapia, 71, S48-S57, (2000).
[30] J. B. Ellis and B.M. Everhart. New North American Fungi. Proceedings of the Academy of Natural Sciences of Philadelphia, 42, 219-249 (235), (1890).
[31] O. Kuntze. Revisio generum plantarum, A. Felix, Leipzig. 3, p.498, (1898).
[32] A. Sivanesan. Redisposition and description of some Amphisphaeria species and a note on Macrovalsaria. Transactions of the British Mycological Society 65, 395-402 (397), (1975).
[33] You-Zhi Wang, A. Aptroot and K. D. Hyde. Revision of the genus Amphisphaeria - Fungal Diversity Research Series (Hong Kong), (2004).
[34] Yu-Ming Ju, Jia-Rong Guu, and Hsieh Huan-Ju. Nectriaceous fungi collected from forests in Taiwan. Botanical Studies, 48, 187-203, (2007).
[35] Wang Le, Jin-Yan Dong, Hong-Chuang Song, Kai-Ze Shen, Li-Mei Wang, Sun Rong, Chun-Ren Wang, Guo-Hong Li, Lei Li and Ke-Qin Zhang. Screening and isolation of antibacterial activities of the fermentative extracts of freshwater fungi from Yunnan Province, China. Annals of Microbiology (Milano, Italy), 58, 579-584, (2008).
[36] R. W. S. Weber, R. Kappe, T. Paululat, E. Moesker and H. Anke. Anti-Candida metabolites from endophytic fungi. Phytochemistry, 68, 886-892, (2007).
[37] F. Vicente, A. Basilio, G. Platas, J. Collado, G. F. Bills, A. Gonzalez Del Val, J. Martin, J. R. Tormo, G. H. Harris, D. L. Zink, M. Justice, J. Nielsen Kahn and F. Pelaez. Distribution of the antifungal agents sordarins across filamentous fungi. Mycological Research, 113, 754-770, (2009).
[38] A. Stierle, G. Strobel, D. Stierle. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific Yew. Science, 260, 214–216, (1993).
[39] V. Gangadevi and J. Muthumary. Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World Journal of Microbiology and Biotechnology, 24, 717-724, (2008).
[40] Jia-Yao Li, R. S. Sidhu, A. Bollon and G. A. Strobel. Stimulation of taxol production in liquid cultures of Pestalotiopsis microspora. Mycological Research, 102, 461-464, (1998).
[41] K. Krohn, S. F. Kouam, G. M. Kuigoua, H. Hussain, S. Cludius-Brandt, U. Floerke, T. Kurtan, G. Pescitelli, L. D. Bari, S. Draeger and B. Schulz. Xanthones and oxepino[2,3-b]chromones from three endophytic fungi. Chemistry - A European Journal, 15, 12121-12132, (2009).
[42] Y. Sugie, K. A. Dekker, H. Hirai, T. Ichiba, M. Ishiguro, Y. Shiomi, A. Sugiura, L. Brennan, J. Duignan, L. H. Huang, J. Sutcliffe and Y. Kojima. CJ-15,801, a novel antibiotic from a fungus, Seimatosporium sp. The Journal of Antibiotics, 54, 1060-1065, (2001).
[43] J. Y. Li, J. K. Harper, D. M. Grant, B. O. Tombe, B. Bashyal, W. M. Hess and G. A. Strobel. Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry, 56, 463-468, (2001).
[44] H. Toshima, A. Watanabe, H. Sato and A. Ichihara. Isolation, structural determination, and total synthesis of a new biologically active δ-lactone produced by Seiridium unicorne. Tetrahedron Letters, 39, 9223-9226, (1998).
[45] K. Krohn, K. Ludewig, H. J. Aust, S. Draeger and B. Schulz. Biologically active metabolites from fungi. 3. Sporothriolide, discosiolide, and 4-epi-ethisolide--new furofurandiones from Sporothrix sp., Discosia sp., and Pezicula livida. The Journal of Antibiotics, 47, 113-118, (1994).
[46] A. Graniti, L. Sparapano and A. Evidente. Cyclopaldic acid, a major phytotoxic metabolite of Seiridium cupressi, the pathogen of a canker disease of cypress. Plant Pathology, 41, 563-568, (1992).
[47] A. Evidente and L. Sparapano. 7'-Hydroxyseiridin and 7'-hydroxyisoseiridin, two new phytotoxic Δαβ-butenolides from three species of Seiridium pathogenic to cypresses. Journal of Natural Products, 57, 1720-1725, (1994).
[48] J. Li, S. Liu, S. Niu, W. Zhuang and Y. Che. Pyrrolidinones from the ascomycete fungus Albonectria rigidiuscula. Journal of Natural Products, 72, 2184-2187, (2009).
[49] C. Seo, J. H. Sohn, H. Oh, B. Y. Kim and J. S. Ahn. Isolation of the protein tyrosine phosphatase 1B inhibitory metabolite from the marine-derived fungus Cosmospora sp. SF-5060. Bioorganic and Medicinal Chemistry Letters, 19, 6095-6097, (2009).
[50] W. G. Kim, C. G. Jung and M. J. Son. Antibacterial cephalochromin from Cosmospora coccinea culture. Application: KR, KR patent 2008-122798, 2010064270 (2010).
[51] Y. Suzuki, H. Takahashi, Y. Esumi, T. Arie, T. Morita, H. Koshino, J. Uzawa, M. Uramoto and I. Yamaguchi. Haematocin, a new antifungal diketopiperazine produced by Nectria haematococca Berk. et Br. (880701a-1) causing nectria blight disease on ornamental plants. The Journal of Antibiotics, 53, 45-49, (2000).
[52] F. Eilbert, E. Thines, W. R. Arendholz, O. Sterner and H. Anke. Fusarin C, (7Z)-fusarin C and (5Z)-fusarin C; inhibitors of dihydroxynaphthalene-melanin biosynthesis from Nectria coccinea (Cylindrocarpon sp.). The Journal of Antibiotics, 50, 443-445, (1997).
[53] D. Parisot, M. Devys and M. Barbier. Structure and biosynthesis of 5-deoxyfusarubin and anhydro-5-deoxyfusarubin, naphthaquinone pigments from Nectria haematococca. Phytochemistry, 24, 1977-1979, (1985).
[54] D. Parisot, M. Devys and M. Barbier. 6-O-Demethyl-5-deoxyfusarubin and its anhydro derivative produced by a mutant of the fungus Nectria haematococca blocked in fusarubin biosynthesis. The Journal of Antibiotics, 44, 103-107, (1991).
[55] D. Parisot, M. Devys and M. Barbier. A new deoxyfusarubin produced by the fungus Nectria haematococca. Synthesis of the two isomeric deoxyanhydronaphthopyranones from toralactone. The Journal of Antibiotics, 45, 1799-1801, (1992).
[56] D. Parisot, M. Devys, J. P. Ferezou and M. Barbier. Pigments from Nectria haematococca: anhydrofusarubin lactone and nectriafurone. Phytochemistry, 22, 1301-1303, (1983).
[57] R. G. Coombe, H. I. C. Lowe and T. R. Watson. Fungal metabolites. I. Chromone and naphthoquinone metabolites from a Cylindrocarpon species. Australian Journal of Chemistry, 25, 875-879, (1972).
[58] K. Trisuwan, N. Khamthong, V. Rukachaisirikul, S. Phongpaichit, S. Preedanon and J. Sakayaroj. Anthraquinone, Cyclopentanone, and Naphthoquinone Derivatives from the Sea Fan-Derived Fungi Fusarium spp. PSU-F14 and PSU-F135. Journal of Natural Products, 73, 1507-1511, (2010).
[59] T. Shibata, O. Nakayama, Y. Tsurumi, M. Okuhara, H. Terano and M. Kohsaka. A new immunomodulator, FR-900483. The Journal of Antibiotics, 41, 296-301, (1988).
[60] W. A. Ayer and L. M. Shewchuk. Metabolites of Nectria fuckeliana. Journal of Natural Products, 49, 847-848, (1986).
[61] S. T. Carey and M. S. R. Nair. Metabolites of pyrenomycetes. X. Isolation of p-toluquinone and toluquinol from Nectria erubescens. Journal of Natural Products, 42, 231, (1979).
[62] R. N. Mirrington, E. Ritchie, C. W. Shoppee, W. C. Taylor and S. Sternhell. Constitution of radicicol. Tetrahedron Letters, 365-370, (1964).
[63] R. N. Mirrington, E. Ritchie, C. W. Shoppee, S. Sternhell and W. C. Taylor. Some metabolites of Cylindrocarpon radicicola: the structure of radicicola (monorden). Australian Journal of Chemistry, 19, 1265-1284, (1966).
[64] D. Weber, G. Erosa, O. Sterner and T. Anke. Cylindrocyclin A, a new cytotoxic cyclopeptide from Cylindrocarpon sp. The Journal of Antibiotics, 59, 495-499, (2006).
[65] J. Zhan, A. M. Burns, M. X. Liu, S. H. Faeth and A. A. L. Gunatilaka. Search for cell motility and angiogenesis inhibitors with potential anticancer activity: Beauvericin and other constituents of two endophytic strains of Fusarium oxysporum. Journal of Natural Products, 70, 227-232, (2007).
[66] Z. Jiang, M. Barret, K. G. Boyd, D. R. Adams, A. S. F. Boyd and J. Grant Burgess. JM47, a cyclic tetrapeptide HC-toxin analogue from a marine Fusarium species. Phytochemistry, 60, 33-38, (2002).
[67] K. Quaghebeur, J. Coosemans, S. Toppet and F. Compernolle. Cannabiorci- and 8-chlorocannabiorcichromenic acid as fungal antagonists from Cylindrocarpon olidum. Phytochemistry, 37, 159-161, (1994).
[68] S. B. Singh, R. G. Ball, G. F. Bills, C. Cascales, J. B. Gibbs, M. A. Goetz, K. Hoogsteen, R. G. Jenkins, J. M. Liesch and et al. Chemistry and biology of cylindrols: novel inhibitors of Ras farnesyl-protein transferase from Cylindrocarpon lucidum. The Journal of Organic Chemistry, 61, 7727-7737, (1996).
[69] M. Matsumoto, H. Minato, N. Uotani, K. Matsumoto and E. Kondo. New antibiotics from Cylindrocarpon sp. The Journal of Antibiotics, 30, 681-682, (1977).
[70] S. Hayakawa, H. Minato and K. Katagiri. The ilicicolins, antibiotics from Cylindrocladium ilicicola. The Journal of Antibiotics, 24, 653-654, (1971).
[71] M. Matsumoto and H. Minato. Structure of ilicicolin H, an antifungal antibiotic. Tetrahedron Letters, 3827-3830, (1976).
[72] V. Nenkep, K. Yun, D. Zhang, H. D. Choi, J. S. Kang and B. W. Son. Induced Production of Bromomethylchlamydosporols A and B from the Marine-Derived Fungus Fusarium tricinctum. Journal of Natural Products, 73, 2061-2063, (2010).
[73] H. Sakaki, H. Kaneno, Y. Sumiya, M. Tsushima, W. Miki, N. Kishimoto, T. Fujita, S. Matsumoto and et al. A new carotenoid glycosyl ester isolated from a marine microorganism, Fusarium strain T-1. Journal of Natural Products, 65, 1683-1684, (2002).
[74] H. Cohen, C. Charrier, L. Ricard and M. Perreau. Isolation and characterization of a secondary metabolite produced by Fusarium graminearum: 2,6,6,9-tetramethyltricyclo [5.4.0.0]undecane-5,8,11-triol(5-hydroxyculmorin). Journal of Natural Products, 55, 326-332, (1992).
[75] D. M. Fort, C. L. Barnes, M. S. Tempesta, H. H. Casper, E. Bekele, A. A. Rottinghaus and G. E. Rottinghaus. Two new modified trichothecenes from Fusarium sporotrichioides. Journal of Natural Products, 56, 1890-1897, (1993).
[76] E. Bekele, A. A. Rottinghaus, G. E. Rottinghaus, H. H. Casper, D. M. Fort, C. L. Barnes and M. S. Tempesta. Two new trichothecenes from Fusarium sporotrichioides. Journal of Natural Products, 54, 1303-1308, (1991).
[77] R. Liu, Z. Lin, T. Zhu, Y. Fang, Q. Gu and W. Zhu. Novel open-chain cytochalasins from the marine-derived fungus Spicaria elegans. Journal of Natural Products, 71, 1127-1132, (2008).
[78] B. M. Fraga, R. Guillermo, M. G. Hernandez, M. C. Chamy and J. A. Garbarino. Biotransformation of two ent-pimara-9(11),15-diene derivatives by Gibberella fujikuroi. Journal of Natural Products, 72, 87-91, (2009).
[79] Y. Asakawa, T. Hashimoto, Y. Mizuno, M. Tori and Y. Fukazawa. Cryptoporic acids A-G, drimane-type sesquiterpenoid ethers of isocitric acid from the fungus Cryptoporus volvatus. Phytochemistry, 31, 579-592, (1992).
[80] H. Takahashi, M. Toyota and Y. Asakawa. Drimane-type sesquiterpenoids from Cryptoporus volvatus infected by Paecilomyces varioti. Phytochemistry, 33, 1055-1059, (1993).
[81] M. Isaka, P. Chinthanom, T. Boonruangprapa, N. Rungjindamai and U. Pinruan. Eremophilane-Type Sesquiterpenes from the Fungus Xylaria sp. BCC 21097. Journal of Natural Products, 73, 683-687, (2010).
[82] H. Fujimoto, E. Nakamura, Yong-Pil Kim, E. Okuyama and M. Ishibashi. Isolation and absolute configuration of some immunomodulatory constituents from two trichocomaceae fungi. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu, 42, 481-486, (2000).
[83] F. M. Nunes, M. d. C. F. de Oliveira, A. M. C. Arriaga, T. L. G. Lemos, M. Andrade-Neto, M. C. de Mattos, J. Mafezoli, F. M. P. Viana, V. M. Ferreira, E. Rodrigues-Filho and A. G. Ferreira. A new eremophilane-type sesquiterpene from the phytopathogen fungus Lasiodiplodia theobromae (Sphaeropsidaceae). Journal of the Brazilian Chemical Society, 19, 478-482, (2008).
[84] Gou-Du Huang, Yong-Jin Yang, Wang-Suo Wu and Ying Zhu. Terpenoids from the Aerial Parts of Parasenecio deltophylla. Journal of Natural Products, 73, 1954-1957, (2010).
[85] D. Q. Fei, Q. H. Wu, S. G. Li and K. Gao. Two new asymmetric sesquiterpene dimers from the rhizomes of Ligularia muliensis. Chemical & Pharmaceutical Bulletin, 58, 467-469, (2010).
[86] Wen-Xian Li, Ming Lei, Dong-Qing Fei and Kun Gao. Eremophilane-type sesquiterpene derivatives from Ligularia hodgsonii. Planta Medica, 75, 635-640, (2009).
[87] Ping-Lin Li, Chun-Ming Wang, Zhan-Xin Zhang and Zhong-Jian Jia. Five new eremophilane derivatives from Ligularia sagitta. Tetrahedron, 63, 12665-12670, (2007).
[88] C. J. W. Brooks and G. H. Draffan. Sesquiterpenoids of Warburgia species. I. Warburgin and warburgiadione. Tetrahedron, 25, 2865-2885, (1969).
[89] H. Itokawa, H. Morita, K. Watanabe, S. Mihashi and Y. Iitaka. Agarofuran-, eudesmane- and eremophilane-type sesquiterpenoids from Alpinia japonica (Thunb.) MIQ. Chemical & Pharmaceutical Bulletin, 33, 1148-1153, (1985).
[90] F. Nagashima, S. Takaoka, S. Huneck and Y. Asakawa. Rearranged ent-eudesmane- and ent-eremophilane-type sesquiterpenoids from the liverwort Frullania dilatata. Phytochemistry, 37, 1317-1321, (1994).
[91] Y. Asakawa, X. Lin, K. Kondo and Y. Fukuyama. Chemosystematics of bryophytes. Part 47. Terpenoids and aromatic compounds from selected east Malaysian liverworts. Phytochemistry, 30, 4019-4024, (1991).
[92] J. G. Luis and L. S. Andres. An eremophylane-type sesquiterpene and diterpenes from roots of Salvia mellifera. Natural Product Letters, 14, 25-30, (1999).
[93] M. Tori, A. Watanabe, S. Matsuo, Y. Okamoto, K. Tachikawa, S. Takaoka, X. Gong, C. Kuroda and R. Hanai. Diversity of Ligularia kanaitzensis in sesquiterpenoid composition and neutral DNA sequences. Tetrahedron, 64, 4486-4495, (2008).
[94] Ya-Jun Jian and YiKang Wu. On the structure of penipratynolene and WA. Tetrahedron, 66, 637-640, (2010).
[95] S. Nakahara, M. Kusano, S. Fujioka, A. Shimada and Y. Kimura. Penipratynolene, a novel nematicide from Penicillium bilaiae Chalabuda. Bioscience Biotechnology and Biochemistry, 68, 257-259, (2004).
[96] A. A. L. Gunatilaka, P. A. Paranagama and E. M. K. Wijeratne. Uncovering biosynthetic potential of plant-associated fungi: Effect of culture conditions on metabolite production by Paraphaeosphaeria quadriseptata and Chaetomium chiversii. Journal of Natural Products, 70, 1939-1945, (2007).
[97] S. N. Koohei Nozawa. Isolation of Radicicol from Penicillium luteo-aurantium, and Meleagrin, A New Metabolite from Penicillium meleagrinum. Journal of Natural Products, 42, 374-377, (1979).
[98] P. Delmotte and J. Delmotte-Plaquee. A New Antifungal Substance of Fungal Origin. Nature, 171, 344, (1953).
[99] F. W. Comer and J. Trotter. Crystal data for monorden (radicicol). Acta Crystallographica 19, 681, (1965).
[100] K. Yamamoto, R. M. Garbaccio, S. J. Stachel, D. B. Solit, G. Chiosis, N. Rosen and et al. Total synthesis as a resource in the discovery of potentially valuable antitumor agents: Cycloproparadicicol. Angewandte Chemie International Edition, 42, 1280-1284, (2003).
[101] R. N. Mirrington, E. Ritchie, C. W. Shoppee, W. C. Taylor and S. Sternhell. Constitution of radicicol. Tetrahedron Letters, 365-370, (1964).
[102] J. C. Onishi and A. A. Patchett. Azasterol-containing synergistic medical fungicidal compositions. Application: EP, EP patent 1989-200933, 339709 (1989).
[103] J. C. Onishi and A. A. Patchett. Fungicidal compositions and method. Application: EP, EP patent 1989-200932, 339708 (1989).
[104] J. M. Berger and K. D. Corbett. Structural basis for topoisomerase VI inhibition by the anti-Hsp90 drug radicicol. Nucleic Acids Research, 34, 4269-4277, (2006).
[105] E. Moulin, V. Zoete, S. Barluenga, M. Karplus and N. Winssinger. Design, Synthesis, and Biological Evaluation of HSP90 Inhibitors Based on Conformational Analysis of Radicicol and Its Analogues. Journal of the American Chemical Society, 127, 6999-7004, (2005).
[106] J. L. Wee, K. Sundermann, P. Licari and J. Galazzo. Cytotoxic hypothemycin analogues from Hypomyces subiculosus. Journal of Natural Products, 69, 1456-1459, (2006).
[107] D. T. Chuang, M. Kato, J. Li and J. L. Chuang. Distinct structural mechanisms for inhibition of pyruvate dehydrogenase kinase isoforms by AZD7545, dichloroacetate, and radicicol. Structure, 15, 992-1004, (2007).
[108] H. van Tilbeurgh, M. Graille, L. Cladiere, D. Durand, F. Lecointe, D. Gadelle, S. Quevillon-Cheruel, P. Vachette and P. Forterre. Crystal structure of an intact type II DNA topoisomerase: Insights into DNA transfer mechanisms. Structure, 16, 360-370, (2008).
[109] A. Ikeda, H. Shinonaga, N. Fujimoto and Y. Kasai. Hair growth stimulant containing WNT-5A inhibitors, and method for screening hair papilla cell growth promoter. Application: WO, WO patent 2003-JP4884, 2003086334 (2003).
[110] H. Shinonaga, Y. Kawamura, A. Ikeda, M. Aoki, N. Sakai, N. Fujimoto and A. Kawashima. The search for a hair-growth stimulant: new radicicol analogues as WNT-5A expression inhibitors from Pochonia chlamydosporia var. chlamydosporia. Tetrahedron Letters, 50, 108-110, (2009).
[111] S. Tansuwan, P. Chanaprat, T. Teerawatananond, N. Muangsin, and S. Pornpakakula. (4S,5S,6S)-4-Hydroxy-3-methoxy-5-methyl-5,6-epoxycyclo-hex-2-en-1-one. Acta crystallographica. Section E, Structure reports online, 66, o2263, (2010).
[112] Y. Shiono, T. Murayama, K. Takahashi, K. Okada, S. Katohda and M. Ikeda. Three oxygenated cyclohexenone derivatives produced by an endophytic fungus. Bioscience, Biotechnology, and Biochemistry, 69, 287-292, (2005).
[113] Coriloxin. Application: JP, JP patent 1978-161041, 55089274 (1980).
[114] Sung-Yeon Cho, Sang-Joon Park, Myung-Ja Kwon, Tae-Sook Jeong, Song-Hae Bok, Woo-Young Choi, Won-Il Jeong, Si-Yun Ryu, Sun-Hee Do, Cha-Soo Lee and et al. Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-kB pathway in lipopolysaccharide-stimulated macrophage. Molecular and Cellular Biochemistry, 243, 153-160, (2003).
[115] J. O'Brien, I. Wilson, T. Orton and F. Pognan. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European Journal of Biochemistry, 267, 5421-5426, (2000).
[116] Kuan-Jen Chen and Jin-Ching. Lee. Establishment of High Throughput Screening (HTS) for Drug Discovery. Journal of the Chinese Chemical Society, 66, 269-277, (2008).
[117] S. J. Gould and S. Subramani. Firefly luciferase as a tool in molecular and cell biology. Analytical Biochemistry, 175, 5-13, (1988).
[118] F. Fan and K. V. Wood. Bioluminescent assays for high-throughput screening. Assay and Drug Development Technologies, 5, 127-136, (2007).
[119] V. Vichai and K. Kirtikara. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nature Protocols, 1, 1112-1116, (2006).
[120] C. Clarkson, V. E. Madikane, S. H. Hansen, P. J.Smith, J. W. Jaroszewski. HPLC-SPE-NMR characterization of sesquiterpenes in an antimycobacterial fraction from Warburgia salutaris. Planta Medica, 73, 578-584, (2007).
論文全文使用權限
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    臺北醫學大學 圖書館 簡莉婷
    E-mail:etds@tmu.edu.tw
    Tel:(02) 2736-1661 ext.2519
    Fax:(02) 2737-5446