進階搜尋

 
查詢範圍:「   」
顯示範圍:第筆 論文書目資料
顯示格式:全部欄位
共 3 筆
------------------------------------------------------------------------ 第 1 筆 ---------------------------------------------------------------------
系統識別號 U0007-1307200715211200
論文名稱(中文) 電化學表面改質對促進316L不袗生醫相容性之影響研究
論文名稱(英文) Effect of Electrochemical Modification on Enhancing the Biocompatibility of 316L Stainless Steel
校院名稱 臺北醫學大學
系所名稱(中) 口腔科學研究所
系所名稱(英) Graduate Institute of Oral Sciences
學年度 95
學期 2
出版年 96
研究生(中文) 林奕孚
學號 M214094001
學位類別 碩士
語文別 英文
口試日期 2007-06-25
論文頁數 70頁
口試委員 指導教授-歐耿良
共同指導教授-李勝揚
委員-盧陽明
關鍵字(中) 316L不鏽鋼
骨整合
三氧化二鉻
陽極處理
奈微米孔洞
關鍵字(英) 316L stainless steel
osseo/osetointegration
dichromium trioxide
anodization treatment
micro-nanoporous
學科別分類
中文摘要 諸多研究顯示,316L不鏽鋼於人體的生物相容(biocompatibility)有極高的評價,其非常適合做為人體的植入物,然而316L不鏽鋼之所以具極佳的生物相容性主要是與其金屬表面的氧化層有關,且於一些研究及文獻亦顯示植入生物體內材料表面的孔徑大小和細胞初始的攀附行為、增殖及分化有密切關係。若能有效控制氧化層為微奈米複合式多孔性將對骨整合會有所助益。
本研究以電化學的陽極處理方式使316L不鏽鋼表層形成一層微奈米複合式多孔性的三氧化二鉻(Cr2O3)結構,並以物理及化學性的分析儀器測試表面之成分、元素、膜厚、孔洞大小及結構是否符合要求,之後將對符合要求的試片於無塵室加以清洗、消毒後,即以這些試片進行細胞培養,經特定時間分別對細胞的攀附、增殖作不同的測試, 並加以比較不同條件下測試的結果。
本研究主要是在探討316L不鏽鋼植體表面經由電化學方式製作出不同的氧化層厚度及孔徑大小,並以細胞實驗在不同條件下的生長情形,此外更進一步探討微奈米複合式孔洞的表面與骨整合的癒合機制並進行比較,此結果可對縮短植入於骨內的植體,如牙科植體的骨整合癒合時間有所助益。
英文摘要 316L stainless steel with excellent biocompatibility has been investigated by many researches. It is due to its passive oxide film. The surface characteristics of 316L stainless steel implant, such as pore sizes/roughness, are related to initial cell behaviors and osseo/osetointegration. However, the surface design of dental implant for enhancing the rate and result of osseo/osetointegration remains unknown. The purpose of this study is to investigate the effects of the various 316L stainless steel oxide thicknesses and pore sizes/roughness on the initial attachment and proliferation of the osteoblast-like cell (MG-63) based on the above investigation, it is believed that optimal pore sizes/roughness will be promoted the osseo/osetointegration.
In the present study, electrochemistry process was performed as surface treatment of 316L stainless steel implant. Dichromium trioxide (Cr2O3) was formed on 316L stainless steel implant surface after anode treatment. Due micro-nano porous oxide structure was formed by anodization treatment.
As mentioned above, physical properties, chemical properties as well as biocompatibility of 316L stainless steel implant with and without electrochemical surface treatments were analyzed clearly. In addition, biocompatibility of 316L stainless steel implant with and without surface treatments was performed by cell cultures. MTT test and cell counting is used to investigate the cell attachment and proliferation. Furthermore, mechanism of bone healing on micro-nanoporous implant surface and interaction were also discussed clearly. It is believed that it is helpful to realize the osseointegraion mechanism.
論文目次 Contents……………………………………………………………………………1
Table captions……………………………………………………………………...2
Figure captions…………………………………………………………………….3
中文摘要…………………………………………………………………………...4
Abstract……………………………………………………………………………5
Chapter 1 Introduction………………………………………………...................7
1.1 General background…………………….………………………..7
1.2 Motivation of this study……………….…………………………8
1.3 Purpose of this study……………………………………………9
1.4 Hypothesis of this study……..…………………………………9
1.5 Organization of the thesis………………………………………10
Chapter 2 Literature Review…………...……………………………………….11
2.1 Property of 316L stainless steel………….....…..………………11
2.2 Osseo/osetointegration of 316L stainless steel…………………13
2.3 Relationship osseo/osetointegration and oxide layer………….14
2.4 Contact of boneimplant with and without surface treatment..16
Chapter 3 Experimental Procedure…………...………………………………..20
3.1 316L stainless steel implant preparation………………………20
3.2 Physical and chemical properties of specimens with and without treatment...………….….…..………….………………21
Chapter 4 Results and Discussion………………………………………………27
Chapter 5 Conclusion……………………………………………………………36
Reference…………………………………………………………………………37
Table captions
Table 3.1 Chemical composition of 316L metal in this study …..………...47
Table 3.2 Mechanical and physical property of 316L metal (ASTM) …...48
Figure captions
Figure 3.1 Experimental procedures……..………………..……………………49
Figure 3.2 Experimental framework………….……………………...…………50
Figure 3.3 Energy Dispersive X-ray Spectroscopy (EDXS)………………...…51
Figure 3.4 Grazing-Incidence X-ray Diffraction (GIXRD)……………...……52
Figure 3.5 Transmission Electron Microscope(TEM)…………………………53
Figure 3.6 X-ray Photoelectron Spectroscopy (XPS)……………..……….….54
Figure 3.7 Field-Emission Scanning Electron Microscope(FE-SEM)……...…55
Figure 3.8 Atomic Force Microscope(AFM)……………………………………56
Figure 3.9 Secondary Ion Mass Spectrometry(SIMS)…………………………57
Figure 3.10 Auger Electron Spectroscope(AES)…………..…………..……….58
Figure 4.1(a) SEM morphology of SS.…………………….…….……..……….59
Figure 4.1(b) SEM morphology of A-SS following 1V anodization...……..….60
Figure 4.1(c) SEM morphology of A-SS following 5V anodization….......…...61
Figure 4.1(d) SEM morphology of A-SS following 8V anodization……..……62
Figure 4.2 O XPS spectrum was analyzed by A-SS surface…………………63
Figure 4.3 XRD spectra of treated and untreated SS alloy…………………..64
Figure 4.4(a) Bight-field electron micrograph of the untreated alloy………65
Figure 4.4(b) Bright-field image and SADP of treated SS alloy………………66
Figure 4.5(a) The SEM investigations of cell morphology on SS alloys without
treatments(0V, MG-63, 24h)……………………….……………67
Figure 4.5(b) The SEM investigations of cell morphology on SS alloys with
treatments(5V, MG-63, 24h)…………………………………….68
Figure 4.5(c) The SEM investigations of cell morphology on SS alloys with
treatments(8V, MG-63, 24h)……………………….……………69
Figure 4.6 The cell culture of SS with anodization………………………...…..70
參考文獻 Reference
1. Disegil J. A. & Eschbachz L. Stainless steel in bone surgery. J. Care Injured 31, S-D2-6 (2000).
2. Seligson, D. et al. In vivo study of stainless steel and Ti-13Nb-13Zr bone plates in a sheep model. Clin Orthop Relat Res, 213-23 (1997).
3. Tonino, A. J., Davidson, C. L., Klopper, P. J. & Linclau, L. A. Protection from stress in bone and its effects experiments with stainless steel and plastic plates in dogs. The Journal of Bone and Joint Surgery 58-B, 107-113 (1976).
4. Lina, F. H., Hsub, Y. S., Linb, S. H. & Sun, J. S. The effect of Ca/P concentration and temperature of simulated bodyfluid on the growth of hydroxyapatite coating on alkali-treated 316L stainless steel. Biomaterials 23, 4029-4038 (2002).
5. Harnroongroj, T. & Vanadurongwan, V. Biomechanical aspects of plating osteosynthesis of transverse clavicular fracture with and witho ut inferior cortical defect. Clinical Biomechanics 11, 290-294 (1996).
6. SILVA, R. A. & SILVA, I. P. Effect of Surface Treatments on Anodic Oxide Film Growth and Electrochemical Properties of Tantalum used for Biomedical Applications. Journal of Biomaterials Applications. 21, 93-103 (2006).
7. Anil Mahapatro, D. M. J., Devang N. Patel, Marc D. Feldman, Arturo A. Ayon, C. Mauli Agrawal. Surface Modification of Functional Self-Assembled Monolayers on 316L Stainless Steel via Lipase Catalysis. Langmuir 22, 901-905 (2006).
8. Pereni, C. I., Zhao, Q., Liu, Y. & Abel, E. Surface free energy effect on bacterial retention. Colloids Surf B Biointerfaces 48, 143-7 (2006).
9. Haidopoulos, M., Turgeon, S., Sarra-Bournet, C., Laroche, G. & Mantovani, D. Development of an optimized electrochemical process for subsequent coating of 316 stainless steel for stent applications. J Mater Sci Mater Med 17, 647-57 (2006).
10. Fan, X., Lin, L., Dalsin, J. L. & Messersmith, P. B. Biomimetic anchor for surface-initiated polymerization from metal substrates. J Am Chem Soc 127, 15843-7 (2005).
11. Morrison, M. L. et al. The electrochemical evaluation of a Zr-based bulk metallic glass in a phosphate-buffered saline electrolyte. J Biomed Mater Res A 74, 430-8 (2005).
12. Shustak, G., Domb, A. J. & Mandler, D. Preparation and characterization of n-alkanoic acid self-assembled monolayers adsorbed on 316L stainless steel. Langmuir 20, 7499-506 (2004).
13. Tan, Q., Ji, J., Barbosa, M. A., Fonseca, C. & Shen, J. Constructing thromboresistant surface on biomedical stainless steel via layer-by-layer deposition anticoagulant. Biomaterials 24, 4699-705 (2003).
14. Mazumder, M. M. et al. Corrosion resistance of polyurethane-coated nitinol cardiovascular stents. J Biomater Sci Polym Ed 14, 1351-62 (2003).
15. Chang, J. C. et al. Electrochemical study on microbiology-related corrosion of metallic dental materials. Biomed Mater Eng 13, 281-95 (2003).
16. Ji, J. et al. Fabrication of alternating polycation and albumin multilayer coating onto stainless steel by electrostatic layer-by-layer adsorption. Colloids Surf B Biointerfaces 34, 185-90 (2004).
17. Rodil, S. E., Olivar es, R., Arzate, H. & Muhl, S. Properties of carbon films and their biocompatibility using in-vitro tests. Diamond and Related Materials 12, 931-937 (2003).
18. Shih, C. C. et al. Quantitative evaluation of thrombosis by electrochemical methodology. Thromb Res 111, 103-9 (2003).
19. Vallet-Regı, M., Izquierdo-Barba, I. & Gil, F. J. Localized corrosion of 316L stainless steel with SiO2-CaO films obtained by means of sol- gel treatment. J Biomed Mater Res 67A, 674-678 (2003).
20. Shih, C. C., Shih, C. M., Su, Y. Y. & Lin, S. J. Impact on the thrombogenicity of surface oxide properties of 316l stainless steel for biomedical applications. J Biomed Mater Res A 67, 1320-8 (2003).
21. Fathi, M. H., Salehi, M., Saatchi, A., Mortazavi, V. & Moosavi, S. B. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants. Dent Mater 19, 188-98 (2003).
22. Vinnichenko, M., Chevolleau, T., Pham, M. T., Poperenko, L. & Maitz, M. F. Spectroellipsometric, AFM and XPS probing of stainless steel surfaces subjected to biological influences. Applied Surface Science 201, 41-50 (2002).
23. Silva, R. A., Walls, M., Rondot, B., Da Cunha Belo, M. & Guidoin, R. Electrochemical and microstructural studies of tantalum and its oxide films for biomedical applications in endovascular surgery. J Mater Sci Mater Med 13, 495-500 (2002).
24. Zhao, H., Van Humbeeck, J., Sohier, J. & De Scheerder, I. Electrochemical polishing of 316L stainless steel slotted tube coronary stents. J Mater Sci Mater Med 13, 911-6 (2002).
25. Armitage, D. A., Parker, T. L. & Grant, D. M. Biocompatibility and hemocompatibility of surface-modified NiTi alloys. J Biomed Mater Res A 66, 129-37 (2003).
26. Yue, T. M., Yu, J. K. & Man, H. C. The effect of excimer laser surface treatment on pitting corrosion resistance of 316LS stainless steel. Surface and Coatings Technology 137, 65-71 (2001).
27. Shettlemore, M. G. & Bundy, K. J. Examination of in vivo influences on bioluminescent microbial assessment of corrosion product toxicity. Biomaterials 22, 2215-28 (2001).
28. Le, M. K. & Zhu, X. M. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels. Biomaterials 22, 641-7 (2001).
29. Arola, D. & Huang, M. P. The influence of simultaneous mechanical and thermal loads on the stress distribution in molars with amalgam restorations. J Mater Sci Mater Med 11, 133-40 (2000).
30. Morais, S. & Pereira, M. C. Application of stripping voltammetry and microelectrodes in vitro biocompatibility and in vivo toxicity tests of AISI 316L corrosion products. J Trace Elem Med Biol 14, 48-54 (2000).
31. Vignal, V., Roux, J. C., Flandrois, S. & Fevrier, A. Nanoscopic studies of stainless steel electropolishing. Corrosion Science 42, 1041-1053 (2000).
32. Boklae, C. et al. Direct observation of oxygen-induced structural changes in stailess-steel surfaces. J.Vac. Sci. Technol. B 18, 868-872 (2000).
33. Lopez, M. F., Gutierrez, A., Torres, C. L. & Bastidas, J. M. Soft x-ray absorption spectroscopy study of electrochemically formed passive layers on AISI 304 and 316L stainless steel. J. Mater. Res., 14, 763-770 (1999).
34. Beddoes, J. & Bucci, K. The influence of surface condition on the localized corrosion of 316L stainless steel orthopaedic implants. J Mater Sci Mater Med 10, 389-94 (1999).
35. Cho, B., Choi, E. & Chung, S. Oxidation-induced stoichiometric and morphological change of oxide films on stainless-steel surfaces. Appl. Phys. A 69, 625-630 (1999).
36. Morais, S. et al. Decreased consumption of Ca and P during in vitro biomineralization and biologically induced deposition of Ni and Cr in presence of stainless steel corrosion products. J Biomed Mater Res 42, 199-212 (1998).
37. Ledvina, M. & Rigney, E. D. The thin electrolyte layer approach to corrosion testing of dental materialsÐcharacterization of the technique. Biomaterials 19, 2201-2207 (1998).
38. Torres, F. J. et al. Corrosion behavior of sensitized duplex stainless steel. Biomed Mater Eng 8, 25-36 (1998).
39. Morais, S. et al. Effects of AISI 316L corrosion products in in vitro bone formation. Biomaterials 19, 999-1007 (1998).
40. Morais, S., Sousa, J. P., Fernandes, M. H. & Carvalho, G. S. In vitro biomineralization by osteoblast-like cells. I. Retardation of tissue mineralization by metal salts. Biomaterials 19, 13-21 (1998).
41. Shieu, F. S., Deng, M. J. & Lin, S. H. Microstructure and corrosing resistance of a type 316L stainless steel. Corrosion Science, 40, 1267-1279 (1998).
42. Ohmi, T., Nakagawa, Y., Nakamura, M., Ohki, A. & Koyama, T. Formation of chromium oxide on 316L austenitic stainless steel. J. Vac. Sci. Technol. A 14 (1996).
43. Bordji, G. et al. Evaluation of the effect of three surface treatments on the biocompatibility of 316L stainless steel using human differentiated cells. Biomaterials 17, 491-500 (1996).
44. Squire, M. W., Ricci, J. L. & Bizios, R. Analysis of osteoblast mineral deposits on orthopaedic/dental implant metals. Biomoteriok 17, 725-733 (1996).
45. Stypula, B. & Stoch, J. The characterization of passive films on chromium electrodes by xps. Corrosion Science 36, 2159-2167 (1994).
46. Olander, D. R. & El-Saied, U. M. The effect of grain boundary motion on the kinetice of solute penetration into a polycrystalline medium. Acta metal. Mater. 40, 1329-1336 (1992).
47. Bobeth, M., Pompe, W., Schumann, E. & Ruhle, M. Out-diffusion of the noble component during the initial stage of the oxidation of γ’-Ni3Al. Acta metal. Mater. 40, 2669-2676 (1992).
48. Parvathavarthini, N., Dayal, R. k., Sivakumar, R., Kamachi Mudali, U. & Bharati, A. Pitting corrosion resistance of laser surface alloyed 304 stainless steel. Materials Science and Technology 8, 1070-1074 (1992).
49. Allen, G. C., Dyke, J. M., Harris, S. J. & Morris, A. A surface of the oxidation of type 304L stainless steel at 600 K in Air. Oxidation of Metals, 29 (1988).
50. Davis, T. J., Topping, R. E. & Blanco, J. S. External fixation of pediatric femoral fractures. Clin Orthop Relat Res, 191-8 (1995).
51. Sommer, C., Gautier, E., Muller, M., Helfet, D. L. & Wagner, M. First clinical results of the Locking Compression Plate (LCP). Injury 34 Suppl 2, B43-54 (2003).
52. Asnis, S. E. et al. Cancellous bone screw thread design and holding power. J Orthop Trauma 10, 462-9 (1996).
53. Shaw, J. A. A biomechanical comparison of scaphoid screws. J Hand Surg [Am] 12, 347-53 (1987).
54. Hansson, S. & Werke, M. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. Journal of Biomechanice 36, 1247-1258 (2003).
55. Wehrbein, H., Merz, B. R., Diedrich, P. & Glatzmaier, J. The use of palatal implants for orthodontic anchorage design and clinical application of the orthosystem. Clin Oral Impl Res 7, 410-416 (1996).
56. Steigenga, J. T., al-Shammari, K. F., Nociti, F. H., Misch, C. E. & Wang, H. L. Dental implant design and its relationship to long-term implant success. Implant Dent 12, 306-17 (2003).



------------------------------------------------------------------------ 第 2 筆 ---------------------------------------------------------------------
系統識別號 U0007-1704200714512808
論文名稱(中文) 電化學方式形成不同氧化膜層厚度及孔徑大小於鈦金屬表面對類骨母細胞之影響
論文名稱(英文) Cellular response to electrochemically treated titanium surfaces in varied oxide thickness and pore sizes
校院名稱 臺北醫學大學
系所名稱(中) 牙醫學系碩博士班
系所名稱(英) Graduate School of Dentistry
學年度 91
學期 2
出版年 92
研究生(中文) 楊政峰
學號 M004089004
學位類別 碩士
語文別 中文
口試日期
論文頁數 173頁
口試委員 指導教授-李勝揚
指導教授-林哲堂
關鍵字(中) 鈦金屬
陽極氧化
氧化鈦膜厚度
孔徑
粗糙度
接觸角
細胞附連
增殖
關鍵字(英) titanium
anodization
titanium oxide thickness
pore size
roughness
contact angle
cell attachment
proliferation
學科別分類
中文摘要 迄今為止,許多的文獻及研究都顯示,純鈦金屬及鈦合金作為人體的植入物 (implant material) 都具有相當良好的生物相容性(biocompatibility),此種性質和其表面獨特的氧化鈦膜性質有關, 也因而和骨頭產生了骨整合 (osseointegration) 的關係。 另外的一些研究及文獻也顯示,植入生物體內材料表面的孔徑大小/ 粗糙度和細胞初始的攀附行為、增殖、分化有關。本篇研究主要目的即在探討鈦金屬表面不同氧化膜層的厚度及表面不同的孔徑大小/ 粗糙度對類骨母細胞(osteoblast-like cell) MG-63 行為的影響,而此結果可能對縮短種植於骨內的植體,如人工牙根的骨整合癒合時間有所助益。因此,本實驗分成兩大類組,即氧化膜層組及孔徑大小組,二者皆以電化學方式(陽極氧化) 形成,在所給予不同條件的材料製備完成並在無塵室加以清洗、消毒、分析後,即以這些鈦金屬試片進行細胞培養,經特定的時間分別對細胞的攀附,增殖作不同的測試,並加以比較不同條件下這些測試的結果。 結果顯示,一旦鈦金屬之氧化膜層厚度增加時,同時也造成及金相結晶結構,氧/鈦原子組成比例,表面接觸角或表面能的改變。 在細胞初步的附連 (attachment) 行為在校正表面積因素後,似乎有某種程度的關連性。在細胞增殖行為上,40及80 nm氧化膜厚度的細胞濃度吸附值最高並有統計上顯著差異。在細胞增殖的後期 (8,12天) 則顯示兩種的machine surfaces (rough & smooth) 及10μm孔徑大小的細胞濃度都較50及100μm孔徑大小的細胞濃度為高。
英文摘要 Many literatures have shown that titanium with excellent biocompatibility is due to its passive oxide film. The surface characteristics of titanium implant (pore sizes/roughness) are related to initial cell behaviors or osseointegration, however, the optimal surface design of dental implant for enhancing the rate and result of osseointegration remains unknown. The purpose of this study is to investigate the effects of the varied thicknesses of the titanium oxide and pore sizes/ roughness (micrometer range) on the initial attachment and proliferation of the osteoblast-like cell (MG-63) to the implant surfaces in vitro. The experiment is designed in two catagories: A) thicknesses of the titanium oxide and B) pore sizes/roughness. The Grade II titanium discs (10x10x3mm) are formed in varied textures and topography on their surface electrochemically. Different current densities, voltages and times to control the thickness of the titanium oxide and to creat different pore sizes on titanium discs are studied. Mechanical stylus (2D) combined with scanning electric microscope to measure the surface topography, and SIMS to detect the thickness of titanium oxide are also employed. Cell cultures are performed on the titanium discs with different conditions after materials are prepared and cleaned. The MTT test is used to investigate the cell attachment, proliferation at different time periods (4 hr,1 day,2 day,4 day, 6 day, 8 day, 12 day). The machine surfaces (rough, smooth ) are used as for comparisions. The results show that the anodizing oxide layer contained TiO2 in different phases (anatase, rutile or brookite) and with Ti3O5 on 120 nm thick oxide. The optical density from MTT test show that cells have significant proliferation on titanium samples except with 50 μm, 100 μm pore size after 48 hours. Titanium oxide with thickness of 40 and 80 nm show higher level of the cell proliferation with statistical significant difference at 8th, 12th day. The titanium discs having 100 μm pore size show the greatest optical density at initial cell attachment and with statistical significant difference compared with that of 10 μm pore size. Smaller pore-sizes and smooth surface present more proliferation than larger ones but no statistical significant difference is shown at 8th and 12th day. Surface roughness to increased surface areas is considered, when the relationship between contact angle and cell attachment level is investigated in this work.
論文目次 第一章、 緒論 第一節 研究動機與重要性 第二節 研究目的 第三節 研究假設 第二章、 文獻查證 第一節 牙科植體之簡介 第二節 植體與骨之介面 第三節 鈦金屬氧化膜對骨整合之影響 第四節 孔徑/ 粗糙度對骨整合之影響 第三章、 材料與方法 第一節 金屬鈦試片材料之製備及檢測 第二節 細胞培養 第三節 細胞形態之觀察 第四節 細胞附著測試 第五節 細胞增殖測試 第六節 樣本數及分析 第四章、 分析與研究結果 第五章、 討論 第六章、 結論與建議 第一節 結論 第二節 研究限制 第三節 應用與建議 附圖及圖表
參考文獻 1. Branemark PI. Breine U. Adell R. Hansson BO. Intraosseous anchorage of dental prostheses. I Experimental studies. Scand J Plast Reconstr Surg. 3:81,1969. 2. Schroeder A. Pohler O. Sutter F. Gewebsreaktion auf ein Titan-Hohlzylinderim-plantat mit Titan-Spritz schichtoberflache Schweiz Monatsschr Zahnheilk. 86:713, 1976. 3. Branemark PI. Hansson BO. Adell R. Breine U. Lindstrom J. Hallen O. Omann A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg . 11 (suppl), 1977. 4. Schroeder A. Stich H. Straumann F. Sutter F. Uber die Anlagerung von Osteozement an einen belasteten Implantatkorper. Schweiz Monatsschr Zahnheilk. 88:1051, 1978. 5. Schroeder A. Van der Zypen E. Stich H. Sutter F. The reaction of bone, connective tissue and epithelium to endosteal implants with sprayed titanium surface. J Maxillofac Surg. 9:15, 1981. 6. Adell R. Lekholm U. Rockler B. Branemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Maxillofac Surg. 6:387, 1981. 7. Buser D. Weber HP. Lang NP. Tissue integration of non-submerged implants 1-year results of a progressive study with 100 ITI hollow-screw and hollow-cylinder implants. Clin Oral Impl Res. 1:33, 1990. 8. Buser D. Sutter F. Weber HP. Belser U. Schroeder A. The ITI dental implant system. Basics, clinical indications and procedures, results. In: Hardin J Clark’s Clinical Dentitry, Philadelphia: Lippincott. 5:1-23, 1992. 9. Zarb GA. Schnitt A. The longitudinal clinical effectiveness of osseointegrated dental implants in anterior partially edentulous patients. Int J prosthodont. 6:180, 1993. 10. Cowin SC. Van Buskirk WC. Ashman RB. Properties of bone. In: Skalak R. Chien S. Handbook of Bioengineering. New York: Megraw-Hill. 2: 1-27, 1987. 11. Brunette DM. Kenner GS. Gould TRL. Grooved titanium surfaces orient growth and migration of cells from human gingival explants. J Dent Res. 62:1045-1048, 1983. 12. Chehroudi B. Gould TRL. Brunette DM. Titanium-coated micromachined grooves of different dimensions affect epithelial and connective-tissue cells differently in vivo. J of Biomedical Materials Research. 24:1203-1219, 1990. 13. Martin JY. Schwartz Z. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG-63). J of Biomedical Materials Research. 29:389-401, 1995. 14. Wong M. Eulenberger J. Schenk R. Effect of surface topography on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res. 29:1567-1576, 1995. 15. Schwartz Z. Martin JY. Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation. J of Biomedical Materials Research. 30:145-155, 1996. 16. Flemming RG. Murphy CJ. Abrams GA. Goodman SL. Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 20:573-588, 1999. 17. Deligianni DD. Katsala N. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation, and detachment strength. Biomaterials. 22:87-96, 2001. 18. Deligianni DD. Katsala N. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials. 22:1241-1251, 2001. 19. Steinemenn SG. Eulenberger J. Maeusli P-A. Schroeder A. Adhesion of bone to titanium. In: Christel P. Meunier A. Lee AJC. Biomechanical Performance of Biomaterials. Amsterdam: Elsevier. 409-414, 1986. 20. Branemark R. A Biomechanical Study of Osseointegration. ( Thesis). Goteborg. Sweden: Goteborg University, 1996. 21. Gotfredsen K. Wennerberg A. Johansson C. Skovgaard LT. Anchorage of TiO2- blasted, HA-coated, and machined implants: An experimental study with rabbits. J of Biomedical Materials Research. 29:1223-1231, 1995. 22. Wennerberg A. Albrektsson T. Andersson B. Krol JJ. A histomorphometric and removal torque study of screw shaped titanium implants with three different surface topographies. Clin Oral Implants Res. 6:24-30, 1995. 23. Wennerberg A. Alkretsson T. Johansson C. Andersson B. Experimental study of turned and grit-blasted screw shaped implants with special emphasis on effects of blasting materials and surface topography. Biomaterials. 17:15-22, 1996. 24. Wennerberg A. Alberktsson T. Lausmaa J. Torque and histomorphometric evaluation of C.P. titanium screw blasted with 25- and 75-µm particles of Al2O3. J of Biomedical Materials Research. 30:251-260, 1996. 25. Pillar RM. Implant stabilization by tissue ingrowth. Proceedings of an International Congress, Brussels. May 1985. Excerpta Medica. Amsterdam. pp.60-76, 1986. 26. Pillar RM. Deporter DA. Watson PA. Valiquettl N. Dental implamt design — Effect on bone remodeling. J of Biomedical materials Research. 25:467-483, 1991. 27. Wennerberg A. Alberktsson T. Andersson B. Bone tissue response to commerically pure titanium implants blasted with fine and coarse particles of aluminum oxide. Int. J Oral Maxillofac Implants. 11: 38-45, 1996. 28. Brunette DM. The effects of implant surface topography on the behavior of cells. Int J Oral Maxillofac Implants. 3:231-246, 1988. 29. Davies JE. Mechanisms of endosseous integration. Int J of Prosthodontics. 11:5:391-401, 1998. 30. Park JY. Davies JE. Red blood cell and platelet interactions with titanium implant surface. Clin Oral Impl Res. 11:530-539, 2000. 31. Gemmell CH. Park JY. Initial blood interaction with endossteal implant Materials. Bone engineering, 2000, Davies JE. em squared inc. Toronto Canada. pp. 108-117. 32. John C. Keller et al. Oral biology and dental implants. Advanced in dental research, volume 13, June, 1999. 33. McAlarney ME. Oshiro MA. Effects of titanium dioxide passive film crystal structure, thickness, and crystallinity on C3 adsorption. Int J Oral Maxillofac Implants 11: 73-80, 1996. 34. Larsson C. Thomsen P. Aronsson BO. Rodahl M. Lausmaa J. Kasemo B. Ericson LE. Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thickness. Biomaterials 17: 605-616, 1996. 35. Boyan B.D. Batzer R. Kieswetter K. Liu Y. Cochran D.L. Dean DD. Schwartz Z. Titanium surface roughness alters responsiveness of MG-63 osteoblast-like cells to 1α,25-(OH)2D3. J Biomed Mater Res, 39: 77-85, 1998. 36. Walivaara B. Aronsson BO. Rodahl M. Lausmaa J. Tengvall P. Titanium with different oxides: in vitro studies of protein adsorption and contact activation. Biomaterials, Vol 15, No10:827-834. 1994. 37. Schwartz Z. Boyan B.D. Underlying mechanisms at the bone-biomaterial interface. Journal of Cellular Biochemistry 56: 340-347, 1994. 38. Branemark PI. Rydevik BL. Skalak R. Osseointegration in skeletal reconstruction and joint replacement. Secondary International Workshop on Osseointegration. Rancho Santa FE, California, Oct.27-29, 1994. 39. Kasemo B. Gold J. Implant surfaces and interface processes. Adv Dent Res13:8-20,June, 1999. 40. Schenk RK. Buser D. Osseointegration: a reality. Periodontlogy 2000,Vol 17:22-35, 1998.

------------------------------------------------------------------------ 第 3 筆 ---------------------------------------------------------------------
系統識別號 U0007-3006200816284400
論文名稱(中文) 以表面處理對迷你骨釘作為矯正錨定時機械性質及顯微結構對其周圍骨整合之機制研究
論文名稱(英文) The study of mechanical and microstructure variations of mini-implants for orthodontic anchorage with surface treatments
校院名稱 臺北醫學大學
系所名稱(中) 牙醫學系碩博士班
系所名稱(英) School of Dentistry
學年度 96
學期 2
出版年 97
研究生(中文) 鄭信忠
學號 D204093002
學位類別 博士
語文別 英文
口試日期 2008-05-29
論文頁數 141頁
口試委員 委員-高嘉澤
委員-潘永寧
委員-林哲堂
指導教授-李勝揚
共同指導教授-歐耿良
關鍵字(中)
氫化鈦
奈米
陽極處理
陰極處理
迷你骨釘
關鍵字(英) Titanium
Titanium hydride
Nanoporous
Anodization
Cathodization
Mini-implant
學科別分類
中文摘要 由於鈦金屬表面會生成一氧化層,使鈦金屬及其合金具極佳的生物相容性,研究指出植體表面氧化層厚度與孔徑大小對於細胞初始的攀附行為、增殖及分化有密切的關係。但因鈦金屬植體表面之機械性質與原生骨組織仍有差異,導致植體植入後可能發生因應力遮蔽效應所產生的骨質吸收問題。若能於植體表面氧化層製作奈米網狀多孔性結構,除將有助於細胞攀附、增殖及分化外,亦可有效降低鈦植體表面之楊氏係數,避免應力遮蔽效應發生,達到更趨完善的骨整合效應。
本研究以電化學陰極處理方式使鈦基金屬表層形成一層氫化鈦薄膜,再以電化學陽極處理,使表面形成一層三維網狀奈米多孔性二氧化鈦結構,佐以物理及化學性的分析儀器測試表面之成分、元素、膜厚、孔洞大小及結構,探討奈米網狀多孔性二氧化鈦之形成於鈦金屬表面楊氏係數及應力遮蔽效應的影響。研究結果顯示網狀奈米多孔性二氧化鈦結構可將鈦金屬表面楊氏係數降低至與骨組織相近;臨床研究結果顯示,經過表面處理之植入物,成功率明顯較未經過處理高,顯示本研究所提出之表面處理程序可有效增進鈦金屬之生物力學相容性,進一步改善骨組織癒合能力。
英文摘要 Metals are becoming increasingly popular as orthopedic and dental fields by many researches. However, there is particular difference in the Young’s modulus between artificial implants and human bones. The difference of Young’s modulus will result in stress shielding effect, leading to early bone loss. In this research, we proposed the electrochemical process as surface treatment of titanium-based mini-implant. Titanium hydrides were formed on implant surface following cathodic treatment. Nanoporous titanium oxide structure was formed by anodic surface treatment. Physical properties, chemical properties as well as biocompatibility of titanium implant with and without electrochemical treatments were analyzed clearly. Furthermore, effect of mechanical properties and stress shielding on nanoporous implant surface and bone were also investigated and discussed. This research also explores the effects of nano-(??-TiH, g-TiH2, and a-TiH1.971) phases on the formation of multi-nano-titania film by anodization with cathodic pretreatment.
A multi-nanoporous titania film was formed on the titanium after anodization. Anodization with cathodic pretreatment not only yields a titanium surface with a multi-nanostructure, but also transforms the titanium surface into a nanostructured titania surface. Formation of nano-hydrides by cathodization and oxidation by anodization are believed to enhance biocompatibility and improve bone to interface contact (BIC), thereby accelerate the initial osseointegration and re-osseointegration. From our clinical survey, the lower failure rate of mini-implants with surface treatment could be also found.
論文目次 Content 1
Table captions 4
Figure captions 5
中文摘要 8
Abstract 12
Chapter 1. Introduction 14
1.1 General background 14
1.2 Motivation of this study 15
1.3 Purpose of the present study 16
1.4 Hypothesis of this study 16
Chapter 2 Literature Review 18
2.1 Orthodontic anchorage and skeletal anchorage 18
2. 2 Development of temporary anchorage devices (TAD) 19
2.3 Affecting factors of temporary anchorage devices (TADs) 23
2.4 Material selections of TAD and Properties of titanium 24
2.5 Characterization of TiO2 26
2.6 Influence of the oxide film thickness 27
2.7 Influence of various pore sizes for TiO2 28
2.8 Osseointegration of titanium implants 29
2.9 Osseointegration of titanium oxide layer 30
2.10 Contact of bone implant with and without surface treatment 31
2.11 Stress shielding between the implant and bone 33
Chapter 3 Experimental Procedures 37
Part I: Formation of Surface Topography by H2SO4-cathodization and NaOH-anodization 37
3.1.1 The preparation of titanium specimen 37
3.1.2 Procedure with H2SO4-cathodization and NaOH-anodization 37
3.1.3 Surface characterizations of titanium specimen with H2SO4-cathodization and NaOH-anodization 38
Part II: Formation of Surface Topography by HF-cathodization and NaOH-anodization 42
3.2.1 The preparation of titanium specimen 42
3.2.2 Procedure with HF-cathodization and NaOH-anodization 43
3.2.3 Surface characterizations of titanium specimen with HF-cathodization and NaOH-anodization 43
Part III: Biocompatibility of Various Surface Topography 43
3.3.1 Cell culture 43
3.3.2 Proliferation tests 44
3.3.3 Alkaline phosphatase (ALP) activity 44
3.3.4 Cell morphology 44
Part IV: Surface mechanical properties 45
3.4.1 Dynamic Mechanical Thermal Analysis (DMA) 45
3.4.2 Wearing Test (WT) 45
3.4.3 Contact angle 45
Part V: Clinical survey of mini-implant with and without surface treatment 46
3.5.1 Patients 46
3.5.2 Pre-operative planning 46
3.5.3 Operation procedure 47
3.5.4 Outcome evaluation 47
3.5.5 Statistical analysis 48
Chapter 4 Results and Discussion 57
Part I: Formation of Surface Topography by H2SO4-cathodization and NaOH-anodization 57
Part II: Formation of Surface Topography by HF-cathodization and NaOH-anodization 77
Part III: Biocompatibility of Various Surface Topography 90
Part IV: Surface mechanical properties 104
Part IV: Surface mechanical properties 105
Part V: Clinical survey of mini-implant with and without surface treatment 110
Conclusion 122
References 124

參考文獻 1. Takebe, J., Itoh, S., Okada, J., and Ishibashi, K., "Anodic oxidation and hydrothermal treatment of titanium result in a surface that causes increased attachment and altered cytoskeletal morphology of rat bone marrow stromal cells in vitro". J Biomed Materi Res, 2000. 51: p. 398.
2. Ronold, H.J., Lyngstadaas, S.P., and Ellingsen, J.E., "A study on the effect of dual blasting with TiO2 on titanium implant surfaces on functional attachment in bone". J Biomed Mater Res A, 2003. 67(2): p. 524-30.
3. Schwartz, Z., Lohmann, C.H., Oefinger, J., Bonewald, L.F., Dean, D.D., and Boyan, B.D., "Implant surface characteristics modulate differentiation behavior of cells in the osteoblastic lineage". Adv Dent Res, 1999. 13: p. 38-48.
4. Proffit, W.R. and al., e., "Contemporary Orthodontics". St Louis, Mo: CV Mosby, 1986: p. 260.
5. Graber, T.M., "Orthodontics- Principles and Practice". Saunders Company, 1984: p. 519-522.
6. Brånemark, P.I., Adell, R., Breine, U., Hansson, B.O., Lindstrom, J., and Ohlsson, A., "Intra-osseous anchorage of dental prostheses. I. Experimental studies". Scand J Plast Reconstr Surg, 1969. 3(2): p. 81-100.
7. Brånemark, P.I., Hansson, B.O., Adell, R., Breine, U., Lindstrom, J., Hallen, O., and Ohman, A., "Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period". Scand J Plast Reconstr Surg Suppl, 1977. 16: p. 1-132.
8. Block, M.S. and Hoffman, D.R., "A new device for absolute anchorage for orthodontics". Am J Orthod Dentofacial Orthop, 1995. 107(3): p. 251-8.
9. Gainsforth, B.L. and Higley, L.B., "A study of orthodontic anchorage possibilities in basal bone". AM J Orthod Oral Surg,. 1945. 31: p. 406-16.
10. Linkow, L.I., "The endosseous blade implant and its use in orthodontics". Int J Orthod, 1969. 7(4): p. 149-54.
11. Sherman, A.J., "Bone reaction to orthodontic forces on vitreous carbon dental implants". Am J Orthod, 1978. 74(1): p. 79-87.
12. Smith, J.R., "Bone dynamics associated with the controlled loading of bioglass-coated aluminum oxide endosteal implants". Am J Orthod, 1979. 76(6): p. 618-36.
13. Turley, P.K., Shapiro, P.A., and Moffett, B.C., "The loading of bioglass-coated aluminium oxide implants to produce sutural expansion of the maxillary complex in the pigtail monkey (Macaca nemestrina)". Arch Oral Biol, 1980. 25(7): p. 459-69.
14. Roberts, W.E., Smith, R.K., Zilberman, Y., Mozsary, P.G., and Smith, R.S., "Osseous adaptation to continuous loading of rigid endosseous implants". Am J Orthod, 1984. 86(2): p. 95-111.
15. Turley, P.K., Kean, C., Schur, J., Stefanac, J., Gray, J., Hennes, J., and Loon, P.C., "Orthodontic force application to titanium endosseous implants". Angle Orthod, 1998. 58: p. 151-62.
16. Smally, W.M., Shapiro, P.A., Hoh1, T.H., Kokich, V.G., and Branemark, P.I., "Osseointegrated titanium implants for maxillofacial protraction in monkeys". Am J Orthod,, 1988. 94: p. 285-95.
17. Roberts, W.E., Helm, F.R., Marshall, K.J., and Gongloff, R.K., "Rigid endosseous implants for orthodontic and orthopedic anchorage". Angle Orthod, 1989. 59(4): p. 247-56.
18. Roberts, W.E., Marshall, K.J., and Mozsary, P.G., "Rigid endosseous implant utilized as anchorage to protract molars and close an atrophic extraction site". Angle Orthod, 1990. 60(2): p. 135-52.
19. Higuchi, K.W. and Slack, J.M., "The use of titanium fixtures for intraoral anchorage to facilitate orthodontic tooth movement". Int J Oral Maxillofac Implants, 1991. 6(3): p. 338-44.
20. Triaca, A., Antonin, M., and Wintermantel, E., "Ein neues Titan-Flaschrauben-implantat zur orthodontischen Verankerung am anterion Gaumen. " Int Orthod Kieferorthop 1992. 24: p. 251-257.
21. Wehrbein, H., Merz, B.R., Diedrich, P., and Glatzmaier, J., "The use of palatal implants for orthodontic anchorage. Design and clinical application of the orthosystem". Clin Oral Implants Res, 1996. 7(4): p. 410-6.
22. Kanomi, R., "Mini-implant for orthodontic anchorage". J Clin Orthod, 1997. 31(11): p. 763-7.
23. Sugawara, J., Umemori, M., Mitani, H., Nagasaka, H., and Kawamura, H., "Orthodontic treatments system for class Ⅲ malocclusion using a titanium miniplate as an anchorage". Jpn J Orthod Soc, 1998. 57: p. 25-35.
24. Nagasaka, H., Sugawara, J., Kawamura, H., Kasahara, T., Umemori, M., and Mitani, H., "A clinical evaluation on the efficacy of titanium miniplates as orthodontic anchorage". Jpn J Orthod Soc, 1999. 58: p. 136-147.
25. Costa, A., Raffainl, M., and Melsen, B., "Miniscrews as orthodontic anchorage: a preliminary report". Int J Adult Orthodon Orthognath Surg, 1998. 13(3): p. 201-9.
26. Park, H.S., "The skeletal cortical anchorage using titanium microscrew implants ". Kor J Orthod, 1999. 29: p. 699-705.
27. Park, H.S., "A new protocol of the sliding mechanics with Micro-lmplant anchorage (M.I.A.)". Kor J Orthod, 2000. 30: p. 677-685.
28. Jams Lin, C.Y., Eric Liou, J.W., and Liaw, J.L., "The application of a new osseous microscrew for orthodontic anchorage". J Taiwan Assoc Orthod, 2002. 14: p. 33-38.
29. James Cheng, Y. and Lin, E.W., "A Modified OMAS Screw - The LOMAS Hook Screw And Its Imporvements As An Orthodontic Anchor". J. Taiwan Asso. Orthod, 2004. 16: p. 28-32.
30. Cope, J.B.-. "Temporary anchorage devices in orthodontics: A paradigm shift Semin Orthod". Seminars in Orthodontics, 2005. 11: p. 3-9.
31. Park, H.S., "Clinical study on success rate of microscrew implants for orthodontic anchorage". Korea J Orthod, 2003. 33: p. 151-156.
32. Kim, Y.H. and Choi, J.H., "The study about retention of miniscrews used for intraoral anchorage". J Korean Dent Assoc, 2001. 39: p. 684-687.
33. Moon, C.H., "The clinical use and failure of skeletal anchorage system". J Korean Dent Assoc, 2002. 40: p. 68-74.
34. Cheng, H.C., Yen, E., Chen, L.S., and Lee, S.Y., "The analysis of failure cases using ORTHOANCHOR K1 mini-implant system as orthodontic anchorage". J of Dental Research, 2003. 82(Spec Iss B): p. 214.
35. Miyawaki, S., Koyama, I., Inoue, M., Mishima, K., Sugahara, T., and Takano-Yamamoto, T., "Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage". Am J Orthod Dentofacial Orthop, 2003. 124(4): p. 373-8.
36. Cheng, H.C., "Analysis of failure rate between K1 and MIA bony anchorage system". 3rd AIOC (Asia Implants Orthodontic Congress) abstract, 2004.
37. Cheng, S.J., Tseng, I.Y., Lee, J.J., and Kok, S.H., "A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage". Int J Oral Maxillofac Implants, 2004. 19(1): p. 100-6.
38. Cheng, H.C. and Lee, S.Y., "Failure rate of mini-implants in orthodontic bony anchorage". World Journal of Orthodontics, 2005. 6: p. 325.
39. Chen, C.H., Chang, C.S., Hsieh, C.H., Tseng, Y.C., Shen, Y.S., Huang, I.Y., Yang, C.F., and Chen, C.M., "The use of microimplants in orthodontic anchorage". J Oral Maxillofac Surg, 2006. 64(8): p. 1209-13.
40. Park, H.S., Jeong, S.H., and Kwon, O.W., "Factors affecting the clinical success of screw implants used as orthodontic anchorage". Am J Orthod Dentofacial Orthop, 2006. 130(1): p. 18-25.
41. Tseng, Y.C., Hsieh, C.H., Chen, C.H., Shen, Y.S., Huang, I.Y., and Chen, C.M., "The application of mini-implants for orthodontic anchorage". Int J Oral Maxillofac Surg, 2006. 35(8): p. 704-7.
42. Kuroda, S., Sugawara, Y., Deguchi, T., Kyung, H.M., and Takano-Yamamoto, T., "Clinical use of miniscrew implants as orthodontic anchorage: success rates and postoperative discomfort". Am J Orthod Dentofacial Orthop, 2007. 131(1): p. 9-15.
43. Motoyoshi, M., Matsuoka, M., and Shimizu, N., "Application of orthodontic mini-implants in adolescents". Int J Oral Maxillofac Surg, 2007. 36(8): p. 695-9.
44. Wiechmann, D., Meyer, U., and Buchter, A., "Success rate of mini- and micro-implants used for orthodontic anchorage: a prospective clinical study". Clin Oral Implants Res, 2007. 18(2): p. 263-7.
45. Baek, S.H., Kim, B.M., Kyung, S.H., Lim, J.K., and Kim, Y.H., "Success rate and risk factors associated with mini-implants reinstalled in the maxilla". Angle Orthod, 2008. 78(5): p. 895-901.
46. Chen, Y.H., "Root contact during insertion of miniscrews for orthodontic anchorage increases the failure rate: an animal study". Clin. Oral Impl. Res. , 2008. 19(1): p. 99-106.
47. Wilmes, B., Ottenstreuer, S., Su, Y.Y., and Drescher, D., "Impact of Implant Design on Primary Stability of Orthodontic Mini-implants". J Orofac Orthop, 2008. 69(1): p. 42-50.
48. Cornelis, M.A., Scheffler, N.R., De Clerck, H.J., Tulloch, J.F., and Behets, C.N., " Systematic review of the experimental use of temporary skeletal anchorage devices in orthodontics". Am J Orthod Dentofacial Orthop, 2007. 131: p. S52-58.
49. Chai, C.S. and Ben-Nissan, B., "Bioactive nanocrystalline sol-gel hydroxyapatite coatings". J Mater Sci Mater Med, 1999. 10(8): p. 465-9.
50. Wilmes, B., Rademacher, C., Olthoff, G., and Drescher, D., "Parameters affecting primary stability of orthodontic mini-implants". J Orofac Orthop, 2006. 67(3): p. 162-74.
51. Deguchi, T., Takano-Yamamoto, T., Kanomi, R., Hartsfield, J.K., Jr., Roberts, W.E., and Garetto, L.P., "The use of small titanium screws for orthodontic anchorage". J Dent Res, 2003. 82(5): p. 377-81.
52. Boyan, B.D., Batzer, R., Kieswetter, K., Liu, Y., Cochran, D.L., Szmuckler-Moncler, S., Dean, D.D., and Schwartz, Z., "Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to 1 alpha,25-(OH)2D3". J Biomed Mater Res, 1998. 39(1): p. 77-85.
53. Kim, J.W., Ahn, S.J., and Chang, Y.I., "Histomorphometric and mechanical analyses of the drill-free screw as orthodontic anchorage". Am J Orthod Dentofacial Orthop, 2005. 128(2): p. 190-4.
54. Chaddad, K., Ferreira, A.F., Geurs, N., and Reddy, M.S., "Influence of surface characteristics on survival rates of mini-implants". Angle Orthod, 2008. 78(1): p. 107-13.
55. Oyonarte, R., Pilliar, R.M., Deporter, D., and Woodside, D.G., "Peri-implant bone response to orthodontic loading: Part 2. Implant surface geometry and its effect on regional bone remodeling". Am J Orthod Dentofacial Orthop, 2005. 128(2): p. 182-9.
56. Oyonarte, R., Pilliar, R.M., Deporter, D., and Woodside, D.G., "Peri-implant bone response to orthodontic loading: Part 1. A histomorphometric study of the effects of implant surface design". Am J Orthod Dentofacial Orthop, 2005. 128(2): p. 173-81.
57. Carano, A., Velo, S., Leone, P., and Siciliani, G., "Clinical applications of the Miniscrew Anchorage System". J Clin Orthod, 2005. 39(1): p. 9-24; quiz 29-30.
58. Ohmae, M., Saito, S., Morohashi, T., Seki, K., Qu, H., Kanomi, R., Yamasaki, K.I., Okano, T., Yamada, S., and Shibasaki, Y., "A clinical and histological evaluation of titanium mini-implants as anchors for orthodontic intrusion in the beagle dog". Am J Orthod Dentofacial Orthop, 2001. 119(5): p. 489-97.
59. Williams, D.F., "Titanium alloys: Biocompatibility of clinical implant materials". Boca Raton FL CRC Press, 1981. 1: p. 9.
60. Schroeder, A., Sutter, F., and Krekeler, G., "Oral implantology". New York: Thieme Medical, 1991: p. 37.
61. Ratner, B.D., Hoffman, A.S., Schoen, F.J., and Lemons, J.E., "Biomaterials science: An introduction to materials in medicine." Academic Press, 1996: p. 105.
62. Ask, M., Rolander, U., Lausmaa, J., and Kasemo, B., "Microstructure and morphology of surface oxide films on Ti-6Al-4V". J. Mater. Res., 1990. 5: p. 1662.
63. Lausmaa, J., Kasemo, B., and Mattsson, H., "Surface Spectroscopic Characterization of Titanium implant Materials". Appl Surface Sci, 1990. 44: p. 133.
64. Ask, M., Lausmaa, J., and Kasemo, B., "Preparation and surface spectroscopic characterization of oxide films on Ti-6Al-4V". Appl Surface Sci., 1988. 35: p. 283.
65. Brånemark, P.I., Hansson, B.O., Adell, R., Breine, U., Lindström, U., Hallén, O.a., and Öman, A., "Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period." Scand J Plast Reconstr Surg, 1997. 16(Suppl.1): p. 7.
66. Long, M. and Rack, H.J., "Titanium alloys in total joint replacement--a materials science perspective". Biomaterials, 1998. 19(18): p. 1621-39.
67. Buser, D., Schenk, R.K., Steinemann, S., Fiorellini, J.P., Fox, C.H., and Stich, H., "Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs". J Biomed Mater Res, 1991. 25(7): p. 889-902.
68. Velten, D., Biehl, V., Aubertin, F., Valeske, B., Possart, W., and Breme, J., "Preparation of TiO(2) layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization". J Biomed Mater Res, 2002. 59(1): p. 18-28.
69. Sul, Y.T., Johansson, C.B., Jeong, Y., and Albrektsson, T., "The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes". Med Eng Phys, 2001. 23(5): p. 329-46.
70. Sennerby, L. and Thomsen, P., "Tissue response to titanium implants in experimental antigen-induced arthritis". Biomaterials, 1993. 14(6): p. 413-22.
71. Sundgren, J.E., Bodö, P., and Lundström, I., "Auger electron spectroscopic studies of the interface between human tissue and implants of titanium and stainless steel." J. Colloid Interface Sci,, 1986. 110(1): p. 9-20.
72. Bowers, K.T., Keller, J.C., Randolph, B.A., Wick, D.G., and Michaels, C.M., "Optimization of surface micromorphology for enhanced osteoblast responses in vitro". Int J Oral Maxillofac Implants, 1992. 7(3): p. 302-10.
73. Therin, M., Meunier, A., and Christel, P., "A histomorphometric comparison of the muscular tissue reaction to stainless steel, pure titanium and titanium alloy implant materials." J. Mater. Sci: Mater. Med., 1991. 2(1): p. 1-8.
74. Zinger, O., Anselme, K., Habersetzer, P., and Landolt, D., "Time-dependent adhesion and morphology of osteoblastic cells on titanium model surfaces featuring scale-dependent topography." European Cells and Materials, 2003. 5: p. 21-23.
75. Tanaka, S.I., Aonuma, M., Hirose, N., and T., T., "The Preparation of Porous TiO[sub 2] by Immersing Ti in NaOH Solution". J. Electrochem. Soc, 2002. 149: p. D167.
76. Curtis, A. and Wilkinson, C., "Topographical control of cells". Biomaterials, 1997. 18(24): p. 1573-83.
77. Clark, P., "Cell behavior on micropatterned surfaces". Biosens Bioelec, 1994. 9(9-10): p. 657-661.
78. Rosenberg, M.D., "Long-range interactions between cell and substratum". Proc Natl Acad Sci U S A, 1962. 48: p. 1342-9.
79. Chehroudi, B., Gould, T.R., and Brunette, D.M., "Titanium-coated micromachined grooves of different dimensions affect epithelial and connective-tissue cells differently in vivo". J Biomed Mater Res, 1990. 24(9): p. 1203-19.
80. Schroeder, A., Pohler, O., and Sutter, F., "[Tissue reaction to an implant of a titanium hollow cylinder with a titanium surface spray layer]". SSO Schweiz Monatsschr Zahnheilkd, 1976. 86(7): p. 713-27.
81. Schroeder, A., Stich, H., Straumann, F., and Sutter, F., "[The accumulation of osteocementum around a dental implant under physical loading]". SSO Schweiz Monatsschr Zahnheilkd, 1978. 88(10): p. 1051-8.
82. Schroeder, A., van der Zypen, E., Stich, H., and Sutter, F., "The reactions of bone, connective tissue, and epithelium to endosteal implants with titanium-sprayed surfaces". J Maxillofac Surg, 1981. 9(1): p. 15-25.
83. Buser, D., Weber, H.P., Donath, K., Fiorellini, J.P., Paquette, D.W., and Williams, R.C., "Soft tissue reactions to non-submerged unloaded titanium implants in beagle dogs". J Periodontol, 1992. 63(3): p. 225-35.
84. Buser, D., Weber, H.P., and Lang, N.P., "Tissue integration of non-submerged implants. 1-year results of a prospective study with 100 ITI hollow-cylinder and hollow-screw implants". Clin Oral Implants Res, 1990. 1(1): p. 33-40.
85. Zarb, G.A. and Schmitt, A., "The longitudinal clinical effectiveness of osseointegrated dental implants in posterior partially edentulous patients". Int J Prosthodont, 1993. 6(2): p. 189-96.
86. Adell, R., Lekholm, U., Rockler, B., and Branemark, P.I., "A 15-year study of osseointegrated implants in the treatment of the edentulous jaw". Int J Oral Surg, 1981. 10(6): p. 387-416.
87. Brunette, D.M., Kenner, G.S., and Gould, T.R., "Grooved titanium surfaces orient growth and migration of cells from human gingival explants". J Dent Res, 1983. 62(10): p. 1045-8.
88. Martin, J.Y., Schwartz, Z., Hummert, T.W., Schraub, D.M., Simpson, J., Lankford, J., Jr., Dean, D.D., Cochran, D.L., and Boyan, B.D., "Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63)". J Biomed Mater Res, 1995. 29(3): p. 389-401.
89. Wong, M., Eulenberger, J., Schenk, R., and Hunziker, E., "Effect of surface topology on the osseointegration of implant materials in trabecular bone". J Biomed Mater Res, 1995. 29(12): p. 1567-75.
90. Schwartz, Z., Martin, J.Y., Dean, D.D., Simpson, J., Cochran, D.L., and Boyan, B.D., "Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation". J Biomed Mater Res, 1996. 30(2): p. 145-55.
91. Flemming, R.G., Murphy, C.J., Abrams, G.A., Goodman, S.L., and Nealey, P.F., "Effects of synthetic micro- and nano-structured surfaces on cell behavior". Biomaterials, 1999. 20(6): p. 573-88.
92. Deligianni, D.D., Katsala, N., Ladas, S., Sotiropoulou, D., Amedee, J., and Missirlis, Y.F., "Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption". Biomaterials, 2001. 22(11): p. 1241-51.
93. Deligianni, D.D., Katsala, N.D., Koutsoukos, P.G., and Missirlis, Y.F., "Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength". Biomaterials, 2001. 22(1): p. 87-96.
94. Friberg, B., Grondahl, K., Lekholm, U., and Branemark, P.I., "Long-term follow-up of severely atrophic edentulous mandibles reconstructed with short Branemark implants". Clin Implant Dent Relat Res, 2000. 2(4): p. 184-9.
95. Brånemark, R., "A Biomechanical Study of Osseointegration. (Thesis)". 1996. Goteborg. Sweden: Goteborg University.
96. Gotfredsen, K., Wennerberg, A., Johansson, C., Skovgaard, L.T., and Hjorting-Hansen, E., "Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits". J Biomed Mater Res, 1995. 29(10): p. 1223-31.
97. Wennerberg, A., Albrektsson, T., Andersson, B., and Krol, J.J., "A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies". Clin Oral Implants Res, 1995. 6(1): p. 24-30.
98. Wennerberg, A., Albrektsson, T., Johansson, C., and Andersson, B., "Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography". Biomaterials, 1996. 17(1): p. 15-22.
99. Wennerberg, A., Albrektsson, T., and Lausmaa, J., "Torque and histomorphometric evaluation of c.p. titanium screws blasted with 25- and 75-microns-sized particles of Al2O3". J Biomed Mater Res, 1996. 30(2): p. 251-60.
100. Pillar, R.M., "Implant stabilization by tissue ingrowth. Proceedings of an International Congress, Brussels. May 1985". Excerpta Medica. Amsterdam, 1986. 60.
101. Wennerberg, A., Albrektsson, T., and Andersson, B., "Bone tissue response to commercially pure titanium implants blasted with fine and coarse particles of aluminum oxide". Int J Oral Maxillofac Implants, 1996. 11(1): p. 38-45.
102. Pilliar, R.M., Deporter, D.A., Watson, P.A., and Valiquette, N., "Dental implant design--effect on bone remodeling". J Biomed Mater Res, 1991. 25(4): p. 467-83.
103. Brunette, D.M., "The effects of implant surface topography on the behavior of cells". Int J Oral Maxillofac Implants, 1988. 3(4): p. 231-46.
104. Davies, J.E., "Mechanisms of endosseous integration". Int J Prosthodont, 1998. 11(5): p. 391-401.
105. Gemmell, C.H. and Park, J.Y., "Initial blood interaction with endossteal implant Materials. Bone engineering, 2000". Davies J. E. em squared inc. Toronto Canada, 2000. 108.
106. Pawley, J.B., "Handbook of Biological Confocal Microscopy". Plenum Press, New York, 1995. 39.
107. Kasemo, B. and Lausmaa, J., "Material-tissue interfaces: the role of surface properties and processes". Environ Health Perspect, 1994. 102 Suppl 5: p. 41-5.
108. McAlarney, M.E., Oshiro, M.A., and McAlarney, C.V., "Effects of titanium dioxide passive film crystal structure, thickness, and crystallinity on C3 adsorption". Int J Oral Maxillofac Implants, 1996. 11(1): p. 73-80.
109. Wennerberg, A., Hallgren, C., Johansson, C., and Danelli, S., "A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses". Clin Oral Implants Res, 1998. 9(1): p. 11-9.
110. Vercaigne, S., Wolke, J.G., Naert, I., and Jansen, J.A., "Bone healing capacity of titanium plasma-sprayed and hydroxylapatite-coated oral implants". Clin Oral Implants Res, 1998. 9(4): p. 261-71.
111. Urban, R.M., Jacobs, J.J., Sumner, D.R., Peters, C.L., Voss, F.R., and Galante, J.O., "The bone-implant interface of femoral stems with non-circumferential porous coating". J Bone Joint Surg Am, 1996. 78(7): p. 1068-81.
112. Hayashi, K., Uenoyama, K., Matsuguchi, N., and Sugioka, Y., "Quantitative analysis of in vivo tissue responses to titanium-oxide- and hydroxyapatite-coated titanium alloy". J Biomed Mater Res, 1991. 25(4): p. 515-23.
113. Albrektsson, T. and al, e., "The interface zone of inorganic implants in vivo: titanium implants in bone". Annals Biomed Eng, 1983. 11(1): p. 1-27.
114. Laing, P.G., Ferguson, A.B., Jr., and Hodge, E.S., "Tissue reaction in rabbit muscle exposed to metallic implants". J Biomed Mater Res, 1967. 1(1): p. 135-49.
115. Filiaggi, M.J., Coombs, N.A., and Pilliar, R.M., "Characterization of the interface in the plasma-sprayed HA coating/Ti-6Al-4V implant system". J Biomed Mater Res, 1991. 25(10): p. 1211-29.
116. de Groot, K., Geesink, R., Klein, C.P., and Serekian, P., "Plasma sprayed coatings of hydroxylapatite". J Biomed Mater Res, 1987. 21(12): p. 1375-81.
117. Wei, M., Ruys, A.J., Swain, M.V., Kim, S.H., Milthorpe, B.K., and Sorrell, C.C., "Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals". J Mater Sci Mater Med, 1999. 10(7): p. 401-9.
118. Wen, H.B., de Wijn, J.R., Cui, F.Z., and de Groot, K., "Preparation of calcium phosphate coatings on titanium implant materials by simple chemistry". J Biomed Mater Res, 1998. 41(2): p. 227-36.
119. Kokubo, T., Miyaji, F., Kim, H.M., and Nakamura, T., "Spontaneous formation of bonelike apatite layer on chemically treated titanium metals". J Am Ceram Soc, 1996. 79(4): p. 1127-9.
120. Oonishi, H., Yamamoto, M., Ishimaru, H., Tsuji, E., Kushitani, S., Aono, M., and Ukon, Y., "The effect of hydroxyapatite coating on bone growth into porous titanium alloy implants". J Bone Joint Surg Br, 1989. 71(2): p. 213-6.
121. Cook, S.D., Thomas, K.A., Dalton, J.E., Volkman, T.K., Whitecloud, T.S., 3rd, and Kay, J.F., "Hydroxylapatite coating of porous implants improves bone ingrowth and interface attachment strength". J Biomed Mater Res, 1992. 26(8): p. 989-1001.
122. Wang, B.C., Lee, T.M., Chang, E., and Yang, C.Y., "The shear strength and the failure mode of plasma-sprayed hydroxyapatite coating to bone: the effect of coating thickness". J Biomed Mater Res, 1993. 27(10): p. 1315-27.
123. Stupp, S.I., Hanson, J.A., Eurell, J.A., Ciegler, G.W., and Johnson, A., "Organoapatites: materials for artificial bone. III. Biological testing". J Biomed Mater Res, 1993. 27(3): p. 301-11.
124. Stupp, S.I., Mejicano, G.C., and Hanson, J.A., "Organoapatites: materials for artificial bone. II. Hardening reactions and properties". J Biomed Mater Res, 1993. 27(3): p. 289-99.
125. Stupp, S.I. and Ciegler, G.W., "Organoapatites: materials for artificial bone. I. Synthesis and microstructure". J Biomed Mater Res, 1992. 26(2): p. 169-83.
126. Albeck, S., Addadi, L., and Weiner, S., "Regulation of calcite crystal morphology by intracrystalline acidic proteins and glycoproteins". Connect Tissue Res, 1996. 35(1-4): p. 419-24.
127. Belcher, A.M., Wu, X.H., Christensen, R.J., Hansma, P.K., Stucky, G.D., and Morse, D.E., "Control of crystal phase switching and orientation by soluble mollusc-shell proteins". Nature, 1996. 381(6577): p. 56-68.
128. Hwang, J.J., Jaeger, K., Hancock, J., and Stupp, S.I., "Organoapatite growth on an orthopedic alloy surface". J Biomed Mater Res -- App Biomater, 1999. 47(4): p. 504-15.
129. Spoerke, E.D. and Stupp, S.I., "Colonization of organoapatite-titanium mesh by preosteoblastic cells". J Biomed Mater Res A, 2003. 67(3): p. 960-9.
130. Pilliar, R.M., "Porous-surfaced metallic implants for orthopaedic applications". J Biomed Mater Res -- App Biomater, 1987. 21(A1): p. 1-33.
131. Simske, S., Ayers, R., and Bateman, T., "Porous materials for bone engineering". Mater Sci Forum, 1997. 250: p. 151-82.
132. Sumner, D.R., Turner, T.M., Urban, R.M., and Galante, J.O., "Remodeling and ingrowth of bone at two years in a canine cementless total hip-arthroplasty model". J Bone Joint Surg Am, 1992. 74(2): p. 239-50.
133. Dunand, D.C., "Processing of titanium foams". Adv Eng Mater, 2004. 6(6): p. 369-76.
134. Asaoka, K., Kuwayama, N., Okuno, O., and Miura, I., "Mechanical properties and biomechanical compatibility of porous titanium for dental implants". J Biomed Mater Res, 1985. 19(6): p. 699-713.
135. Oh, I.H., Segawa, H., Nomura, N., and Hanada, S., "Microstructures and mechanical properties of porosity-graded pure titanium compacts". Mater Trans, 2003. 44(4): p. 657–60.
136. Murray, G.A. and Semple, J.C., "Transfer of tensile loads from a prosthesis to bone using porous titanium". J Bone Joint Surg Br, 1981. 63-B(1): p. 138-41.
137. Wen, C.E., Mabuchi, M., Yamada, Y., Shimojima, K., Chino, Y., and Asahina, T., "Processing of biocompatible porous Ti and Mg". Scripta Mater, 2001. 45: p. 1147-53.
138. Kearns, M., P., B., Barber, A., and Farthing, T., Met Mater, 1987. 3(2): p. 85.
139. Kearns, M.W., P.A., B., Barber, A.C., and Farthing, T.W., "Manufacture of a novel porous metal". Int J Powder Metall, 1988. 24(1): p. 59-64.
140. Murray, N.G.D. and Dunand, D.C., "Microstructure evolution during solid-state foaming of titanium". Compos Sci Technol, 2003. 63(16): p. 2311-2316.
141. Tanaka, T., Tsuzuki, K., and Takagi, T., "Chemical oxidation of organic matter in secondary-treated municipal wastewater by using methods involving ozone, ultraviolet radiation and TiO2 catalyst". Water Sci Technol, 2001. 43(10): p. 295-302.
142. Cheng, C.C., Lin, C.T., Lee, S.Y., Lin, L.H., Hung, C.F., and Ou, K.L., "Biosensing of biophysical characterization by metal-aluminum nitride-metal capacitor". Applied surface science 2007. 253(11): p. 5173-5178
143. Fujibayashi, S., Nakamura, T., Nishiguchi, S., Tamura, J., Uchida, M., Kim, H.M., and Kokubo, T., "Bioactive titanium: effect of sodium removal on the bone-bonding ability of bioactive titanium prepared by alkali and heat treatment". J Biomed Mater Res, 2001. 56(4): p. 562-70.
144. Takemoto, M., Fujibayashi, S., Neo, M., Suzuki, J., Kokubo, T., and Nakamura, T., "Mechanical properties and osteoconductivity of porous bioactive titanium". Biomaterials, 2005. 26(30): p. 6014-23.
145. Feng, B., Chen, J.Y., Qi, S.K., He, L., Zhao, J.Z., and Zhang, X.D., "Characterization of surface oxide films on titanium and bioactivity". J Mater Sci Mater Med, 2002. 13(5): p. 457-64.
146. Cheng, H.C., Lee, S.Y., Chen, C.C., Shyng, Y.C., and Ou, K.L., "Influence of Hydrogen Charging on the Formation of Nanostructural Titania by Anodizing with Cathodic Pretreatment". Journal of The Electrochemical Society, 2007. 154(1): p. E13-E18.
147. Jobin, M., Taborelli, M., and Descouts, P., "Surface properties of electropolished titanium and vanadium". Applied Surface Science 1993. 72(4): p. 363-372.
148. Ebert, R. and Schaldach, M., "Word Congres on Medical Physics and Biomedical Engineering, Hamburg". 1982. 3: p. 7.
149. Yeh, Y.M., Chen, C.S., Tsai, M.H., Shyng, Y.C., Lee, S.Y., and K.L., O., "Effect of Pulse-Reverse Current on the Microstructure and Properties of Electroformed Nickel-Iron Mold Insert". Japanese Journal of Applied Physics, 2005. 44(2): p. 1086-90.
150. Kasemo, B., "Biocompatibility of titanium implants: surface science aspects". J Prosthet Dent, 1983. 49(6): p. 832-7.
151. Merritt, K. and Brown, S.A., "Effect of proteins and pH on fretting corrosion and metal ion release". J Biomed Mater Res, 1988. 22(2): p. 111-20.
152. Solar, R.J., Pollack, S.R., and Korostoff, E., "In vitro corrosion testing of titanium surgical implant alloys: an approach to understanding titanium release from implants". J Biomed Mater Res, 1979. 13(2): p. 217-50.
153. Cheng, H.C., Lee, S.Y., Chen, C.C., Shyng, Y.C., and Ou, K.L., "Titanium nanostructural surface processing for improved biocompatibility". APPLIED PHYSICS LETTERS, 2006. 89: p. 173902.
154. Steinemenn, S., Eulenberger, J., Maeusli, P., and Schroeder, A., "A adhesion of bone to titanium". Biomechanical Performance of Biomaterials, 1986: p. 409.
155. Sunny, M.C. and Sharma, C.P., "Titanium-protein interaction: changes with oxide layer thickness". J Biomater Appl, 1991. 6(1): p. 89-98.
156. Motoyoshi, M., Hirabayashi, M., Uemura, M., and Shimizu, N., "Recommended placement torque when tightening an orthodontic mini-implant". Clin Oral Implants Res, 2006. 17(1): p. 109-14.
157. Kuroda, S., Yamada, K., Deguchi, T., Hashimoto, T., Kyung, H.M., and Takano-Yamamoto, T., "Root proximity is a major factor for screw failure in orthodontic anchorage". Am J Orthod Dentofacial Orthop, 2007. 131(4 Suppl): p. S68-73.

 


若您有任何疑問,請與我們聯絡!
臺北醫學大學 圖書館 簡莉婷
E-mail:etds@tmu.edu.tw
Tel:(02) 2736-1661 ext.2519
Fax:(02) 2737-5446