進階搜尋

 
查詢範圍:「   」
顯示範圍:第筆 論文書目資料
顯示格式:全部欄位
共 20 筆
------------------------------------------------------------------------ 第 1 筆 ---------------------------------------------------------------------
系統識別號 U0007-0108200800271500
論文名稱(中文) 口服脈衝式藥物傳遞系統之處方研發與評估
論文名稱(英文) Development and Evaluation of Formulation for Oral Pulsatile Drug Delivery System
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 96
學期 2
出版年 97
研究生(中文) 林宏糧
學號 D001089001
學位類別 博士
語文別 中文
口試日期 2008-07-09
論文頁數 134頁
口試委員 指導教授-許明照
委員-蔡義弘
委員-林山陽
委員-吳安邦
委員-劉得任
委員-何秀娥
關鍵字(中) 脈衝式釋放
滯後時間
乙基纖維素
關鍵字(英) pulsatile release
lag time
Ethylcellulose
Eudragit RS
學科別分類
中文摘要 本實驗以開發單室錠劑(甲磺酸多薩坐辛)與圓粒(鹽酸普潘奈)劑型之脈衝式藥物傳遞系統為目的。單室錠劑系統之製備,係以不同黏度之羥丙基甲基纖維素(HPMC)製備三種錠片(A:HPMC 50+4000 cps, B: E10M和C: K100M)再以羥丙基甲基纖維素(黏度值6)塑化之乙基纖維素半透膜衣,來包覆而成不同膜衣厚度。進而評估添加水量影響羥丙基甲基纖維素溶解程度。以槳式溶離裝置,分別於75、100與150轉速及使用四種不同溶離液(酸鹼值1.2、6.8緩衝溶液、去離子水和氯化鈉溶液)進行評估藥物溶離釋出情形。依藥物溶離實驗結果顯示,三種不同黏度之錠劑置於去離子水溶液中,當轉槳轉速增加而藥物釋出量亦增加;若羥丙基甲基纖維素黏度增加則釋出減緩。又藥物在三種不同離子強度的NaCl溶離液中相較於去離子溶離液中藥物釋出量明顯地提升。以核心A與核心B在酸鹼值1.2之藥物溶離率皆慢些。但在酸鹼值6.8時之藥物溶離率較在去離子水溶液時快些。然而,核心C在以上三種溶離液中,下藥物釋出速率相近且慢於核心A與核心B錠片。包覆膜衣錠片之藥物溶離率顯示,控釋膜衣受滲透壓和膨脹作用造成膜衣破裂,則藥物釋出前之滯後時間,並不受溶離液酸鹼值與轉槳轉速之影響。滯後時間,隨包覆膜衣量之增加而延長卻因添加親水性羥丙基甲基纖維素塑化劑與添加水量於膜衣溶液而縮短;而滯後時間增加隨氯化鈉濃度之增加。此外,在滯後時間藥物之釋出速率受到羥丙基甲基纖維素凝膠化程度與溶離液離子強度影響。在單室圓粒系統部分,本研究試圖開發具有降低藥物通過胃腸道時間與酸鹼值影響性之及時控釋劑型。以鹽酸普潘奈為模式藥物與Innopran® XL為對照商品,並將藥物直接包覆於糖蕊或以間質型材料添加滲透劑利用擠出搓圓法製備藥物圓粒,乃選用水不溶性乙基纖維素與速率控制非酸鹼值依賴性Eudragit® RS之聚合物材料作為控釋膜衣並包覆於藥物圓粒上。其特點是對於脈衝式釋放曲線之釋放速率與滯後時間在模擬胃腸道緩衝液中,其酸鹼值改變不具依賴性。實驗結果顯示,於Eudragit® RS添加30%檸檬酸三乙酯且包覆量為20%時,其滯後時間與對照商品接近但其釋放速率較慢些。然而,利用乙基纖維素作為控釋膜衣添加羥丙基甲基纖維素作為塑化劑,雖未觀察到藥物圓粒有滯後時間,但其與對照商品有相似之釋放曲線。換言之,以包覆不同量之Eudragit® RS作為控釋膜衣之間質型藥物圓粒,可調節脈衝式預期釋藥的滯後時間,並達成不受酸鹼值改變之及時控釋作用。然而,基於此滯後時間只在5小時範圍之內,並無法滿足臨床使用上之需求性。若添加滲透劑(氯化鈉或乳糖)於間質型藥物圓粒,並利用Eudragit® RS包覆不同量之膜衣,則能有效地延長脈衝式預期之釋藥曲線滯後時間達15小時且具有不受酸鹼值改變之及時控釋作用。預期在臨床上可滿足實際需要並降低藥物通過胃腸道時間與酸鹼值之影響性。

英文摘要 This study attempted to develop the single-unit reservoir systems of tablet (doxazosin mesylate) and pellet (propranolol hydrochloride) dosage form with pulsatile–release patterm. In single unit tablet system, this study attempted to characterize the influence of core and coating formulations on the release profiles for a pulsatile drug delivery system activated by membrane rupture based on three core tablet formulations (A-core: HPMC 50+4000 cps, B-core: E10M, and C-core: K100M) coated with various thicknesses of a semipermeable ethylcellulose membrane plasticized with HPMC 606 (Pharmacoat 606) at different ratios with/without adding various amounts of water to dissolve it in the coating solution. Drug release behaviors were investigated using apparatus II in four media of pH 1.2 solution, pH 6.8 buffer, deionized water, and a NaCl solution rotated at 75, 100, and 150 rpm. Pilot studies of the in vivo pharmacokinetics were conducted as well for comparison with the in vitro results. Results demonstrated that drug release from the three kinds of core tablets in deionized water increased with an increasing stirring rate, and decreased with an increasing viscosity grade of HPMC used in the core formulations. A significant promotion of drug release from core tablets was observed for the three levels of NaCl media in comparison with that in deionized water. Results further demonstrated that a slightly slower release rate in pH 1.2 solution and a faster release rate in pH 6.8 buffer than that in deionized water were observed for the A-core and B-core tablets, with the former being slower than the latter. However, similar release rates in the three kinds of media were observed for C-core tablets, but they were slower than those for the A- and B-core tablets. Dissolution of coated tablets showed that the controlling membrane was ruptured by osmotic pressure and swelling which activated drug release with a lag time. The lag time was not influenced by the pH value of the release medium or by the rotation speeds. The lag time increased with a higher coating level, but decreased with the addition of the hydrophilic plasticizer, Pharmacoat 606, and of the water amount in the coating solution. The lag time also increased with a higher concentration of NaCl in the medium. The release rate after the lag time was determined by the extent of retardation of gelation of HPMC in the core tablet based on the ionic strength of the medium. In single unit pellet system, this study attempts to develop a timely controlled release dosage form with minimization of transit time and pH effects of gastrointestinal tract. Using the release profiles of propranolol from Innopran XL as the reference, two water-insoluble and pH-independent rate-controlling polymeric materials of ethylcellulose and Eudragit RS selected as the controlling membrane for drug-layering non-pareil seeds (NP) or extrusion-spheronized pellets incorporated with matrix materials or osmogents were characterized in the SGF and the pH change medium for the pH-independency of the release rate and the lag time and their pulsatile patterns. Results demonstrate that when propranolol was layered on NP, Eudragit RS membrane plasticized with 30% TEC coated at an amount of 15% is able to adjust a lag time close to that for reference product but with a slower release rate after then, while EC membrane plasticized with HPMC was not able to delay release of drug at a lag time closely similar to the reference product. Furthermore, the controlling membrane of EC incorporated with lactose coated on the pellets manufactured by extrusion-spheronization method is able to adjust the lag time pattern by coating with different level, but resulting in a release rate correspondingly decreasing with increasing lag time, of which the lag time was shorter and the release rate was slower than that for the reference product. On the other hand, coating Eudragit RS on matrix pellets as the controlling membrane at different coating level is able to adjust a lag time of desire with a pulsatile release pattern to accomplish the timely controlled release independent of the pH change. However, the lag time could be adjusted was only within a 5 hour range that would be not so practical to meet the clinical needs. Finally, coating Eudragit RS on matrix pellets that containing various ratio of osmogent, NaCl or lactose, as the controlling membrane at different coating level are able to effectively adjust a lag time of desire as long as 15 hr with a pulsatile release pattern to accomplish the timely controlled release independent of the pH change that could meet the practical need in clinics with the minimization of the pH and transit effects of GI tract.

論文目次 目錄 I
附圖目錄 III
附表目錄 VI
中文摘要 VIII
ABSTRACT X
第一章 緒論 1
第一節 生物節律(BIOLOGICAL RHYTHM) 1
一、生物節律之報時機制 2
二、生物節律之同步性 3
三、生物節律與生理節律之時間結構 4
第二節 時相藥理學(CHRONOPHARMACOLOGY) 6
第三節 時相藥物動力學(CHRONOPHARMACOKINETICS) 6
第四節 時相藥效學(CHRONOPHARMACODYNAMICS) 9
第五節 時相毒理學(CHRONOTOXICOLOGY) 10
第六節 時相治療學(CHRONOTHERAPEUTICS) 11
第七節 生理節律之臨床診斷與相關疾病 12
第八節 時相治療學之口服藥物傳遞系統 15
A.定位給藥物傳遞系統(SITE-CONTROLLED DRUG DELIVERY SYSTEM) 15
1.胃滯留系統 16
1-1.胃漂浮型 16
2.結腸定位系統 17
2-1.酸鹼值控釋型 18
2-2.酵素控釋型 19
2-3.壓力控釋型 19
2-4.時間控制型 19
B.定時給藥物傳遞系統(TIMED-CONTROLLED DRUG DELIVERY SYSTEM) 20
1.單室系統(SINGLE-UNIT SYSTEM) 20
1-1.溶蝕/膨脹型(erodible and swellable type) 20
1-2.破裂型 24
1-3. 滲透壓泵型 25
2.多室系統(MULTIPLE-UNIT SYSTEM) 27
2-1.破裂型 27
2-2.溶蝕/膨脹型 28
2-3.滲透/擴散型 29
參考文獻 32
第二章 滲透壓活化膨脹作用製備膜衣破裂型之脈衝式藥物傳遞系統 37
一、緒言 37
二、實驗材料 40
三、儀器設備 41
四、實驗方法 42
五、結果與討論 44
六、結論 59
七、參考文獻 60
第三章 時控圓粒劑型之脈衝式藥物傳遞系統處方開發與探討 63
一、緒言 63
二、實驗材料 69
三、儀器設備 71
四、實驗方法 72
五、結果與討論 84
六、結論 91
七、參考文獻 102


參考文獻 1. M. H. Smolensky, N. A. Peppas, Chronobiology, drug delivery, and chronotherapeutics, Adv. Drug Deliv. Rev. 59 (2007) 828–851.
2. H. E. Kallas, J. Chintanadilok, J. Maruenda, J. L. Donahue, D. T. Lowenthal, A clinical investigation of nocturnal polyuria in patients with nocturia: a diurnal variation in arginine vasopressin secretion and its relevance to mean blood pressure, Drugs Aging 15 (1999) 429–437.
3. A. Kalsbeek, I. F. Palm, S. E. La Fleur, F. A. Scheer, S. Perreau-Lenz, M. Ruiter, F. Kreier, C. Cailotto, R.M. Buijs, SCN outputs and the hypothalamic balance of life, J. Biol. Rhythms 21 (2006) 458–469.
4. E. Maronde, J. H. Stehle, The mammalian pineal gland: known facts, unknown facets, Trends Endocrinol. Metab. 18 (2007) 142–149.
5. A. J. Lewy, V. K. Bauer, S. Ahmed, K. H. Thomas, N. L. Cutler, C. M. Singer, M. T. Moffit, R. L. Sack, The human phase response curve (PRC) to melatonin is about 12 hours out of phase with the PRC to light, Chronobiol. Int. 15 (1998) 71–83.
6. K. Stoschitzky, G. Stoschitzky, H. Brussee, C. Bonelli, H. Dobnig, Comparing beta-blocking effects of bisoprolol, carvedilol and nebivolol, Cardiology 106 (2006) 199–206.
7. T. M. Hoban, R. L. Sack, A. J. Lewy, L. S. Miller, C. M. Singer, Entrainment of a free-running human with bright light?, Chronobiol. Int. 6 (1989) 347–353.
8. E. Haus, M. Smolenskly, Biological clocks and shift work: circadian dysregulation and potential long-term effects, Cancer Causes Control 17 (2006) 489–500.
9. B. Lemmer, Chronobiology, drug-delivery, and chronotherapeutics, Adv. Drug Deliv. Rev. 59 (2007) 825–827.
10. B. Bruguerolle, Chronopharmacokinetics, Clin. Pharmacokinet 35 (1998) 83-94.
11. S. Ohdo, S. Nakano, N. Ogawa, Circadian changes of valproate kinetics depending on meal conditions in humans, J. Clin. Pharmacol. 32 (1992) 822-826.
12. B. Bruguerolle, E. Giaufre, M. Prat, Temporal variations in transcutaneous passage of drugs: the example of lidocaine in children and in rats, Chronobiol. Int. 8 (1991) 277-282.
13. B. Lemmer, B. Bruguerolle, Chronopharmacokinetics: are they clinically relevant? Clin. Pharmacokinet. 26 (1994) 419-427.
14. B. Lemmer, Circadian rhythms and drug-delivery, J. Control. Release 16 (1991) 63–74.
15. B. Bruguerolle, G. Labrecque, Rhythm patterns in pain and their chronotherapy, Adv. Drug Deliv. Rev. 59 (2007) 883–895
16. Y. A. Anwar, W. B. White, Chronotherapeutics for Cardiovascular Disease, Drugs 55 (1998) 631-643.
17. M. H. Smolensky, B. Lemmer, A. E. Reinberg, The chronobiology and chronotherapy of allergic rhinitis and bronchial asthma, Adv. Drug Deliv. Rev. 59 (2007) 852–882.
18. T. Bussemer, I. Otto, R. Bodmeir, Pulsatile drug-delivery system, Crit. rev. ther. drug carr. Syst. 18 (2001) 433-458.
19. J.H. Liu, R.P. Bouligny, D.F. Kripke, R.N.Weinreb, Nocturnal elevation of intraocular pressure is detectable in the sitting position, Invest. Ophthalmol. Visual Sci. 44 (2003) 4439–4442.
20. R. C. Hermida, D. E. Ayala, C. Calvo, F. Portaluppi, M. H. Smolensky, Chronotherapy of hypertension: administration-time dependent effects of treatment on the circadian pattern of blood pressure, Adv. Drug Deliv. Rev. 59 (2007) 923–939
21. S. Survase, N. Kumar, Pulsatile drug delivery: current scenario, Curr. Res. Inf. Pharm. Sci. 8 (2007) 27-33.
22. F. Portaluppi, B. Lemmer, Chronobiology and chronotherapy of ischemic heart disease, Adv. Drug Deliv. Rev. 59 (2007) 952–965.
23. M. C. Cohen, K. M. Rohtla, C. E. Lavery, J. E. Muller, M. A. Mittleman, Meta analysis of the morning excess of acute myocardial infarction and sudden cardiac death, Am. J. Cardiol. 79 (1997) 1512–1516.
24. D. Mulcahy, J. Keegan, D. Cunningham, A. Quyyumi, P. Crean, A. Park, C. Wright, K. Fox, Circadian variation of total ischemic burden and its alteration with anti-anginal agents, Lancet ii (1998) 755–759.
25. S. Behrens, C. Ehlers, T. Brüggemann,W. Ziss, R. Dissmann, M. Galecka, S. N. Willich, D. Andresen, Modification of the circadian pattern of ventricular tachyarrthythmias by beta-blocker therapy, Clin. Cardiol. 20 (1997) 253–257.
26. W. J. Elliott, Circadian variation in the timing of stoke onset. A metaanalysis, Stroke 29 (1998) 992–996.
27. M. Gallerani, R. Manfredini, L. Ricci, E. Grandi, R. Cappato, G. Calò, P.L. Pareschi, C. Fersini, Sudden death from pulmonary thromboembolism: chronobiological aspects, Eur. Heart J. 6 (1992) 305–323.
28. I. Krögel, R. Bodmeier, Development of a multifunctional matrix drug delivery system surrounded by an impermeable cylinder, J. Control. Release. 61 (1999) 43–50
29. I. Krögel, R. Bodmeier, Pulsatile drug release from an insoluble capsule body controlled by an erodible plug, Pharm. Res. 15 (1998) 474-481
30. H. Zou, X. Jiang, L. S. Kong, S. Gao, Design and evaluation of a dry coated drug delivery system with floating–pulsatile release, J. Pharm. Sci. 97 (2008) 263-273.
31. H. Zou, X. Jiang, L. S. Kong, S. Gao, Design and gamma-scintigraphic evaluation of a floating and pulsatile drug delivery system based on an impermeable cylinder, Chem. Pharm. Bull. 55 (2007) 580—585.
32. S. S. Badve, P. Sher, A. Korde, A. P. Pawar, Development of hollow/porous calcium pectinate beads for floating-pulsatile drug delivery, Eur. J. Pharm. Biopharm. 65 (2007) 85–93.
33. S. Jessy, P. Vishal, Novel floating pulsatile approach for chronotherapeutic release of indomethacin, Dhaka Univ. J. Pharm. Sci. 6(2007) 37-41
34. M. Ashford, J. T. Fell, D. Attwood, P. J. Woodhead, An in vivo investigation into the suitability of pH-dependent polymers for colonic targeting, Int. J. Pharm. 91 (1993) 241-245.
35. M. Ashford, J. T. Fell, D. Attwood, H. Sharma, P. J. Woodhead, An in vivo investigation into the suitability of pH-dependent polymers for colonic targeting, Int. J. Pharm. 95 (1993) 193-199.
36. M. L. Lorenzo-Lamosa, C. Remuñán-López, J. L.Vila-Jato, M. J. Alonso, Design of microencapsulated chitosan microspheres for colonic drug delivery, J. Contrl. Release. 53 (1998) 109-118.
37. H. Tozaki, J. Komoike, C. Tada, T. Maruyama, A. Terabe, T. Suzuki, A. Yamamoto, S. Muranishi, Chitosan capsules for colon-specific drug delivery: improvement of insulin absorption from the rat colon, J. Pharm. Sci. 86 (1997) 1016-1021.
38. F. Cheng, M. An, M. J. Zou, I. Sun, X. H. Hao, Y. X. He, Time- and pH-dependent colon-specific drug delivery for orally administered diclofenac sodium and 5-aminosalicylic acid. World J. Gasrtoenterol. (10) 2004 1769-1774
39. A. Gazzaniga, P. Iamaetino, G. Maffione,M. E. Sangalli, Oral delayed-release sytem for colonic specfic delivery. Int. J. Pharm. 2 (1994) 77-83
40. S. Poli, C. Busetti, L. Moro, Oral pharmaceutical composition for specfic colon delivery. 1993 EP Patent 0572942
41. A. Maroni, L. Zema, M. Cerea, M. E. Sangalli, Oral pulsatile drug delivery systems, Expert Opion. Drug Deliv. 2 (2005) 855-871.
42. M. Matsuo, K. Arimori, C. Nakamura, M. Nakano, Delayed-release tablets using hydroxyethylcellulose as a gel-forming matrix, Int. J. Pharm. 138(1996) 225-235
43. E. Fukui, K. Uemura, M. Kobayashi, Studies on applicability of press-coated tablets using hydroxypropylcellulose (HPC) in the outer shell for timed-release preparations. J. Control. Release 68 (2000) 215-223
44. G. Maffione, P. Iamartino, G. Guglielmini, A. Gazzaniga, High-viscosity HPMC as a film-coating agent. Drug Dev. Ind. Pharm. 19 (1993) 2043-2053
45. A. Gazzaniga, M. E. Sangalli, F. Giordano, Oral chronotopic drug delivery systems: achievement of time and/or site specfity. Eur. J. Pharm. Biopharm 40 (1994) 263-250
46. U. Conte, L. Maggi, M. L. Torre, P. Giunchedi, A. Manna, Press-coated tablets for timing-programmed release of drugs. Biomaterials 14 (1993) 1017-1023
47. M. Halsas, R. Simelius, A. Kiviniemia, Effect of different combinations of hydroxypropylmethyl cellulose on bioavailability of ibuprofen from press-coated time-controlled tablets. S.T.P. Pharma. Sci. 8 (1998) 155-161.
48. S. Arora, J. Ali, A. Ahuja, S. Baboota, J. Qureshi, Pulsatile drug delivery systems: An approach for controlled drug delivery, Indian J. Pharm. Sci. 2006 295-300
49. J. T. Mcconville, A. C. Ross, A. R. chambers, The effect of wet granulation on the erosion behaviour of an HPMC-lactose tablets, used as a rate-controlling component in a pulsatile drug delivery capsule formulation, Euro J. Pharm. Biopharm. 57 (2004)541-549.
50. I. Krögel, R. Bodmeier, Evaluation of an enzyme-containing capsular shaped pulsatile drug delivery system, Pharm. Res. 16 (1999) 1424-1429.
51. A. Gauniya, V. Bhadana, A Review on latest advancement in patented controlled / sustained release drug delivery system. Retrieved June 5, 2008 from the world wide web: http://www.pharmainfo.net/reviews/
52. S. Y. Lin, K. H. Lin, M. J. Li, Micronized ethylcellulose used for designing a directly compressed time-controlled disintegration tablet, J. Control. Release 70 (2001) 321–328
53. S. Y. Lin, K. H. Lin, M. J. Li,Formulation design of double-layer in the outer shell of dry-coated tablet to modulate lag time and time-controlled dissolution function: studies on micronized ethylcellulose for dosage form design (VII), AAPS 6 (2004) 1-6
54. Y. Zhang, H. R. Zhang, Preparation of salbutamol sulphate pulsatile release tablets, Chin.Hosp.Pharm. J. 124 (2004) 665-667.
55. I. Krögel, R. Bodmeier, Floating or pulsatile drug delivery systems based on coated effervescent cores. Int. J. Pharm. 187 (1999) 175-184.
56. Y. Zhang, Z. Zhang, F. Wu, A novel pulsed-release system based on swelling and osmotic pumping mechanism, J. Control. Release, 89 (2003) 47-55.
57. A. Gazzaniga, P. Iamaetino, G. Maffione,M. E. Sangalli, Oral delayed-release sytem for colonic specfic delivery. Int. J. Pharm. 2 (1994) 77-83
58. M. Matsuo, K. Nakamura, K. Arimori, M. Nakano, delayed-release tablets using hydroxyethyl cellulose as a gel-forming matrix, Int. J. Pharm. 138 (1996) 225-235.
59. M. Efentakis, S. Koligliati, M. Vlachou, Design and evaluation of a dry coated drug delivery system with an impermeable cup, swellable top layer and pulsatile release, Int. J. Pharm. 311 (2006) 147–156.
60. Y. Ozeki, M. Ando, A. Watanabe, K. Danjo, Evaluation of novel one-step dry-coated tablets as a platform for delayed-release tablets, J. Control. Release, 95 (2004) 51-60.
61. F. Pozzi, P. Furlani, A. Gazzaniga, S. S. Davis, I. R. Wilding, The Time Clock system: a new oral dosage form for fast and complete release of drug after a predetermined lag time. J. Control. Release, 31 (2001) 99-108.
62. T. Bussemer, N. A. Peppas, R. Bodmeier, Time-dependent mechanical properties of polymeric coatings used in rupturable pulsatile release dosage forms, Drug Dev. Ind. Pharm. 29 (2003) 623-630.
63. T. Bussemer, N. A. Peppas, R. Bodmeier, Evaluation of the swelling hydration and rupturing properties of the swelling layer of a rupturable pulsatile drug delivery systems, Eur. J. Pharm. Biopharm. 56 (2003) 261-270.
64. R. Morita, R. Honda, Y. Takahashi, Development of oral controlled release preparations, a PVA swelling controlled release system (SCRS). I. Design of SCRS and its release controlling factor, J. Control Release. 63 (2000) 297-304.
65. S. Narisawa, M. Nagata, T. Ito, Drug release behavior in gastrointestinal tract of beagle dogs from multiple unit type rate-controlled or time-controlled release preparations coated with insoluble polymer-based film, J. Control. Release, 33 (1995) 253-260.
66. C. C. Kao, S. C. Chen, M. T. Sheu, Lag time method to delay drug release to various sites in the gastrointestinal tract, J. Control. Release, 44 (1997) 263-270.
67. S. Narisawa, M. Nagata, Y. Hirakawa, M. Kobayashi, H. Yoshino, An organic acid-induced sigmoidal release system for oral controlled release preparation II. Permeability enhancement of Eudragit RS coating led by the physicalchemical interactions with organic acid, J. Pharm. Sci. 85 (1996) 184-188.
68. S. Narisawa, M. Nagata, Y. Hirakawa, M. Kobayashi, H. Yoshino, An organic acid-induced sigmoidal release system for oral controlled release preparation III. Elucidation of the anomalous drug release behaviour through osmotic pumping mechanism, Int. J. Pharm. 48 (1997) 85-91.
69. A. Gazzaniga, A. Maroni, M. E. Sangalli, L. Zema, Time-controlled oral delivery systems for colon targeting, Expert Opin. Drug Deliv. 3 (2006) 583-597.

------------------------------------------------------------------------ 第 2 筆 ---------------------------------------------------------------------
系統識別號 U0007-0707200815145900
論文名稱(中文) 抗癌性胺基吲哚啉磺胺類及苯乙烯磺胺類化合物之化學結構與活性關係研究
論文名稱(英文) Structure-Activity Relationship Study of Antitumor Aminoindolinesulfonamides and Styrenesulfonamides
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 96
學期 2
出版年 97
研究生(中文) 吳承穎
學號 M301095009
學位類別 碩士
語文別 中文
口試日期 2008-06-26
論文頁數 182頁
口試委員 指導教授-陳繼明
共同指導教授-劉景平
委員-陳國棟
委員-王惠珀
委員-忻凌偉
關鍵字(中) 胺基吲


磺胺類化合物
抗癌
苯乙烯磺胺類化合物
關鍵字(英) Antitumor
Aminoindolinesulfonamides
Styrenesulfonamides
KB cell
學科別分類
中文摘要 針對本實驗室於2006年發表的7-aroyl-aminoindoline-1-benzene-
sulfonamides結構性衍生物所表現的強效抗癌活性,其IC50 數值的範圍大多在9.6至297 nM間. 我們設計以1-aroylindoline-7-benzenesulfonamides為骨架,合成出以7-(4-methoxybenzenesulfonylamino)indoline以及7-(4-sulfamoylbenzenesulfonylamino)indoline為結構的衍生物,化合物1-7 以及8-12。藉由SAR間的關係發現到其抗KB活性測試結果並未如我們先前所預期的良好,這之中僅有化合物6表現中度抗癌活性。
另一方面,針對以7-aminoindoline 1-benzenesulfomamide為基本骨架,我們試圖將此類型結構的衍生物完整化並藉以探討其結構與抗癌活性間的關係,合成出以烷羰基(13-16, 18)、苯基(19-23)或烷基(17, 24-28)作取代的一系列化合物。細胞活性測試結果也顯示出在第七位上的胺基上接有烷羰基取代的化合物15, 16, 17及接有苯基的化合物23表現強效的抗癌細胞活性;其餘此一系列的化合物13, 14 , 18-22, 24-28所顯示的抗KB細胞活性則是介於在微弱到中度之間。
此外,利用生物等效性的觀念,我們在原來吲哚琳的醯胺基轉換成為具有碳-碳雙鍵,設計並且合成出以styrene為骨架的磺胺類抗癌化合物 29-31, 32a, 32b, 33。藉由抗癌生物活性檢測數據,化合物29, 32a, 33,均表現相當理想的抗KB細胞活性,其IC50 數值各別為195, 114, 46 nM,而這樣的結果也激勵著我們並且指引我們在未來繼續朝向此類衍生物做研究以及發展。
英文摘要 The 7-aroyl-aminoindoline-1-benzenesulfonamides developed in our labactory demonstrated excellent anticancer activity, with IC50 values ranging from 9.6~297 nM. For the continuation of structure activity relationship studies on this series, we prepared two classes of indolines, namely 7-(4-methoxy-
benzenesulfonylamino)indolines 1-7 and 7-(4-sulfamoylbenzenesulfonyl-
amino)indolines 8-12. Data of antiproliferative activity against KB cell line showed that, except for compound 6, most of these series compounds didn’t exhibit substantial cytotoxicity.
The second part of the study was focus on modification of 7-amino-
indoline-1-benzenesulfonamide core. The alkylcarbonyl derivatives (13-16, 18), the benzyl derivatives (19-23) and the alkyl derivatives (17, 24-28) were synthesized and evaluated for antiproliferative activity. Results indicated that compound 15, 16, 17 and 23 exhibited potent cytotoxicities with IC50 value ranging from 31~91 nM. The others including compounds 13, 14, 17-22, 24-28 displayed weak to moderate cytotoxicity.
Utilizing the bioisosterism concept, we designed and prepared a novel series of styrene benzenesulfonamide analogues 29-31, 32a, 32a and 33. Compound 29, 32a and 33 displayed cytotoxicity with IC50 values of 195,114 and 46 nM against KB cell line, respectively, which inspired us to further investigate and synthesize this series of compounds in the future.
論文目次 目錄
目錄-----------------------------------------------------I
附表目錄---------------------------------------------- VII
附圖目錄--------------------------------------------- VIII
流程目錄---------------------------------------------IX
附錄光譜圖目錄----------------------------------------X
中文摘要----------------------------------------------XIV
英文摘要----------------------------------------------XV
壹、緒論-------------------------------------------------1
一、前言----------------------------------------------1
二、化學治療藥物-------------------------------------3
三、微小管在細胞週期(cell cycle)與有絲分裂(Mitosis,
M phase)中的角色-------------------------------11
四、作用在微小管的抗癌藥物-------------------------14
五、研究背景----------------------------------------16
六、研究目的----------------------------------------19
貳、結果與討論-----------------------------------------23
一、Aminoindoline-7-benzenesulfonamides-------------23
1. 化學結構設計-------------------------------------23
2. 合成流程及方式-----------------------------------23
3. 抗癌活性試驗結果----------------------------27
4. 化學結構與抗癌活性的關係------------------------28
二、Aminoindoline-1-benzenesulfonamides--------------30
1. 化學結構設計--------------------------------------30
2. 合成流程及方式-----------------------------------31
3. 抗癌活性試驗結果----------------------------------34
4. 化學結構與抗癌活性的關係-------------------------37
三、Styrenesulfonamides----------------------------38
1. 化學結構設計--------------------------------------38
2. 合成流程及方式------------------------------------38
3. 抗癌活性試驗結果-----------------------------41
4. 化學結構與抗癌活性的關係-------------------------42
參、結論------------------------------------------------43
肆、實驗部分-------------------------------------------45
一、實驗儀器----------------------------------------45
二、試藥與試劑--------------------------------------46
三、合成步驟----------------------------------------50
1-tert-Butoxycarbonyl-5-bromo-7-nitroindoline (34) ----------50
1-tert-Butoxycarbonyl-5-bromo-7-aminoindoline (35) ---------51
1-tert-Butoxycarbonyl-7-aminoindoline (36) ----------------52
1-tert-Butoxycarbonyl-7-(4-methoxybenzenesulfonylamino)indoline (1) -----------------------------------------------53
7-(4-Methoxybenzenesulfonylamino)indoline (37) -----------54
1-(Benzoyl)-7-(4-methoxybenzenesulfonylamino)indoline (2) –55
1-(4-Fluorobenzoyl)-7-(4-methoxybenzenesulfonylamino)-
indoline (3) ----------------------------------------56
1-(4-Nitrobenzoyl)-7-(4-methoxybenzenesulfonylamino)-
indoline (4) ----------------------------------------57
1-(4-Fluorophenylsulfonyl)-7-(4-methoxybenzenesulfonylamino)-
indoline (5) ---------------------------------------- 58
1-(4-Pyridoyl)-7-(4-methoxybenzenesulfonylamino)indoline (6) -59
1-Acetyl-7-(4-methoxybenzenesulfonylamino)indoline (7) -----60
tert-Butoxycarbonyl-7-(4-sulfamoylbenzenesulfonylamino)-
indoline (8) ----------------------------------------61
7-(4-Sulfamoylbenzenesulfonylamino)indoline (38) ---------62
1-Benzoyl-7-(4-sulfamoylbenzenesulfonylamino)indoline (9) -63
1-(4-Fluorobenzoyl)-7-(4-sulfamoylbenzenesulfonylamino)-
indoline (10) ---------------------------------------64
1-(4-Nitrobenzoyl)-7-(4-sulfamoylbenzenesulfonylamino)-
indoline (11) ---------------------------------------65
1-(4-Pyridoyl)-7-(4-sulfamoylbenzenesulfonylamino)indoline (12) -------------------------------------------------66
5-Bromo-1-(4-methoxybenzenesulfonyl)-7-nitroindoline (39) ---67
5-Bromo-1-(4-methoxybenzenesulfonyl)-7-aminoindoline (40) –68
1-(4-Methoxybenzenesulfonyl)-7-aminoindoline (41) ---------69
7-Acetamido-(4-methoxybenzenesulfonyl)indoline (13) -------70
7-Dimethylaminoacetamido-(4-methoxybenzenesulfonyl)-
indoline (14) --------------------------------------71
7-Methylamido-(4-methoxybenzenesulfonyl)indoline (15) -----72
7-(2,2,2-Trifluoroacetamido)-(4-methoxybenzenesulfonyl)-
indoline (16) ---------------------------------------73
7-(2,2,2-Trifluoroethyl)amino-1-(4-methoxybenzenesulfonyl)-
indoline (17) ---------------------------------------74
7-(Amino)acetamido-(4-methoxybenzenesulfonyl)indoline (18) –75
7-Benzylamino-1-(4-methoxybenzenesulfonyl)indoline (19) ----76
7-(4-Methoxybenzyl)amino-1-(4-methoxybenzenesulfonyl)-
indoline (20) ---------------------------------------77
7-(4-Fluorobenzyl)amino-1-(4-methoxybenzenesulfonyl)-
indoline (21) ---------------------------------------78
7-(4-Nitrobenzyl)amino-1-(4-methoxybenzenesulfonyl)-
indoline (22) ---------------------------------------79
7-(4-Pyridylmethyl)amino-1-(4-methoxybenzenesulfonyl)-
indoline (23) ---------------------------------------80
7-(Dimethylamino)-(4-methoxybenzenesulfonyl)
indoline (24) ---------------------------------------81
7-(Phenylamino)-1-(4-methoxybenzenesulfonyl)indoline (25) –82
7-(4-Methoxyphenylamino)-1-(4-methoxybenzenesulfonyl)-
indoline (26) ---------------------------------------83
7-(4-Fluorophenylamino)-1-(4-methoxybenzenesulfonyl)-
indoline (27) ---------------------------------------84
7-(4-Chlorophenylamino)-1-(4-methoxybenzenesulfonyl)-
indoline (28) ---------------------------------------85
3-(2-Nitro-phenyl)acrylic acid methyl ester (42) ------------86
3-(2-Aminophenyl)acrylic acid methyl ester (43) -----------87
3-[2-(4-Methoxybenzenesulfonylamino)phenyl]acrylic acid
methyl ester (29) ------------------------------------88
N-[2-(2-Carboxyvinyl)phenyl]-4-methoxy-
benzenesulfonamide (30) -----------------------------89
3-(2-Nitrophenyl)acrylonitrile (44) ----------------------90
3-(2-Aminophenyl)acrylonitrile (45) --------------------91
N-[2-(2-Cyanovinyl)phenyl]-4-methoxy-
benzenesulfonamide (31) ------------------------------92
(E)-1-(2-Chlorovinyl)-2-nitrobenzene (47a) ----------------93
(Z)-1-(2-Chlorovinyl)-2-nitrobenzene (47b) ----------------94
(E)-2-(2-Chlorovinyl)aniline (48a) -----------------------95
(Z)-2-(2-Chlorovinyl)aniline (48b) -----------------------96
(E)-N-[2-(2-Chlorovinyl)phenyl]-4-methoxybenzene-
sulfonamide (32a) -----------------------------------97
(Z)-N-[2-(2-Chlorovinyl)phenyl]-4-methoxybenzene-
sulfonamide (32b) -----------------------------------98
(E)-1-Nitro-2-(3,3,3-trifluoroprop-1-enyl)benzene
(49a) ---------------------------------------------99
(Z)-1-Nitro-2-(3,3,3-trifluoroprop-1-enyl)benzene (49b) ------100
(E)-2-(3,3,3-Trifluoroprop-1-enyl)aniline (50) --------------101
(E)-4-Methoxy-N-[2-(3,3,3-trifluoropropenyl)phenyl]
benzenesulfonamide (33) -----------------------------102
四、抗癌細胞活性檢測材料及測試方法----------------103
伍、參考文獻------------------------------------------104
陸、附錄光譜圖---------------------------------------108

參考文獻 1. http://www.who.int/whosis/en/index.html
2. http://www.doh.gov.tw/statistic/data/衛生統計叢書2/95/專區/95專區.htm
3. Eckhardt, S., Recent progress in the development of anticancer agents. Curr. Med. Chem. Anti-Cancer Agents, 2002, 2, 419-439.
4. Nigg, E. A., Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell Biol., 2001, 2, 21-32.
5. http://en.wikipedia.org/wiki/Mitosis#Interphase
6. Jordan, M. A.; Wilson L., Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4, 253-265.
7. Jordan, M. A.; Wilson L., Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr. Opin. Cell Biol. 1998, 10, 123-130.
8. http://fig.cox.miami.edu/~cmallery/255/255mitos/255division.htm.
9. http://images2.clinicaltools.com/images/gene/mitosis.jpg
10. Carlson, R. O., New tubulin targeting agents currently in clinical development. Expert Opin. Investig. Drugs, 2008, 17, 707-722
11. Tozer, G. M.; Kanthou, C.; Parkins C. S.; Hill, S. A.The biology of the combretastatins as tumour vascular targeting agents. Int. J. Exp. Pathol. 2002. 83, 21-38.
12. Maren, T. H., Relations between structure and biological activity of sulfonamides. Annu. Rev. Pharmacol. Toxicol. 1976. 16309-16327.
13. Borras, j; Scozzafava, L. M.; Menabuoni, L.; Mincione, F.; Briganti, F.; Mincione, G.; Supran, C. T., Carbonic anhydrase inhibitors: synthesis of water-soluble, topically effective intraocular pressure lowering aromatic/ hetercycclic sulfonamides containing 8-quinoline-sulfonyl moieties: Is the tail more important than the ring? Bioorg. Med. Chem. 1999, 7, 2397-2406.
14. Yokoi, A.; Kuromitsu, J.; Kawai, T.; Nagasu, T,; Sugi, N. H.; Yoshimatsu, K.; Yoshino, H.; Owa, T., Profilling novel sulfonamide antitumor agents with cell-based phenotypic screens and array-based gene expression analysis. Mol. Cancer Ther. 2002, 1, 275-286.
15. Yoshino, H.; Ueda, N.; Niijima, J. ; Sugumi, H.; Kotake, Y. ; Koyanagi, N.; Yoshimatsu K.; Asada, M.; Watanabe T., Novel sulfonamides as potential, systemically active antitumor agents. J. Med. Chem. 1992. 35, 2496-2497
16. Abel, G.; Connors, T. A.; Ross, W. C. J.; Nguyen-Hoang-Nam;
Hoellinger, H.; Pichat, L. The Selective Concentration of
Sulphadiazine and Related Compounds in Malignant Tissue.
Eur. J. Cancer, 1973, 9, 49-54.
17. Owa, T.; Yoshino, H.; Okauchi, T.; Yoshimatsu, K.; Ozawa, Y.; Sugi, N. H.; Nagasu, T.; Koyanagi, N.; Kitoh, K. Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. J. Med. Chem. 1999, 42, 3789-3799.
18. Owa, T.; Okauchi, T.; Yoshimatsu, K.; Sugi, N. H.; Ozawa, Y.; Nagasu, T. ; Koyanagi, N.; Okabe, T.;Kitoh K.; and Yoshino H.,N-(7-indolyl)benzene-
sulfonamides for the discovery of potent cell cycle inhibitors. Bioorg. Med. Chem. Lett. 2000. 10, 1223-1226.
19. Morton, C.L.; Favours, E. G.; Mercer, K. S.; Boltz, C. R.; Crumpton, J. C.; Tucker, C.; Billups C. A.; Houghton, P. J., Evaluation of ABT-751 against childhood cancer models in vivo. Invest. New Drugs, 2007, 25, 285-295.
20. Fox, E.; Maris, J. M.; Widemann, B. C.; Meek, K.; Goodwin, A.; Goodspeed, W.; Kromplewski, M.; Fouts, M. E.; Medina, D.; Cho, S. Y.; Cohn, S. L.; Krivoshik, A. ; Hagey, A. E.; Adamson P. C.; Balis, F. M., A Phase 1 Study of ABT-751, an Orally Bioavailable Tubulin Inhibitor, Administered Daily for 7 Days Every 21 Days in Pediatric Patients with Solid Tumors. Clin. Cancer Res. 2006, 12, 4882-4887.
21. Jorgensen, T.J.; Tian, H.; Joseph, I. B. J. K.; Menon K.; Frost D., Chemosensitization and radiosensitization of human lung and colon cancers by antimitotic agent, ABT-751, in athymic murine xenograft models of subcutaneous tumor growth. Cancer Chemother. Pharmacol. 2007, 59, 725-732.
22. Yee, K. W. L.Hagey, A.; Verstovsek, S.; Cortes, J.; Garcia-Manero, G.; O'Brien, S. M.; Faderl, S.; Thomas, D.; Wierda, W.; Kornblau, S.; Ferrajoli, A.; Albitar, M.;. McKeegan, E; Grimm, D. R.; Mueller, T.; Holley-Shanks, R. R.; Sahelijo, L. Gordon, G. B.; Kantarjian H. M.; Giles, F. J., Phase 1 Study of ABT-751, a Novel Microtubule Inhibitor, in Patients with Refractory Hematologic Malignancies. Clin. Cancer Res. 2005. 11, 6615-6624.
23. Fukuoka K.; Usuda J.; Iwamoto Y.; Fukumoto H. ; Nakamura T. ; Yoneda T. ; Narita N. ; Saijo N. ; Nishio K., Mechanisms of action of the novel sulfonamide anticancer agent E7070 on cell cycle progression in human non-small cell lung cancer cells. Invest. New Drugs. 2001, 19, 219-227.
24. Haddad, R.; Weinstein, L. J.; Wieczorek, T. J.; Bhattacharya, H. R.; Oster, M. W.; Zhang, X.; Latham, V. M.; Costello, R.; Jr., V. M. L.; Faucher, J.; DeRosa, C.; Yule, M.; Miller, L. P.; Loda, M.; Posner, M. R.; Shapiro, G. I., A phase II clinical and pharmacodynamic study of E7070 in patients with metastatic, recurrent, or refractory squamous cell carcinoma of the head and neck: modulation of retinoblastoma protein phosphorylation by novel chloroindolyl sulfonamide cell cycle inhibitor. Clin. Cancer Res. 2004, 10, 4680-4687.
25. Talbot, D. C.; Pawel, Jv.; Cattell, E.; Yule, S. M.; Johnston, C.; Zandvliet, A. S.; Huitema, A. D. R.; Norbury, C. J.; EillS, P.; Bosquee, L; Reck, M. A randomized phase II pharmacokinetics and pharmacodynamic study of indisulam as second-line therapy in patients with advanced non-small cell lung cancer., Clin. Cancer Res. 2007, 13, 1816-1822.
26. Liou, J. P.; Hsu, K. S.; Kuo C. C.; Chang, C. Y. ; Chang, J. Y., A Novel Oral Indoline-Sulfonamide Agent, N-[1-(4-Methoxybenzenesulfonyl)-2,3-
dihydro-1H-indol-7-yl]-Isonicotinamide (J30), Exhibits Potent Activity against Human CancerCells in Vitro and in Vivo through the Disruption of Microtubule. J. Pharmacol. Exp. Ther. 2007, 323, 398-405.
27. Attard, G.; Greystoke, A.; Johann De Bono, S. K., Update on tubulin-
binding agents. Pathologie Biologie, 2006, 54, 72-84.
28. Chang, J. Y.; Hsieh, H. P.; Chang, C. Y.; Hsu, K. S.; Chiang, Y. F.; Chen, C. M.; Kuo C. C.; Liou, J. P., 7-Aroyl-aminoindoline-1-sulfon-
amides as a Novel Class of Potent Antitubulin Agents. J. Med. Chem.
2006, 49, 6656-6659.
29. Perron, J.; Joseph, B.; Merour, J. Y., Synthesis of substituted azepino- [3,4-b]indole-1,5-diones. Eur. J. Org. Chem. 2004, 22, 4606-4613.
30. Guerlavais, V.; Boeglin, D.; Mousseaux, D.; Oiry, C. ; Heitz, A.; Deghenghi, R.; Locatelli, V.; Torsello, A.; Ghe, C. ; Catapano, F. ; Muccioli, G.; Galleyrand, J.-C.; Fehrentz, J.-A.; Martinez, J., New Active Series of Growth Hormone Secretagogues. J. Med. Chem. 2003. 46, 1191-1203.
31. Cherney, R. J.; Duan, J. J. W.; Voss, M. E.; Chen, L.; Wang, L.; Meyer, D. T.; Wasserman, Z. R.; Hardman, K. D.; Liu, R.-Q.; Covington, M. B.; Qian, M.; Mandlekar, S.; Christ, D. D.; Trzaskos, J. M.; Newton, R. C.; Magolda, R. L.; Wexler, R. R.; Decicco, C. P., Design, Synthesis, and Evaluation of Benzothiadiazepine Hydroxamates as Selective Tumor Necrosis Factor-α Converting Enzyme Inhibitors. J. Med. Chem. 2003, 46, 1811-1823.
32. Corbett, M. D.; Corbett, B.R.; Reductive formylation of N,N-dimethyl-p-
nitrosoaniline by glyoxylic acid. Evidence for a hydroxamic acid
intermediate. J. Org. Chem. 1981. 46, 466-468.
33. Lee, Y.-H.; Kim, Y. K.; Son J.-H.; Ahn, K. H., Amido-phosphane ligands as P,O-chelates in palladium-catalyzed enantioselective allylic alkylations. Bull. Korean Chem. Soc. 2003. 24, 225-228.
34. Dehmlow, H.; Kuhn, B.; Masciadri, R.; Panday, N.; Ratni, H.; Wright, M. B.(F. Hoffmann-La Roche AG, Switz.). US Patent7259178, Jan, 5, 2006.
35. Lee, W. L.; Mahesh Uttamchandani, J. l.; Sun, H.; YaO, S. Q., Inhibitor fingerprinting of metalloproteases using microplate and microarray platforms: an enabling technology in Catalomics. Nat. Protoc. 2007. 2, 2126-2138.
36. Montalbetti, C. A. G. N.; Falque, V., Amide bond formation and peptide coupling. Tetrahedron, 2005, 61, 10827-10852.
37. Antilla, J.C.; Buchwald, S. L., Copper-Catalyzed Coupling of Arylboronic
Acids and Amines. Org. Lett. 2001. 3, 2077-2079.
38. Evans, D. A.; Katz, J. L.; West, T. R., Synthesis of Diaryl Ethers through the Copper-Promoted Arylation of Phenols with Arylboronic Acids. An Expedient Synthesis of Thyroxine. Tetrahedron Lett. 1998, 39, 2937-2940.
39. Wasserman, H. H.; Petersen, A. K., A convergent synthesis of poststatin: application of the acyl cyanophosphorane coupling procedure in the formation of a peptidic α-keto amide. Tetrahedron Lett. 1997, 38, 953-956.
40. Hanamoto, T.; Morita, N.; Shindo, K.; Synthesis and reactions of
(2,2,2-trifluoroethyl)triphenylphosphonium trifluoromethanesulfonate. Eur.
J. Org. Chem. 2003, 21, 4279-4285.
41. Rodriguez, J. G.; Tejedor, J. L.; Rumbero, A.; Canoira, L., Stereospecific synthesis of conjugated (1E,3E)- and (1Z,3Z)-1,4-di(n-N,N-dimethyl-
aminophenyl)-1,3-butadienes from 2-chloro-1-(n-N,N-dimethylamino-
phenyl)ethenes: fluorescence properties. Tetrahedron, 2006, 62, 3075-3080
42. Finlay, G. J.; Baguley, B. C.; Wilson, W. R. A semiautomated microculture
method for investigating growth inhibitory effects of cytotoxic compounds
on exponentially growing carcinoma cells. Anal. Biochem. 1984, 139,
272-277.

------------------------------------------------------------------------ 第 3 筆 ---------------------------------------------------------------------
系統識別號 U0007-0708200815521200
論文名稱(中文) 血紅密孔菌( Pycnoporus sanguineus )栽植體之成份分析與抗發炎活性研究
論文名稱(英文) Studies on chemical constituents and anti-inflammatory activity of cultivated Pycnoporus sanguineus
校院名稱 臺北醫學大學
系所名稱(中) 生藥學研究所
系所名稱(英) Graduate Institute of Pharmacognosy
學年度 96
學期 2
出版年 97
研究生(中文) 林雪娥
學號 M303094008
學位類別 碩士
語文別 中文
口試日期 2008-07-18
論文頁數 143頁
口試委員 指導教授-徐鳳麟
共同指導教授-盧美光
委員-林雲蓮
委員-李美賢
委員-侯文琪
關鍵字(中) 血紅密孔菌
關鍵字(英) Pycnoporus sanguineus
學科別分類
中文摘要 血紅密孔菌 (Pycnoporus sanguineus (Fr.) Murr) 泛佈於熱帶和亞熱帶地區,為一種木材腐朽菌,野生子實體生長速度較為緩慢,因此造成研究材料之不足,本研究針對培養之菌絲體進行生成之生物量及化學成分研究。結果顯示血紅密孔菌在培養49 天後,菌絲乾重達最高產率16.13±2.10 g/l,而多醣體產量在培養 21 天時,達1.02±0.40 g/l最高。培養第28 天時乙醇萃取物產量為6.10±1.90 g/l 最高。而所含多醣體之單醣組成分析,結果顯示以岩藻醣 (fucose)、葡萄糖 (glucose)及甘露糖 (mannose) 為主要單糖組成,其含量分別為64.81±0.15,18.70±0.05, 17.56±0.03 μmol/g PS。針對血紅密孔菌菌絲體進行分離純化,共得到四個麥角甾醇,分別為:ergosta-7,22-dien-3β-ol (ST-1: 1),3β,5α-dihydroxyergosta-7,22-dien-6-one (ST-2: 2), 3β,5α,9α-trihydroxy-ergosta-7,22-dien-6-one (ST-3: 3)及3β,5α,6α-trihydroxyergosta-7,22-diene (ST-4: 4)。ST-2, ST-3, ST-4 三個化合物是首次自血紅密孔菌中分離得到之已知化合物。藥理活性測試以LPS 誘導老鼠微神經膠細胞株 (BV-2) 產生NO 的抗發炎模式篩檢中,乙醇粗萃物在50 μg/ml濃度下,抑制率達87.5 %,具有極顯著抑制NO 產生的效果。乙醇粗萃物之劃分,乙酸乙酯層在20 μg/ml 濃度下,抑制率達87.5 %,正丁醇層20 μg/ml 濃度時,抑制率45.5 %。經單離後之純化合物ST-1對LPS 誘導之微神經膠細胞株在15 μM 濃度具有43.5 % 的抑制率。
英文摘要 Pycnoporus sanguineus (Fr.) Murr is a slow-growing saprophytic fungus which causes decay of certain types of wood in the forests of tropical and subtropical areas. Because of the material is limited on the island and poor growth rate in nature, liguid culture of the fungus was
attempted. The results showed that the fungus was cultured for 49 days to reach the maximal dry weight of 16.13±2.10 g/l. The yield of polysaccharides (PS) of P. sanguineus for 21 days was 1.02±0.40 g/l. The yield of ethanolic extract of mycelial of P. sanguineus for 28 days was
6.10±1.90 g/l. Compositional analysis PS of P. sanguineus showed that fucose, glucose and mannose were the predominant sugars in the value of 64.81±0.15, 18.70±0.05 and 17.56±0.03 μmol/g PS, respectively.
Bioassay-guided fractionation was led to the isolation of four ergostane skeleton type steroids, including ergosta-7,22-dien-3β-ol (ST-1: 1), 3β,5α-dihydroxyergosta-7,22-dien-6-one (ST-2: 2), 3β,5α,9α-trihydroxyergosta-7,22-dien-6-one (ST-3: 3), and 3β,5α,6α-trihydroxyergosta-7,22
-diene (ST-4: 4) 。All were known compounds. From the isolates, ergosta-7,22-dien-3β-ol was isolated from P. sanguineus previously. The others were the first isolation from mycelial of P. sanguineus. Their structures were determined by 1H, 13C, 2D NMR, and MS spectral
analyses. The bioassay-guided fractionation of the crude ethanolic extract showed significant inhibition of LPS induced NO production in BV-2 cells up to a concentraction of 50 μg/ml for 87.5 %. EA-layer extract was also showed significant inhibition of LPS induced NO production in
BV-2 cells up to a concentraction of 20 μg/ml for 87.5 %. BuOH-layer extract of 20 μg/ml for inhibition of 45.5 %. Compound ST-1 of the inhibition at the concentraction of 15 μM in the value of 43.5 %.
論文目次 謝誌………………………………………………………... 2
中文摘要…………………………………………………………… 4
英文摘要…………………………………………………………… 5
目錄………………………………………………………………… 7
圖表………………………………………………………………… 10
縮寫字全名對照…………………………………………………… 13
第一章 緒論………….……………………………………..…..… 14
1.1 研究背景………….………………………………………...….. 16
1.1.1 血紅密孔菌簡介………………..…………………….… 16
1.1.1.1 分類地位………………….….…………..…….…. 16
1.1.1.2 型態構造與分佈…………..……………..….…… 16
1.1.1.3 子實體外表型態…………………………………. 18
1.1.2 成分及生物活性………………..……..……..……….… 19
1.2 研究動機與目的…………………………………...……….…... 20
第二章 實驗結果………………………………..…………….…. 21
2.1 菌絲體及子實體之製備……..…………………………………. 21
2.1.1 菌絲體之培養………………………..………..………… 21
2.1.2 菌絲體外表型態….…………………..……………...….. 23
2.1.3 血紅密孔菌菌絲體生長曲線及多醣體、乙醇萃取物含
量之變化…………………………………………..…….
26
2.1.4 血紅密孔菌菌絲體與子實體乾重產率之比較….…….. 28
2.1.5 多醣體分析…………………………….………….….… 33
2.1.5.1 血紅密孔菌子實體多醣體之分子量………….... 33
2.1.5.2 血紅密孔菌菌絲體多醣體之分子量………….... 33
2.1.5.3 血紅密孔菌子實體多醣體之單醣組成……….... 34
2.1.5.4 血紅密孔菌菌絲體多醣體之單醣組成.………... 34
2.2 成份萃取、分離與結構解析………….……………….....…..... 41
2.2.1 萃取與分離……………………………………..……….. 41
2.2.2 結構解析………………………….……………..……… 44
2.2.2.1 化合物ST-1: ergosta-7,22-dien-3β-ol (1)……..………44
2.2.2.2 化合物ST-2: 3β,5α-dihydroxyergosta-7,22-dien-6-
one (2)……………………………….
61
8
2.2.2.3 化合物ST-3: 3β,5α,9α-tryhydroxyergosta-7,22-dien-
-6-one (3)……………………………
77
2.2.2.4 化合物ST-4: 3β,5α,6α-trihydroxyergosta-7,22-diene…
(4)…………………………………… 93
2.3 藥理作用…………………………………………………...…… 109
2.3.1 血紅密孔菌菌絲體之水層、乙酸乙脂層和正丁醇層萃
取物對LPS誘導BV-2 細胞抑制產生NO之作用…..….
109
2.3.2 血紅密孔菌菌絲體之乙酸乙脂層萃取物及其劃分Fr.
2-6 對LPS 誘導BV-2 細胞抑制產生NO 之作用………
111
2.3.3 血紅密孔菌菌絲體之正丁醇層萃取物及其劃分Fr. 1-5
對LPS 誘導BV-2 細胞抑制產生NO 之作用…………
113
2.3.4 化合物ST-1∼4 對LPS 誘導BV-2 細胞抑制產生NO 之
作用…………………………………………….………..
115
第三章 討論……………………………..……………….…….…. 117
第四章 實驗材料與方法…………………………..…………..…. 121
4.1 培養材料……………….…….………………................……… 121
4.1.1 菌株……………….…….…………..……….…..……… 121
4.1.2 儀器………………..…………….………………........… 121
4.2 培養方法………….………………………………………...….. 122
4.2.1 培養基之配製法……………………………..….……… 122
4.2.2 血紅密孔菌菌絲體培養法…..………………….……… 122
4.2.3 菌絲體生長指標………………………..………….…… 122
4.2.4 菌絲體萃取物之製備…………………....…………...… 123
4.2.5 抽提及分離…………….………………….……...…...... 123
4.2.6 多醣體分子量分佈分析…..…………………..…….….. 124
4.2.7 多醣體水解物之單醣組成分析…………..……….….... 125
4.2.8 統計方法…………………....…………………….....….. 126
4.3 菌絲體成份萃取、分離與結構解析…………………...….…… 127
4.3.1 溶媒及試藥……………..…………….....………….…… 127
4.3.2 管柱層析……..……………….………………..……...… 127
4.3.3 顯色劑…………………………………………………... 127
4.3.4 實驗儀器…………………..………….…………..….….. 127
4.4 實驗步驟………………………………………………….…..… 129
4.5 化合物之物理性質…………………………………………….. 131
ST-1: ergosta-7,22-dien-3β-ol (1)………..…………..…….….. 131
9
ST-2: 3β,5α-dihydroxyergosta-7,22-dien-6-one (2)…………... 131
ST-3: 3β,5α,9α-trihydroxyergosta-7,22-dien-6-one (3)……. 132
ST-4: 3β,5α,6α-trihydroxyergosta-7,22-diene (4)………......… 133
4.6 藥理作用之評估方法…………………….……………..……… 134
4.6.1 BV-2 細胞培養………………..…………………….…… 134
4.6.2 MTT 分析試驗………….....…………….....….............… 134
4.6.3 NO 分析試驗………...…….…………....................……. 135
4.7 統計方法……………….……………………….…………….… 136
參考文獻……………………………………….……………...……. 137
參考文獻 1. Zjawiony J. K. Biologically active compounds from Aphyllophorales
( Polypore ) Fungi. J. Nat. Prod. 67, 300-310, 2004.
2. Chihara G. Recent progress in immunopharmacology and therapeutic
effects of polysaccharides. Dev. Biol. Stand. 77, 191-197, 1992.
3. Chihara G., Hamuro J., Maeda Y. Y., Shiio T., Suga T., Takasuka N.,
Sasaki T. Antitumor and metastasis-inhibitory activities of lentinan as
an immunomodulator: An overview. Cancer Detect. Prev. Suppl. 1,
423-443, 1987.
4. Mizuno T. The extraction and development of antitumoractive
polysaccharides from medicinal mushrooms in Japan. Int. J. Med.
Mushrooms. 1, 9-29, 1999.
5. Wasser S. P. Medicinal mushrooms as a source of antitumor and
immunomodulating polysaccharides. Appl. Microbial. Biotechnol. 60,
258-274, 2002.
6. Vikineswary S., Abdullah N., Renuvathani M., sekaran M., Pandey
A., Jones E. B. G. Productivity of laccase in solid substrate
fermentation of selected agro-residues by Pycnoporus sanguineus.
Bioresource Technoligy. 97, 171-177, 2006.
7. Smânia E. F. A., Smânia A., Loguercio-Leite C. Cinnabarin synthesis
by Pycnoporus Sanguineus strains and antimicrobial activity against
bacteria from food products. Rev. Microbiol. 29, 4, 1998.
8. Smânia A., Marques C. J. S., Smânia E. F. A., Zanetti C. R., Carobrez
S. G., Tramonte R., Loguercio-Leite. Toxicity and antiviral activity of
cinnabarin obtained from Pycnoporus sanguineus (Fr.) Murr.
138
Phytother. Res. 17, 1069-1072, 2003.
9. Smânia A., Monache F. D., Smânia E. F. A., Gil M. L., Benchetrit L.
C., Cruz F. S. Antibacterial activity of a substance produced by the
fungus Pycnoporus sanguineus (Fr.) Murr. J. Ethnopharmacol. 45,
177-181, 1995.
10. Luna M. L., Murace M. A., Keil G. D., Otaňo M. E. Pattern of decay
caused by Pycnoporus sanguineus and Ganoderma Lucidum
( Aphyllophorales ) in poplar wood. Iawa journal. 25, 425-433, 2004.
11. Duran N., Rosa M. A., D'Annibale A., Gianfreda L. Applications of
laccases and tyrosinases ( phenoloxidases ) immobilized on different
support: a review, Enzym. Microb. Technol. 31, 907-931, 2002.
12. Trovaslet M., Enaud E., Guiavarc'h Y., Corbisier A. M., Vanhulle S.
Potential of a Pycnoporus sanguineus laccase in biomediation of
wastewater and kinetic activation in the presence of an
anthraquinonic acid dye. Enzyme and microbial Technology. 41,
368-376, 2007.
13. Vanhulle S., Enaud E., Trovaslet M., Nouaimeh N., Bols C. M.,
Keshavarz T., Tron T., Sannia G., Corbisier. Overlap of
laccase/cellobiose dehydrogenase dyes with close chemical structures
by Pycnoporus strains. Enzyme and microbial Technology. 40,
1723-1731, 2007.
14. Quiroga E. N., Vattuone M. A., Sampietro A. R. Purification and
characterization of the invertase from Pycnoporus sanguineus.
Biochimica et Biophysica Acta. 1251, 75-80, 1995.
15. Zulfadhly Z., Bhatia M. S. Heavy metals removal in fixed-bed
column by the macro fungus Pycnoporus sanguineus. Enviromental
139
Pollution. 112, 463-470, 2001.
16. Balan D. S. L., Monteiro R. T. R. Decolorization of textile indigo dye
by ligninolytic fungi. J. Biotech. 89, 141-145, 2001.
17. Jiang D. S., Long S. Y., Huang J., Xiao H. Y., Zhou J. Y.
Immobilization of Pycnoporus sanguineus laccase on magnetic
chitosan microspheres. Biochemical Engineering Journal. 25, 15-23,
2005.
18. Sophie V., Romeo R., Roberto P., Tingting C., Christian M. B.,
Thierry T., Giovanni S., Tajalli K. Effect of mannan oligosaccharide
elicitor and ferulic acid on enhancement of laccases production in
liquid cultures of basidiomycetes. Enzyme and microbial Technology.
40, 1712-1718, 2007.
19. Achenbach H., Blümm E. Investagation of the Pigments of
Pycnoporus sanguineus – Pycnosanguin and New Phenoxazin-3-ones.
Archiv der Pharmazie. 324, 3-6, 1991.
20. Correa E., Cardona D., Quinones W., Torres F., Franco A. E.,Velez I.
D., Robledo S., Echeverri F. Leishmanicidal activity of Pycnoporus
sanguineus. Phytother. Res. 20, 6, 497-9, 2006.
21. Liu J. K. N-Containing Compounds of Macromycetes. Chem. Rev.
105, 2726, 2005.
22. Seo J. W., Srisook E., Son H. J., Hwang O., Cha Y. N., Chi D. Y.
Syntheses of NAMDA derivatives inhibiting NO production in BV-2
cells stimulated with lipopolysaccharide. Bioorganic & Medicinal
Chemistry Letters. 15, 3369-3373, 2005.
23. Lu M. K., Cheng J. J., Huang N. K., Chang T. T., Wang D. L. Study
for anti-angiogenetic activities of polysaccarides isolated from
140
Antrodia cinnamomea in endothelial cells. Life Sci. 76, 3029-3042,
2005.
24. Yaoita Y., Amemiya K., Ohnuma H., Furumura K., Masaki A.,
Matsuki T., Kikuchi M. Sterol constituents from five edible
mushrooms. Chem. Pharm. Bull. 46, 6, 944-950, 1998.
25. Costantino v., Fattorusso E., Mangoni A., Pansini M. Sterols from the
Caribbean sponge Neofibularia nolitangere. Isolation of two novel
polyhydroxysteroids. Steroids. 60, 768-772, 1995.
26. Wright J. L. C., McInnes A. G., Shimizu S., Smith D. G., Walter J. A.
Identification of C-24 alkyl epimers of sterols by 13C NMR
spectroscopy. Can. J. Chem. 56, 1898-1903, 1978.
27. Fujimoto Y., Yamada T., Ikekawa N. Pyridine-induced deshielding of
4-methylene protons for the determination of C-6 stereochemistry of
sterols having a 5α,6β-diol moiety. Revision of the C-6
stereochemistry of Marine sterol isolated from a sponge, Dysidea sp.
Chem. Pharm. Bull. 33, 8, 3129-3133, 1985.
28. Akihisa T., Matsubara Y., ghosh P., Thakur S., Tamura T., Matsumoto
T. Sterols of some Clerodendrum species ( Verbenaceae ) :
Occurrence of the 24α-and 24β-epimers of 24-ethylsterols lacking a
Δ25-bond. Steroids. 53, 625-638, 1989.
29. Apsimon J. W., Beierbeck H. Chemical shift. V. further studies on the
long-range shielding effects of the C-H and C=O bonds. Can. J.
Chem. 49, 1328-1334, 1971.
30. Takatsuto S., Ikekawa N., Morishita T., Abe H. Structure-activity
relationship of Brassinosteroids with respect to the A/B-ring
functional groups. Chem. Pharm. Bull. 35, 211-216, 1987.
141
31. Yeh S. F., Lee K. C., Shiao M. S. Sterols, Triterpenes and Fatty Acid
Patterns in Ganoderma Lucidum. Proc. Natl. Sci. Counc. ROC (A) 11,
129-134, 1987.
32. Chapuis L., Corio-Costet M. F., Malosse Christain. Sterol
composition of the woody plant pathogenic fungus Eutypa Lata.
Phytochem. 42, 1599-1601, 1996.
33. Ahmad S., Hussain G., Razaq S. Triterpenoids of Phellinus Gilvus.
Phytochem. 15, 2000, 1976.
34. Yokoyama A., Natori S. Distribution of tetracyclic triterpenoids of
lanostane group and sterols in the higher fungi especially of the
polyporaceae and related families. Phytochem. 14, 487-497, 1975.
35. Shirane N., Takenaka H., Ueda K., Hashimoto Y., Katoh K., Ishii H.
Sterol analysis of DMI-resistant and –sensitive strains of Venturia
Inaequalis. Phytochem. 41, 1301-1308, 1996.
36. Chiang H. C., Chu S. C. Studies on the Constituents of Ganoderma
Lucidum. J. Chin. Chem. Soc. (Taipei) 38, 71-76, 1991.
37. Takaishi Y., Ohashi T., Tomimatsu T. Ergosta-7,22-dien-3β-ol
glycoside from Tylopilus Neofelleus. Phytochem. 28, 945-947, 1989.
38. Keller A. C., Maillard M. P., Hostettmann K. Antimicrobial Steroids
from the fungus Fomitopsis Pinicola. Phytochem. 41, 1041-1046,
1996.
39. Ishizuka T., Yaoita Y., Kikuchi M. Sterol constituents from the fruit
bodies of Grifola frondosa ( Fr.). Chem. Pharm. Bull. 45, 1756-1760,
1997.
40. Takaishi Y., Uda M., Ohashi T., Nakano K., Murakami K.,
Tomimatsu T. Glycosides of ergosterol derivatives from Hericum
142
Erinacens. Phytochem. 30, 4117-4120, 1991.
41. Kawagishi H., Katsumi R., Sazawa T., Mizuno T., Hagiwara T.,
Nakamura T. Cytotoxic steroids from the mushroom Agaricus Blazei.
Phytochem. 27, 2777-2779, 1988.
42. Ishizuka T., Yaoita Y., Kikuchi M. Sterol constituents from the fruit
bodies of Grifola frondosa (Fr.) S. F. Gray. Chem. Pharm. Bull. 45,
1756-1760, 1997.
43. Mondal S., Chandra K., Maiti D., Ojha A. K., Das D., Roy S. K.,
Ghosh K., Chakarborty I., Islam S. S. Chemical analysis of a new
fucoglucan isolated from an edible mushroom, Termitomyces
robustus. Carbohydrate research. 343, 1062-1070, 2008.
44. Wei L., Isao A., Kensaku K., Akiko Y., Kazuo T., Masaharu Ueno.,
Isamu H. Platelet aggregation potentiators from cho-rei. Chem.
Pharm. Bull. 33, 11, 5083-5087, 1985.
45. Smânia E. F. A., Monache F. D., Smânia A., Yunes R. A., Cuneo R.S.
Antifungal activity of sterols and triterpenes isolated from
Ganoderma annulare. Fitoterpia. 74, 375-377, 2003.
46. Mansoor T. A., Hong J., Lee C. O., Bae S. J., Im K. S., Jung J. H.
Cytotoxic sterol derivatives from a marine sponge Homaxinella sp.. J.
Nat. Prod. 68, 331-336, 2005.
47. Ohnuma N., Amemiya K., Kakuda R., Yaoita Y., Machida K.,
Kikuchi M. Sterol constituents from two edible mushrooms,
Lentinula edodes and Tricholoma matsutake. Chem. Pharm. Bull. 48,
749-751, 2000.
48. Strigina L. I., Elkin Y. N., Elyakov G. B. Steroid metabolites of
Ganoderma Applanatum Basidiomycete. Phytochem. 10, 2361-2365,
143
1971.
49. Anderson C. G., Epstein W. W., Van Lear G. Minor triterpenoids of
Fomes officinalis. Phytochem. 11, 2847-2852, 1972.
50. Wang F., Fang Y., Zhang M., Lin A., Zhu T., Gu Q., Zhu W. Six new
ergosterols from the marine-derived fungus Rhizopus sp.. Steroids. 73,
19-26, 2008.
51. Kobayashi m., kanda Fuyuko. Marine sterols. 18. Isolation and
structure of four novel oxygenated sterols from a Gorgonian coral
melithaea ocracea. J. Chem. Soc. Perkin Trans. 1, 1177-1179, 1991.

------------------------------------------------------------------------ 第 4 筆 ---------------------------------------------------------------------
系統識別號 U0007-1001200815515500
論文名稱(中文) 大豆蛋白水解物對不同疾病動物模式血壓調節的作用
論文名稱(英文) Effects of Soy Protein Hydrolysate on Blood Pressure in Various Animal Models
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 96
學期 1
出版年 97
研究生(中文) 楊欣怡
學號 D301091010
學位類別 博士
語文別 中文
口試日期 2008-01-09
論文頁數 99頁
口試委員 指導教授-陳俊榮
委員-盧義發
委員-王銘富
委員-葉松鈴
委員-黃惠宇
關鍵字(中) 大豆蛋白
胜?
高血壓
血管收縮素轉換?
腎衰竭
代謝症候群
一氧化氮
關鍵字(英) soy protein
peptide
hypertension
angiotensin converting enzyme
renal failure
metabolic syndrome
nitric oxide
學科別分類
中文摘要 血管收縮素轉換?﹛?(angiotensin converting enzyme, ACE)的活性增加是 RAS 活化的重要因子之一。本研究將就三個不同的疾病動物模式,觀察攝取大豆蛋白是否可以其被消化酵素水解後的產物達到降低血壓和保護組織的功能。第一部份使用 5/6 腎切除手術作為慢性腎衰竭的動物模式,餵食實驗動物含大豆蛋白或大豆蛋白胃蛋白?﹞蘢悛?(soy protein hydrolysate, SPH)的飲食同樣具有改善因腎切除手術所造成血壓上升、血漿胰島素濃度上升、腎功能缺損及腎臟 TNF-a(tumor necrosis factor-a)濃度上升的作用。第二部分餵食實驗動物高油高果糖飲食四週以誘發代謝性症候群,接著餵食實驗動物含大豆蛋白或 SPH 的飲食八週,結果發現大豆蛋白和大豆蛋白胃蛋白?﹛水解物同樣具有降低實驗動物血壓、血糖、血脂濃度的作用,也會降低血漿、心臟和腎臟中 ACE 的活性,同時也可降低組織中 TNF-a 和 PAI-1(plasminogen activator inhibitor-1)的濃度,但對於血漿和脂肪組織中 adiponectin 的濃度皆無影響。第三部份投予實驗動物一氧化氮合成?“磻蹌? L-NAME 以誘發高血壓,在實驗動物飲食中分別添加 1%、3% 或 5% 的SPH,結果發現 5% 的 SPH 相較於控制組可降低血壓、心臟和腎臟的 ACE 活性、腎臟 PAI-1、TNF-a 濃度和 CYP 4A 的表現,同時病理組織切片也可觀察到對於心臟和腎臟組織損傷皆有改善的作用。最後我們進一步分離 SPH 中具ACE抑制活性的胜?戍レC,其中以LKNQRESY、DQMPRRF及 LVPPQESQRR三種最具ACE 抑制活性。所以我們推論大豆蛋白的攝取可能藉由其消化水解後所產生具生理活性的胜?戍レC,在體內達到抑制ACE 活性的作用,所以攝取大豆蛋白質對於腎衰竭、代謝性症候群和一氧化氮缺發的實驗動物具有降低血壓和改善組織損傷的功能。
英文摘要 Angiotensin converting enzyme plays a key physiological role in the activation of RAS (rennin-angiotensin system). We investigated the effects of pepsin-digested soy protein hydrolysate (SPH) on blood pressure and ACE activity in three different animal models in this study. In 5/6-nephrectomized rats, we found soy protein and SPH had the same renoprotective effects and decrease systolic blood pressure, plasma insulin and renal TNF-a (tumor necrosis factor-a) concentration. In rats with metabolic syndrome induced by high-fructose-high-fat diet, SPH was also as effective as soy protein in the reduction of blood pressure, plasma glucose and lipids. The soy protein and SPH group also had lower plasma, heart and renal ACE activity and tissue TNF-a and PAI-1 (plasminogen activator inhibitor-1) level than the control group. However, no difference in plasma and adipose adiponectin level was found. In the third part of study, we fed NO-deficient hypertensive rats diet containing 1%, 3% or 5% SPH. We found that the 5% SPH group had lower blood pressure, heart and renal ACE activity, renal PAI-1, TNF-a level and CYP4A expression than the control group. In pathohistological analysis, we also found that 5% SPH can protective cardiovascular and renal injuries caused by administration of NO synthase inhibitor. Furthermore, we isolated the peptides with ACE inhibitory activities in SPH, and we found that LKNQRESY, DQMPRRF and LVPPQESQRR were the three most effective peptides derived from soy protein. Therefore, we suggested that one possible mechanism of the beneficial effects of soy protein consumption on hypertension and related tissue injuries may be the ACE inhibitory peptide derived from digested soy protein.
論文目次 中文摘要 I
英文摘要 II
目 錄 III
圖目錄 V
表目錄 VI
第一章 前言 1
第二章 文獻回顧 3
第一節 高血壓的定義 3
第二節 腎素血管收縮素系統對血壓的影響 4
第三節 食品蛋白質與血壓的調節 8
第四節 大豆蛋白與高血壓 10
第三章 大豆蛋白水解物對慢性腎衰竭大白鼠血壓和腎臟血管收縮素轉換酶活性的影響 13
第一節 目的 13
第二節 材料與方法 13
第三節 結果 17
第四節 討論 21
第五節 結論 24
第四章 大豆蛋白水解物對代謝性症候群大白鼠血壓和組織血管收縮素轉換酶活性的影響 25
第一節 目的 25
第二節 材料與方法 26
第三節 結果 28
第四節 討論 31
第五節 結論 37
第五章 大豆蛋白水解物對以一氧化氮合成酶抑制劑誘發高血壓大白鼠之血壓和組織傷害的影響 38
第一節 目的 38
第二節 材料與方法 39
第三節 結果 43
第四節 討論 46
第五節 結論 52
第六章 大豆蛋白水解物中具血管收縮素轉換酶抑制活性胜肽之純化和分離 53
第一節 目的 53
第二節 材料與方法 53
第三節 結果 55
第四節 討論 56
第五節 結論 59
總結 60
參考文獻 61
參考文獻 Adams MR, Golden DL, Franke AA, Potter SM, Smith HS & Anthony MS. Dietary soy beta-conglycinin (7S globulin) inhibits atherosclerosis in mice. J Nutr 2004; 134:511-6
Aebi H. Catalase in vitro. Methods Enzymol 1984; 105:121-6
Aguilera AA, Diaz GH, Barcelata ML, Guerrero OA & Ros RM. Effects of fish oil on hypertension, plasma lipids, and tumor necrosis factor-alpha in rats with sucrose-induced metabolic syndrome. J Nutr Biochem 2004; 15:350-7
Aksnes TA, Seljeflot I, Torjesen PA, Hoieggen A, Moan A & Kjeldsen SE. Improved insulin sensitivity by the angiotensin II-receptor blocker losartan is not explained by adipokines, inflammatory markers, or whole blood viscosity. Metabolism 2007; 56:1470-7
Alonso-Galicia M, Maier KG, Greene AS, Cowley AW, Jr. & Roman RJ. Role of 20-hydroxyeicosatetraenoic acid in the renal and vasoconstrictor actions of angiotensin II. Am J Physiol Regul Integr Comp Physiol 2002; 283:R60-8
Alvestrand A. Carbohydrate and insulin metabolism in renal failure. Kidney Int Suppl 1997; 62:S48-52
Anderson JW, Johnstone BM & Cook-Newell ME. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med 1995; 333:276-82
Appel LJ. The effects of protein intake on blood pressure and cardiovascular disease. Curr Opin Lipidol 2003; 14:55-9
Armitage JA, Khan IY, Taylor PD, Nathanielsz PW & Poston L. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol 2004; 561:355-77
Baylis C, Mitruka B & Deng A. Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest 1992; 90:278-81
Brown NJ, Muldowney JA, 3rd & Vaughan DE. Endogenous NO regulates plasminogen activator inhibitor-1 during angiotensin-converting enzyme inhibition. Hypertension 2006; 47:441-8
Campbell DJ. L-NAME hypertension: trying to fit the pieces together. J Hypertens 2006; 24:33-6
Ceconi C, Fox KM, Remme WJ, Simoons ML, Bertrand M, Parrinello G, Kluft C, Blann A, Cokkinos D & Ferrari R. ACE inhibition with perindopril and endothelial function. Results of a substudy of the EUROPA study: PERTINENT. Cardiovasc Res 2007; 73:237-46
Chen JR, Okada T, Muramoto K, Suetsuna K & Yang SC. Identification of angiotensin I- converting enzyme inhibitory peptides derived from the peptic digest of soybean protein. J Food Biochem 2003; 26:543-54
Chen R, Iwai M, Wu L, Suzuki J, Min LJ, Shiuchi T, Sugaya T, Liu HW, Cui TX & Horiuchi M. Important role of nitric oxide in the effect of angiotensin-converting enzyme inhibitor imidapril on vascular injury. Hypertension 2003; 42:542-7
Chen ST, Ferng SH, Yang CS, Peng SJ, Lee HR & Chen JR. Variable effects of soy protein on plasma lipids in hyperlipidemic and normolipidemic hemodialysis patients. Am J Kidney Dis 2005; 46:1099-106
Chen ST, Peng SJ & Chen JR. Effects of dietary protein on renal function and lipid metabolism in five-sixths nephrectomized rats. Br J Nutr 2003; 89:491-7
Cheung HS, Wang FL, Ondetti MA, Sabo EF & Cushman DW. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. J Biol Chem 1980; 255:401-7
Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jr., Jones DW, Materson BJ, Oparil S, Wright JT, Jr. & Roccella EJ. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42:1206-52
Coates JB, Medeiros JS, Thanh VH & Nielsen NC. Characterization of the subunits of beta-conglycinin. Arch Biochem Biophys 1985; 243:184-94
Codreanu I, Perico N & Remuzzi G. Dual blockade of the renin-angiotensin system: the ultimate treatment for renal protection? J Am Soc Nephrol 2005; 16 Suppl 1:S34-8
Cosenzi A, Bernobich E, Plazzotta N, Seculin P & Bellini G. Bosentan reduces blood pressure and the target-organ damage induced by a high-fructose diet in rats. J Hypertens 1999; 17:1843-8
Cunha TS, Farah V, Paulini J, Pazzine M, Elased KM, Marcondes FK, Claudia Irigoyen M, De Angelis K, Mirkin LD & Morris M. Relationship between renal and cardiovascular changes in a murine model of glucose intolerance. Regul Pept 2007; 139:1-4
Danser AH, van Kesteren CA, Bax WA, Tavenier M, Derkx FH, Saxena PR & Schalekamp MA. Prorenin, renin, angiotensinogen, and angiotensin-converting enzyme in normal and failing human hearts. Evidence for renin binding. Circulation 1997; 96:220-6
Das S, Santra A, Lahiri S & Guha Mazumder DN. Implications of oxidative stress and hepatic cytokine (TNF-alpha and IL-6) response in the pathogenesis of hepatic collagenesis in chronic arsenic toxicity. Toxicol Appl Pharmacol 2005; 204:18-26
Das UN. Is angiotensin-II an endogenous pro-inflammatory molecule? Med Sci Monit 2005; 11:RA155-62
De Gennaro Colonna V, Rigamonti A, Fioretti S, Bonomo S, Manfredi B, Ferrario P, Bianchi M, Berti F, Muller EE & Rossoni G. Angiotensin-converting enzyme inhibition and angiotensin AT1-receptor antagonism equally improve endothelial vasodilator function in L-NAME-induced hypertensive rats. Eur J Pharmacol 2005; 516:253-9
Douglas H & Kitchen I. Mechanisms involved in the cardiovascular responses to opioid products of proenkephalin in the anaesthetised rat. Gen Pharmacol 1992; 23:269-77
Elliott P, Stamler J, Dyer AR, Appel L, Dennis B, Kesteloot H, Ueshima H, Okayama A, Chan Q, Garside DB & Zhou B. Association between protein intake and blood pressure: the INTERMAP Study. Arch Intern Med 2006; 166:79-87
Elung-Jensen T, Heisterberg J, Sonne J, Strandgaard S & Kamper AL. Enalapril dosage in progressive chronic nephropathy: a randomised, controlled trial. Eur J Clin Pharmacol 2005; 61:87-96
Eren M, Painter CA, Gleaves LA, Schoenhard JA, Atkinson JB, Brown NJ & Vaughan DE. Tissue- and agonist-specific regulation of human and murine plasminogen activator inhibitor-1 promoters in transgenic mice. J Thromb Haemost 2003; 1:2389-96
Fanti P, Asmis R, Stephenson TJ, Sawaya BP & Franke AA. Positive effect of dietary soy in ESRD patients with systemic inflammation--correlation between blood levels of the soy isoflavones and the acute-phase reactants. Nephrol Dial Transplant 2006; 21:2239-46
Fay WP, Garg N & Sunkar M. Vascular functions of the plasminogen activation system. Arterioscler Thromb Vasc Biol 2007; 27:1231-7
Feener EP, Northrup JM, Aiello LP & King GL. Angiotensin II induces plasminogen activator inhibitor-1 and -2 expression in vascular endothelial and smooth muscle cells. J Clin Invest 1995; 95:1353-62
Ferrari P. Prescribing angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in chronic kidney disease. Nephrology (Carlton) 2007; 12:81-9
Fintha A, Sebe A, Masszi A, Terebessy T, Huszar T, Rosivall L & Mucsi I. Angiotensin II activates plasminogen activator inhibitor-I promoter in renal tubular epithelial cells via the AT1 receptor. Acta Physiol Hung 2007; 94:19-30
Fogari R & Zoppi A. Antihypertensive drugs and fibrinolytic function. Am J Hypertens 2006; 19:1293-9
Freitas RR, Lopes KL, Carillo BA, Bergamaschi CT, Carmona AK, Casarini DE, Furukawa L, Heimann JC, Campos RR & Dolnikoff MS. Sympathetic and renin-angiotensin systems contribute to increased blood pressure in sucrose-fed rats. Am J Hypertens 2007; 20:692-8
Fujita H & Yoshikawa M. LKPNM: a prodrug-type ACE-inhibitory peptide derived from fish protein. Immunopharmacology 1999; 44:123-7
Furuhashi M, Ura N, Higashiura K, Murakami H, Tanaka M, Moniwa N, Yoshida D & Shimamoto K. Blockade of the renin-angiotensin system increases adiponectin concentrations in patients with essential hypertension. Hypertension 2003; 42:76-81
Gallardo JM, de Carmen Prado-Uribe M, Amato D & Paniagua R. Inflammation and oxidative stress markers by pentoxifylline treatment in rats with chronic renal failure and high sodium intake. Arch Med Res 2007; 38:34-8
Garcia-Estan J, Ortiz MC, O'Valle F, Alcaraz A, Navarro EG, Vargas F, Evangelista S & Atucha NM. Effects of angiotensin-converting-enzyme inhibitors in combination with diuretics on blood pressure and renal injury in nitric oxide-deficiency-induced hypertension in rats. Clin Sci (Lond) 2006; 110:227-33
Gibbons GH. The pathophysiology of hypertension: the importance of angiotensin II in cardiovascular remodeling. Am J Hypertens 1998; 11:177S-81S
Goldfarb DA & Novick AC. The renin-angiotensin system: revised concepts and implications for renal function. Urology 1994; 43:572-83
Gonzalez W, Fontaine V, Pueyo ME, Laquay N, Messika-Zeitoun D, Philippe M, Arnal JF, Jacob MP & Michel JB. Molecular plasticity of vascular wall during N(G)-nitro-L-arginine methyl ester-induced hypertension: modulation of proinflammatory signals. Hypertension 2000; 36:103-9
Graciano ML, Cavaglieri Rde C, Delle H, Dominguez WV, Casarini DE, Malheiros DM & Noronha IL. Intrarenal Renin-Angiotensin system is upregulated in experimental model of progressive renal disease induced by chronic inhibition of nitric oxide synthesis. J Am Soc Nephrol 2004; 15:1805-15
Granger DN, Vowinkel T & Petnehazy T. Modulation of the inflammatory response in cardiovascular disease. Hypertension 2004; 43:924-31
Griesmacher A, Kindhauser M, Andert SE, Schreiner W, Toma C, Knoebl P, Pietschmann P, Prager R, Schnack C, Schernthaner G & et al. Enhanced serum levels of thiobarbituric-acid-reactive substances in diabetes mellitus. Am J Med 1995; 98:469-75
Hata Y, Yamamoto M, Ohni M, Nakajima K, Nakamura Y & Takano T. A placebo-controlled study of the effect of sour milk on blood pressure in hypertensive subjects. Am J Clin Nutr 1996; 64:767-71
Hattori Y, Akimoto K, Gross SS, Hattori S & Kasai K. Angiotensin-II-induced oxidative stress elicits hypoadiponectinaemia in rats. Diabetologia 2005; 48:1066-74
He J, Gu D, Wu X, Chen J, Duan X, Chen J & Whelton PK. Effect of soybean protein on blood pressure: a randomized, controlled trial. Ann Intern Med 2005; 143:1-9
Heeneman S, Sluimer JC & Daemen MJ. Angiotensin-converting enzyme and vascular remodeling. Circ Res 2007; 101:441-54
Heneman KM, Chang HC, Prior RL & Steinberg FM. Soy protein with and without isoflavones fails to substantially increase postprandial antioxidant capacity. J Nutr Biochem 2007; 18:46-53
Hernandez-Ledesma B, Martin-Alvarez PJ & Pueyo E. Assessment of the spectrophotometric method for determination of angiotensin-converting-enzyme activity: influence of the inhibition type. J Agric Food Chem 2003; 51:4175-9
Hirota T, Ohki K, Kawagishi R, Kajimoto Y, Mizuno S, Nakamura Y & Kitakaze M. Casein hydrolysate containing the antihypertensive tripeptides Val-Pro-Pro and Ile-Pro-Pro improves vascular endothelial function independent of blood pressure-lowering effects: contribution of the inhibitory action of angiotensin-converting enzyme. Hypertens Res 2007; 30:489-96
Hokimoto S, Yasue H, Fujimoto K, Yamamoto H, Nakao K, Kaikita K, Sakata R & Miyamoto E. Expression of angiotensin-converting enzyme in remaining viable myocytes of human ventricles after myocardial infarction. Circulation 1996; 94:1513-8
Hsieh PS. Reversal of fructose-induced hypertension and insulin resistance by chronic losartan treatment is independent of AT2 receptor activation in rats. J Hypertens 2005; 23:2209-17
Ishibashi S. The vascular renin-angiotensin system as a possible source of vascular inflammation in fructose-fed rats. Hypertens Res 2007; 30:375-6
Ito O, Omata K, Ito S, Hoagland KM & Roman RJ. Effects of converting enzyme inhibitors on renal P-450 metabolism of arachidonic acid. Am J Physiol Regul Integr Comp Physiol 2001; 280:R822-30
Kagan A, Harris BR, Winkelstein W, Jr., Johnson KG, Kato H, Syme SL, Rhoads GG, Gay ML, Nichaman MZ, Hamilton HB & Tillotson J. Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California: demographic, physical, dietary and biochemical characteristics. J Chronic Dis 1974; 27:345-64
Kamide K, Rakugi H, Higaki J, Okamura A, Nagai M, Moriguchi K, Ohishi M, Satoh N, Tuck ML & Ogihara T. The renin-angiotensin and adrenergic nervous system in cardiac hypertrophy in fructose-fed rats. Am J Hypertens 2002; 15:66-71
Kanazawa T, Osanai T, Zhang XS, Uemura T, Yin XZ, Onodera K, Oike Y & Ohkubo K. Protective effects of soy protein on the peroxidizability of lipoproteins in cerebrovascular diseases. J Nutr 1995; 125:639S-46S
Kashiwagi A, Shinozaki K, Nishio Y, Okamura T, Toda N & Kikkawa R. Free radical production in endothelial cells as a pathogenetic factor for vascular dysfunction in the insulin resistance state. Diabetes Res Clin Pract 1999; 45:199-203
Katagiri H, Yamada T & Oka Y. Adiposity and cardiovascular disorders: disturbance of the regulatory system consisting of humoral and neuronal signals. Circ Res 2007; 101:27-39
Katoh M, Egashira K, Mitsui T, Chishima S, Takeshita A & Narita H. Angiotensin-converting enzyme inhibitor prevents plasminogen activator inhibitor-1 expression in a rat model with cardiovascular remodeling induced by chronic inhibition of nitric oxide synthesis. J Mol Cell Cardiol 2000; 32:73-83
Katoh M, Egashira K, Mitsui T, Takeshita A & Narita H. Differential effects of imidapril and candesartan cilexetil on plasminogen activator inhibitor-1 expression induced by prolonged inhibition of nitric oxide synthesis in rat hearts. J Cardiovasc Pharmacol 2000; 35:932-6
Katoh M, Egashira K, Usui M, Ichiki T, Tomita H, Shimokawa H, Rakugi H & Takeshita A. Cardiac angiotensin II receptors are upregulated by long-term inhibition of nitric oxide synthesis in rats. Circ Res 1998; 83:743-51
Kawamura T, Yoshida K, Sugawara A, Nagasaka M, Mori N, Takeuchi K & Kohzuki M. Impact of exercise and angiotensin converting enzyme inhibition on tumor necrosis factor-alpha and leptin in fructose-fed hypertensive rats. Hypertens Res 2002; 25:919-26
Kawasaki T, Seki E, Osajima K, Yoshida M, Asada K, Matsui T & Osajima Y. Antihypertensive effect of valyl-tyrosine, a short chain peptide derived from sardine muscle hydrolyzate, on mild hypertensive subjects. J Hum Hypertens 2000; 14:519-23
Kenichi M, Masanobu M, Takehiko K, Shoko T, Akira F, Katsushige A, Takashi H, Yoshiyuki O & Shigeru K. Renal synthesis of urokinase type-plasminogen activator, its receptor, and plasminogen activator inhibitor-1 in diabetic nephropathy in rats: modulation by angiotensin-converting-enzyme inhibitor. J Lab Clin Med 2004; 144:69-77
Khattab MM, Mostafa A & Al-Shabanah O. Effects of captopril on cardiac and renal damage, and metabolic alterations in the nitric oxide-deficient hypertensive rat. Kidney Blood Press Res 2005; 28:243-50
Kim S & Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 2000; 52:11-34
Kitamoto S, Egashira K, Kataoka C, Usui M, Koyanagi M, Takemoto M & Takeshita A. Chronic inhibition of nitric oxide synthesis in rats increases aortic superoxide anion production via the action of angiotensin II. J Hypertens 2000; 18:1795-800
Klahr S & Morrissey J. Angiotensin II and gene expression in the kidney. Am J Kidney Dis 1998; 31:171-6
Kritchevsky D. Dietary protein, cholesterol and atherosclerosis: a review of the early history. J Nutr 1995; 125:589S-93S
Kuba M, Tanaka K, Tawata S, Takeda Y & Yasuda M. Angiotensin I-converting enzyme inhibitory peptides isolated from tofuyo fermented soybean food. Biosci Biotechnol Biochem 2003; 67:1278-83
Kurata A, Nishizawa H, Kihara S, Maeda N, Sonoda M, Okada T, Ohashi K, Hibuse T, Fujita K, Yasui A, Hiuge A, Kumada M, Kuriyama H, Shimomura I & Funahashi T. Blockade of Angiotensin II type-1 receptor reduces oxidative stress in adipose tissue and ameliorates adipocytokine dysregulation. Kidney Int 2006; 70:1717-24
Lebel M, Rodrigue ME, Agharazii M & Lariviere R. Antihypertensive and renal protective effects of renin-angiotensin system blockade in uremic rats treated with erythropoietin. Am J Hypertens 2006; 19:1286-92
Lely AT, Krikken JA, Bakker SJ, Boomsma F, Dullaart RP, Wolffenbuttel BH & Navis G. Low dietary sodium and exogenous angiotensin II infusion decrease plasma adiponectin concentrations in healthy men. J Clin Endocrinol Metab 2007; 92:1821-6
Lewington S, Clarke R, Qizilbash N, Peto R & Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360:1903-13
Lo WM & Li-Chan EC. Angiotensin I converting enzyme inhibitory peptides from in vitro pepsin-pancreatin digestion of soy protein. J Agric Food Chem 2005; 53:3369-76
Luno J, Praga M & de Vinuesa SG. The reno-protective effect of the dual blockade of the renin angiotensin system (RAS). Curr Pharm Des 2005; 11:1291-300
Luvara G, Pueyo ME, Philippe M, Mandet C, Savoie F, Henrion D & Michel JB. Chronic blockade of NO synthase activity induces a proinflammatory phenotype in the arterial wall: prevention by angiotensin II antagonism. Arterioscler Thromb Vasc Biol 1998; 18:1408-16
Mackenzie HS & Brenner BM. Current strategies for retarding progression of renal disease. Am J Kidney Dis 1998; 31:161-70
MacLaughlin M, Monserrat AJ, Muller A, Matoso M & Amorena C. Role of kinins in the renoprotective effect of angiotensin-converting enzyme inhibitors in experimental chronic renal failure. Kidney Blood Press Res 1998; 21:329-34
MacLeod MJ & McLay J. Drug treatment of hypertension complicating diabetes mellitus. Drugs 1998; 56:189-202
Mahn K, Borras C, Knock GA, Taylor P, Khan IY, Sugden D, Poston L, Ward JP, Sharpe RM, Vina J, Aaronson PI & Mann GE. Dietary soy isoflavone induced increases in antioxidant and eNOS gene expression lead to improved endothelial function and reduced blood pressure in vivo. Faseb J 2005; 19:1755-7
Mallikarjun Gouda KG, Gowda LR, Rao AG & Prakash V. Angiotensin I-converting enzyme inhibitory peptide derived from glycinin, the 11S globulin of soybean (Glycine max). J Agric Food Chem 2006; 54:4568-73
Marcantoni C, Jafar TH, Oldrizzi L, Levey AS & Maschio G. The role of systemic hypertension in the progression of nondiabetic renal disease. Kidney Int Suppl 2000; 75:S44-8
Marco YA, Thanh VH, Tumer NE, Scallon BJ & Nielsen NC. Cloning and structural analysis of DNA encoding an A2B1a subunit of glycinin. J Biol Chem 1984; 259:13436-41
Masuda O, Nakamura Y & Takano T. Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats. J Nutr 1996; 126:3063-8
Matsui T, Li CH, Tanaka T, Maki T, Osajima Y & Matsumoto K. Depressor effect of wheat germ hydrolysate and its novel angiotensin I-converting enzyme inhibitory peptide, Ile-Val-Tyr, and the metabolism in rat and human plasma. Biol Pharm Bull 2000; 23:427-31
Matsui T, Matsufuji H, Seki E, Osajima K, Nakashima M & Osajima Y. Inhibition of angiotensin I-converting enzyme by Bacillus licheniformis alkaline protease hydrolyzates derived from sardine muscle. Biosci Biotechnol Biochem 1993; 57:922-5
Matsuzawa Y. Adiponectin: Identification, physiology and clinical relevance in metabolic and vascular disease. Atheroscler Suppl 2005; 6:7-14
Miatello R, Cruzado M & Risler N. Mechanisms of cardiovascular changes in an experimental model of syndrome X and pharmacological intervention on the renin-angiotensin-system. Curr Vasc Pharmacol 2004; 2:371-7
Miatello R, Risler N, Castro C, Gonzalez S, Ruttler M & Cruzado M. Aortic smooth muscle cell proliferation and endothelial nitric oxide synthase activity in fructose-fed rats. Am J Hypertens 2001; 14:1135-41
Miatello R, Risler N, Gonzalez S, Castro C, Ruttler M & Cruzado M. Effects of enalapril on the vascular wall in an experimental model of syndrome X. Am J Hypertens 2002; 15:872-8
Miatello RM, Damiani MT & Nolly HL. Cardiovascular kinin-generating capability in hypertensive fructose-fed rats. J Hypertens 1998; 16:1273-7
Minamino T, Kitakaze M, Papst PJ, Ueda Y, Sakata Y, Asanuma H, Ogai A, Kuzuya T, Terada N & Hori M. Inhibition of nitric oxide synthesis induces coronary vascular remodeling and cardiac hypertrophy associated with the activation of p70 S6 kinase in rats. Cardiovasc Drugs Ther 2000; 14:533-42
Miranda KM, Espey MG & Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001; 5:62-71
Mitchell GF, Moye LA, Braunwald E, Rouleau JL, Bernstein V, Geltman EM, Flaker GC & Pfeffer MA. Sphygmomanometrically determined pulse pressure is a powerful independent predictor of recurrent events after myocardial infarction in patients with impaired left ventricular function. SAVE investigators. Survival and Ventricular Enlargement. Circulation 1997; 96:4254-60
Mitchell GF, Pfeffer JM & Pfeffer MA. The heart and conduit vessels in hypertension. Med Clin North Am 1997; 81:1247-71
Mitsui T, Chishima S, Odawara A & Ohtani A. Imidapril, an angiotensin-converting enzyme inhibitor, inhibits thrombosis via reduction in aortic plasminogen activator inhibitor type-1 levels in spontaneously hypertensive rats. Biol Pharm Bull 1999; 22:863-5
Miyoshi S, Ishikawa H, Kaneko T, Fukui F, Tanaka H & Maruyama S. Structures and activity of angiotensin-converting enzyme inhibitors in an alpha-zein hydrolysate. Agric Biol Chem 1991; 55:1313-8
Morishita R, Gibbons GH, Ellison KE, Lee W, Zhang L, Yu H, Kaneda Y, Ogihara T & Dzau VJ. Evidence for direct local effect of angiotensin in vascular hypertrophy. In vivo gene transfer of angiotensin converting enzyme. J Clin Invest 1994; 94:978-84
Murray BA & FitzGerald RJ. Angiotensin converting enzyme inhibitory peptides derived from food proteins: biochemistry, bioactivity and production. Curr Pharm Des 2007; 13:773-91
Naderali EK, Estadella D, Rocha M, Pickavance LC, Fatani S, Denis RG & Williams G. A fat-enriched, glucose-enriched diet markedly attenuates adiponectin mRNA levels in rat epididymal adipose tissue. Clin Sci (Lond) 2003; 105:403-8
Nagasawa A, Fukui K, Funahashi T, Maeda N, Shimomura I, Kihara S, Waki M, Takamatsu K & Matsuzawa Y. Effects of soy protein diet on the expression of adipose genes and plasma adiponectin. Horm Metab Res 2002; 34:635-9
Nagasawa A, Fukui K, Kojima M, Kishida K, Maeda N, Nagaretani H, Hibuse T, Nishizawa H, Kihara S, Waki M, Takamatsu K, Funahashi T & Matsuzawa Y. Divergent effects of soy protein diet on the expression of adipocytokines. Biochem Biophys Res Commun 2003; 311:909-14
Nakamura S, Nakamura I, Ma L, Vaughan DE & Fogo AB. Plasminogen activator inhibitor-1 expression is regulated by the angiotensin type 1 receptor in vivo. Kidney Int 2000; 58:251-9
Nakamura Y, Yamamoto N, Sakai K, Okubo A, Yamazaki S & Takano T. Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. J Dairy Sci 1995; 78:777-83
Nevala R, Vaskonen T, Vehniainen J, Korpela R & Vapaatalo H. Soy based diet attenuates the development of hypertension when compared to casein based diet in spontaneously hypertensive rat. Life Sci 2000; 66:115-24
Nijsen MJ, de Ruiter GJ, Kasbergen CM, Hoogerhout P & de Wildt DJ. Relevance of the C-terminal Arg-Phe sequence in gamma(2)-melanocyte-stimulating hormone (gamma(2)-MSH) for inducing cardiovascular effects in conscious rats. Br J Pharmacol 2000; 131:1468-74
Noriega-Lopez L, Tovar AR, Gonzalez-Granillo M, Hernandez-Pando R, Escalante B, Santillan-Doherty P & Torres N. Pancreatic insulin secretion in rats fed a soy protein high fat diet depends on the interaction between the amino acid pattern and isoflavones. J Biol Chem 2007; 282:20657-66
Nyby MD, Abedi K, Smutko V, Eslami P & Tuck ML. Vascular Angiotensin type 1 receptor expression is associated with vascular dysfunction, oxidative stress and inflammation in fructose-fed rats. Hypertens Res 2007; 30:451-7
Okada H, Watanabe Y, Kikuta T, Kobayashi T, Kanno Y, Sugaya T & Suzuki H. Bradykinin decreases plasminogen activator inhibitor-1 expression and facilitates matrix degradation in the renal tubulointerstitium under angiotensin-converting enzyme blockade. J Am Soc Nephrol 2004; 15:2404-13
Okamoto Y, Kihara S, Funahashi T, Matsuzawa Y & Libby P. Adiponectin: a key adipocytokine in metabolic syndrome. Clin Sci (Lond) 2006; 110:267-78
Ono Y, Ono H, Matsuoka H, Fujimori T & Frohlich ED. Apoptosis, coronary arterial remodeling, and myocardial infarction after nitric oxide inhibition in SHR. Hypertension 1999; 34:609-16
Oshima G, Shimabukuro H & Nagasawa K. Peptide inhibitors of angiotensin I-converting enzyme in digests of gelatin by bacterial collagenase. Biochim Biophys Acta 1979; 566:128-37
Oyekan AO, Youseff T, Fulton D, Quilley J & McGiff JC. Renal cytochrome P450 omega-hydroxylase and epoxygenase activity are differentially modified by nitric oxide and sodium chloride. J Clin Invest 1999; 104:1131-7
Pandolfi A, Cetrullo D, Polishuck R, Alberta MM, Calafiore A, Pellegrini G, Vitacolonna E, Capani F & Consoli A. Plasminogen activator inhibitor type 1 is increased in the arterial wall of type II diabetic subjects. Arterioscler Thromb Vasc Biol 2001; 21:1378-82
Pandolfi A, Giaccari A, Cilli C, Alberta MM, Morviducci L, De Filippis EA, Buongiorno A, Pellegrini G, Capani F & Consoli A. Acute hyperglycemia and acute hyperinsulinemia decrease plasma fibrinolytic activity and increase plasminogen activator inhibitor type 1 in the rat. Acta Diabetol 2001; 38:71-6
Park E, Shin JI, Park OJ & Kang MH. Soy isoflavone supplementation alleviates oxidative stress and improves systolic blood pressure in male spontaneously hypertensive rats. J Nutr Sci Vitaminol (Tokyo) 2005; 51:254-9
Pedraza-Chaverri J, Barrera D, Hernandez-Pando R, Medina-Campos ON, Cruz C, Murguia F, Juarez-Nicolas C, Correa-Rotter R, Torres N & Tovar AR. Soy protein diet ameliorates renal nitrotyrosine formation and chronic nephropathy induced by puromycin aminonucleoside. Life Sci 2004; 74:987-99
Pereira LM, Bezerra DG, Machado DL & Mandarim-de-Lacerda CA. Enalapril attenuates cardiorenal damage in nitric-oxide-deficient spontaneously hypertensive rats. Clin Sci (Lond) 2004; 106:337-43
Raij L. Workshop: hypertension and cardiovascular risk factors: role of the angiotensin II-nitric oxide interaction. Hypertension 2001; 37:767-73
Ridker PM, Gaboury CL, Conlin PR, Seely EW, Williams GH & Vaughan DE. Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin II. Evidence of a potential interaction between the renin-angiotensin system and fibrinolytic function. Circulation 1993; 87:1969-73
Rivas M, Garay RP, Escanero JF, Cia P, Jr., Cia P & Alda JO. Soy milk lowers blood pressure in men and women with mild to moderate essential hypertension. J Nutr 2002; 132:1900-2
Ruiz-Ortega M, Bustos C, Hernandez-Presa MA, Lorenzo O, Plaza JJ & Egido J. Angiotensin II participates in mononuclear cell recruitment in experimental immune complex nephritis through nuclear factor-kappa B activation and monocyte chemoattractant protein-1 synthesis. J Immunol 1998; 161:430-9
Ruiz-Ortega M, Esteban V, Ruperez M, Sanchez-Lopez E, Rodriguez-Vita J, Carvajal G & Egido J. Renal and vascular hypertension-induced inflammation: role of angiotensin II. Curr Opin Nephrol Hypertens 2006; 15:159-66
Saito Y, Wanezaki K, Kawato A & Imayasu S. Antihypertensive effects of peptide in sake and its by-products on spontaneously hypertensive rats. Biosci Biotechnol Biochem 1994; 58:812-6
Sanchez-Lozada LG, Tapia E, Jimenez A, Bautista P, Cristobal M, Nepomuceno T, Soto V, Avila-Casado C, Nakagawa T, Johnson RJ, Herrera-Acosta J & Franco M. Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Renal Physiol 2007; 292:F423-9
Sarkis A & Roman RJ. Role of cytochrome P450 metabolites of arachidonic acid in hypertension. Curr Drug Metab 2004; 5:245-56
Sawdey M, Podor TJ & Loskutoff DJ. Regulation of type 1 plasminogen activator inhibitor gene expression in cultured bovine aortic endothelial cells. Induction by transforming growth factor-beta, lipopolysaccharide, and tumor necrosis factor-alpha. J Biol Chem 1989; 264:10396-401
Schiffrin EL, Lipman ML & Mann JF. Chronic kidney disease: effects on the cardiovascular system. Circulation 2007; 116:85-97
Shin ZI, Yu R, Park SA, Chung DK, Ahn CW, Nam HS, Kim KS & Lee HJ. His-His-Leu, an angiotensin I converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo. J Agric Food Chem 2001; 49:3004-9
Siasos G, Tousoulis D, Antoniades C, Stefanadi E & Stefanadis C. L-Arginine, the substrate for NO synthesis: an alternative treatment for premature atherosclerosis? Int J Cardiol 2007; 116:300-8
Sipola M, Finckenberg P, Santisteban J, Korpela R, Vapaatalo H & Nurminen ML. Long-term intake of milk peptides attenuates development of hypertension in spontaneously hypertensive rats. J Physiol Pharmacol 2001; 52:745-54
Stamler J, Liu K, Ruth KJ, Pryer J & Greenland P. Eight-year blood pressure change in middle-aged men: relationship to multiple nutrients. Hypertension 2002; 39:1000-6
Stenvinkel P, Andersson P, Wang T, Lindholm B, Bergstrom J, Palmblad J, Heimburger O & Cederholm T. Do ACE-inhibitors suppress tumour necrosis factor-alpha production in advanced chronic renal failure? J Intern Med 1999; 246:503-7
Suda O, Tsutsui M, Morishita T, Tasaki H, Ueno S, Nakata S, Tsujimoto T, Toyohira Y, Hayashida Y, Sasaguri Y, Ueta Y, Nakashima Y & Yanagihara N. Asymmetric dimethylarginine produces vascular lesions in endothelial nitric oxide synthase-deficient mice: involvement of renin-angiotensin system and oxidative stress. Arterioscler Thromb Vasc Biol 2004; 24:1682-8
Takemoto M, Egashira K, Tomita H, Usui M, Okamoto H, Kitabatake A, Shimokawa H, Sueishi K & Takeshita A. Chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade: effects on cardiovascular remodeling in rats induced by the long-term blockade of nitric oxide synthesis. Hypertension 1997; 30:1621-7
Thogersen AM, Jansson JH, Boman K, Nilsson TK, Weinehall L, Huhtasaari F & Hallmans G. High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede a first acute myocardial infarction in both men and women: evidence for the fibrinolytic system as an independent primary risk factor. Circulation 1998; 98:2241-7
Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA & Smith RD. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 1993; 45:205-51
Trujillo J, Ramirez V, Perez J, Torre-Villalvazo I, Torres N, Tovar AR, Munoz RM, Uribe N, Gamba G & Bobadilla NA. Renal protection by a soy diet in obese Zucker rats is associated with restoration of nitric oxide generation. Am J Physiol Renal Physiol 2005; 288:F108-16
Utsumi S, Kohno M, Mori T & Kito M. An alternative cDNA encoding glycinin AlaBx subunit. J Agric Food Chem 1987; 35:210-4
Vasan RS, Larson MG, Leip EP, Evans JC, O'Donnell CJ, Kannel WB & Levy D. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med 2001; 345:1291-7
Vasdev S, Ford CA, Longerich L, Gadag V & Wadhawan S. Role of aldehydes in fructose induced hypertension. Mol Cell Biochem 1998; 181:1-9
Vasdev S, Longerich L & Gill V. Prevention of fructose-induced hypertension by dietary vitamins. Clin Biochem 2004; 37:1-9
Vaughan DE. PAI-1 and atherothrombosis. J Thromb Haemost 2005; 3:1879-83
Vaughan DE, Lazos SA & Tong K. Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin-angiotensin system and thrombosis. J Clin Invest 1995; 95:995-1001
Velasquez MT & Bhathena SJ. Dietary phytoestrogens: a possible role in renal disease protection. Am J Kidney Dis 2001; 37:1056-68
Wang JS, Singh H, Zhang F, Ishizuka T, Deng H, Kemp R, Wolin MS, Hintze TH, Abraham NG, Nasjletti A & Laniado-Schwartzman M. Endothelial dysfunction and hypertension in rats transduced with CYP4A2 adenovirus. Circ Res 2006; 98:962-9
Weber KT. Fibrosis and hypertensive heart disease. Curr Opin Cardiol 2000; 15:264-72
Wu J & Ding X. Hypotensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soy protein on spontaneously hypertensive rats. J Agric Food Chem 2001; 49:501-6
Xu YY, Yang C & Li SN. Effects of genistein on angiotensin-converting enzyme in rats. Life Sci 2006; 79:828-37
Yaghini FA, Zhang C, Parmentier JH, Estes AM, Jafari N, Schaefer SA & Malik KU. Contribution of arachidonic acid metabolites derived via cytochrome P4504A to angiotensin II-induced neointimal growth. Hypertension 2005; 45:1182-7
Yamamoto N. Antihypertensive peptides derived from food proteins. Biopolymers 1997; 43:129-34
Yang G, Shu XO, Jin F, Zhang X, Li HL, Li Q, Gao YT & Zheng W. Longitudinal study of soy food intake and blood pressure among middle-aged and elderly Chinese women. Am J Clin Nutr 2005; 81:1012-7
Yang HY, Yang SC, Chen JR, Tzeng YH & Han BC. Soyabean protein hydrolysate prevents the development of hypertension in spontaneously hypertensive rats. Br J Nutr 2004; 92:507-12
Ying L, Flamant M, Vandermeersch S, Boffa JJ, Chatziantoniou C, Dussaule JC & Chansel D. Renal effects of omapatrilat and captopril in salt-loaded, nitric oxide-deficient rats. Hypertension 2003; 42:937-44
Yokoyama K, Chiba H & Yoshikawa M. Peptide inhibitors for angiotensin I-converting enzyme from thermolysin digest of dried bonito. Biosci Biotechnol Biochem 1992; 56:1541-5
Zhou MS, Schulman IH & Raij L. Nitric oxide, angiotensin II, and hypertension. Semin Nephrol 2004; 24:366-78

------------------------------------------------------------------------ 第 5 筆 ---------------------------------------------------------------------
系統識別號 U0007-1108200817555100
論文名稱(中文) 新疆雪蓮與蕨化學成分之研究
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 96
學期 2
出版年 97
研究生(中文) 郭蓓蓓
學號 M301094007
學位類別 碩士
語文別 中文
口試日期 2008-07-25
論文頁數 155頁
口試委員 委員-李安榮
指導教授-許秀蘊
共同指導教授-徐鳳麟
關鍵字(中) 新疆雪蓮

NMR
關鍵字(英) Saussurca involucrata Kar. et Kir
Pteridium aquilinum (L.) Kuhn ssp. latiusculum (Desv.) Shieh
NMR
學科別分類
中文摘要 本研究探討新疆雪蓮及蕨植物之化學成分,由新疆雪蓮70%丙酮的萃取物和蕨甲醇的萃取物藉由管柱層析分離純化出九個化合物,化合物之化學結構是以並藉由各種光譜(MS、旋光度、X-ray、1D和2D NMR)的數據解析所確立。
新疆天山雪蓮部分的兩個化合物,分別為(-)-11βH-11,13-dihydrodeh-
ydrocostus lactone-8-O-β-D-glucoside (SI-1)和quercetin(SI-2),而SI-1為新疆雪蓮之特徵化合物。
蕨部份則有七個化合物,分別為p-hydoxybenzoic acid (PA-1)、kaempferol-3 -O-β-D-glucopyranoside (PA-2)、3-(1-C-β-D-glucopyranosyl)- 2,6 -dihydroxy-
5-methoxybenzoic acid) (PA-3)、(-)- (7S,8R)-Dihydrodehydrodiconiferyl Alcohol 4-O-β-D- glucopyranoside (PA-4)、(+)-(7S,8S,7'S,8'S)-pinoresinol- 4-β-D-gluco-
pyranoside (PA-5)、(-)-(2S,3S,7'R)-2-(4'-O-β-D-glucopyranosyl-7'- amino-3'-
methoxybenzyl)-3-(6"-amino-4"-hydroxy-3"-methoxybenzyl)tetrahydrofuran(PA-6)、β-sitosterol galactopyranoside (PA-7)、(PA-8),PA-1~PA-5以及PA-7為已知化合物,但PA-3、PA-4、PA-5、PA-7為首次在此植物中發現,而PA-6為一個新化合物。
論文目次 目錄
頁次
中文摘要 1
英文摘要 2
第一章 緒論 3
一、前言 3
二、研究動機與目的 3
三、過去相關研究之概要 4
(一)、 雪蓮花類植物之相關回顧 4
(二)、 新疆雪蓮之相關回顧 14
(三)、 蕨相關回顧 24
第二章 實驗步驟與方法 31
一、 植物來源 31
二、萃取與分離純化步驟 31
三、實驗部份 34
第三章 實驗結果與討論 36
一、新疆雪蓮化合物結構解析 36
3-1-1 SI-1之結構解析 36
3-1-2 SI-2 之結構解析 52
二、蕨化合物結構解析 61
3-2-1 PA-1之結構解析 61
3-2-2 PA-2之結構解析 65
3-2-3 PA-3之結構解析 72
3-2-4 PA-4之結構解析 83
3-2-5 PA-5之結構解析 97
3-2-6 PA-6之結構解析 113
3-2-7 PA-7之結構解析 126
第四章 結論 142
參考文獻 146

圖目錄
頁次
Figure 1. 新疆雪蓮 Photo of Saussurea involucrara Kar. et Kir. Ex
Maxim. 15
Figure 2. 蕨 Photo of Pteridium aquilinum (L.) Kuhn subsp. latiusculum
(Desv.) Underw. 25
Figure 3. Chemical structure of Ptaquiloside and proven pterosin B and
bracken dienone reaction products generated at various con-
ditions 30
Figure 4. Isolation flow chart of Saussurea involucrara Kar. Et Kir.
Ex Maxim. 32
Figure 5. Isolation flow chart of P. aquilinum (L.) Kuhn subsp. latiusculum
(Desv.) Shieh. 33
Figure 6. Selective 1H-1H COSY and HMBC correlactions of SI-1 38
Figure 7. Molecular structure (relative configuration) of compound SI-1
according to X-ray analysis 39
Figure 8. SI-1之1H-NMR(d6-acetone)圖譜 43
Figure 9. SI-1之1H-NMR(d6-acetone)2.9-5.2ppm局部放大圖譜 44
Figure 10. SI-1之1H-NMR(d6-acetone)1.3-2.6ppm局部放大圖譜 45
Figure 11. SI-1之13C-NMR(d6-acetone)圖譜 46
Figure 12. SI-1之13C-NMR(d6-DMSO)圖譜 47
Figure 13. SI-1之DEPT (d6-acetone)圖譜 48
Figure 14. SI-1之HMQC(d6-acetone)圖譜 49
Figure 15. SI-1之HMBC(d6-acetone)圖譜 50
Figure 16. SI-1之1H-1H COSY(d6-acetone)圖譜 51
Figure 17. Selective HMBC correlactions of SI-2 53
Figure 18. SI-2之1H-NMR(d6-acetone)圖譜 55
Figure 19. SI-2之13C-NMR (d6-acetone)圖譜 56
Figure 20. SI-2之DEPT(d6-acetone)圖譜 57
Figure 21. SI-2之HMQC (d6-acetone)圖譜 58
Figure 22. SI-2之HMBC (d6-acetone)圖譜 59
Figure 23. SI-2之低解析ESI-MS 圖譜 60
Figure 24. PA-1之 1H-NMR(d4 -methanol)圖譜 61
Figure 25. PA-1 之 13C-NMR(d4 -methanol)圖譜 64
Figure 26. PA-2之1H-NMR (d4-methanol) 圖譜 68
Figure 27. PA-2之1H-NMR (d4-methanol) 4.5-6.0ppm 局部放大圖譜 69
Figure 28. PA-2之1H-NMR (d4-methanol) 局部放大圖譜 70
Figure 29. PA-2之13C-NMR (d4-methanol)圖譜 71
Figure 30. Selective 1H-1H COSY and HMBC correlactions of PA-3 73
Figure 31. PA-3之1H-NMR (d4-methanol) 圖譜 75
Figure 32. PA-3之1H-NMR (d4-methanol) 3.0-5.0 ppm局部放大圖譜 76
Figure 33. PA-3之13C-NMR (d4-methanol)圖譜 77
Figure 34. PA-3之DEPT (d4-methanol)圖譜 78
Figure 35. PA-3之HMQC (d4-methanol)圖譜 79
Figure 36. PA-3之HMBC (d4-methanol)圖譜 80
Figure 37. PA-3之1H-1H COSY (d4-methanol)圖譜 81
Figure 38. PA-3之低解析ESI-MS 圖譜 82
Figure 39. Selective 1H-1H COSY and HMBC correlactions of PA-4 86
Figure 40. Selective NOESY correlactions of PA-4 87
Figure 41. PA-4之1H-NMR (d4-methanol) 圖譜 89
Figure 42. PA-4之13C-NMR (d4-methanol) 圖譜 90
Figure 43. PA-4之DEPT (d4-methanol)圖譜 91
Figure 44. PA-4之HMQC (d4-methanol)圖譜 92
Figure 45. PA-4之HMBC (d4-methanol)圖譜 93
Figure 46. PA-4之1H-1H COSY (d4-methanol)圖譜 94
Figure 47. PA-4之 NOESY (d4-methanol)圖譜 95
Figure 48. PA-4之低解析ESI-MS 圖譜 96
Figure 49. Selective 1H-1H COSY and HMBC correlactions of PA-5 99
Figure 50. Selective NOESY correlation of PA-5 100
Figure 51. PA-5之1H-NMR (d4-methanol) 圖譜 103
Figure 52. PA-5之1H-NMR (d4-methanol) 3.0-5.0 ppm 局部放大圖譜 104
Figure 53. PA-5之1H-NMR (d4-methanol) 局部放大圖譜 105
Figure 54. PA-5之13C-NMR (d4-methanol) 圖譜 106
Figure 55. PA-5之DEPT(d4-methanol) 圖譜 107
Figure 56. PA-5之HMQC(d4-methanol) 圖譜 108
Figure 57. PA-5之HMBC(d4-methanol) 圖譜 109
Figure 58. PA-5之1H-1H COSY(d4-methanol) 圖譜 110
Figure 59. PA-5之NOESY(d4-methanol) 圖譜 111
Figure 60. PA-5之低解析ESI-MS 圖譜 112
Figure 61. Selective 1H-1H COSY and HMBC correlation of PA-6 115
Figure 62. Selective NOESY correlation of PA-6 116
Figure 63. PA-6之1H-NMR (d4-methanol) 圖譜 118
Figure 64. PA-6之13C-NMR (d4-methanol) 圖譜 119
Figure 65. PA-6之DEPT (d4-methanol) 圖譜 120
Figure 66. PA-6之HMQC (d4-methanol) 圖譜 121
Figure 67. PA-6之HMBC (d4-methanol) 圖譜 122
Figure 68. PA-6之1H-1H COSY (d4-methanol) 圖譜 123
Figure 69. PA-6之NOESY (d4-methanol) 圖譜 124
Figure 70. PA-6之低解析ESI-MS 圖譜 125
Figure 71. Selective 1H-1H COSY and HMBC correlation of PA-7 128
Figure 72. Selective NOESY correlation of PA-7 129
Figure 73. PA-7之1H-NMR (d6-DMSO) 圖譜 132
Figure 74. PA-7之1H-NMR (d6-DMSO)2.7-5.5 ppm局部放大圖譜 133
Figure 75. PA-7之1H-NMR (d6-DMSO) 0.5-2.7 ppm局部放大圖譜 134
Figure 76. PA-7之13C-NMR (d6-DMSO)圖譜 135
Figure 77. PA-7之13C-NMR (d6-DMSO) 15-80ppm局部放大圖譜 136
Figure 78. PA-7之 DEPT (d6-DMSO)圖譜 137
Figure 79. PA-7之 HMQC (d6-DMSO)圖譜 138
Figure 80. PA-7之 HMBC (d6-DMSO)圖譜 139
Figure 81. PA-7之1H-1H COSY(d6-DMSO)圖譜 140
Figure 82. PA-7之 NOESY (d6-DMSO)圖譜 141
Figure 83. Effect of SI-1、SI-2、PA-1~PA-7 on glucose uptake in
C1C12 cell 144

表目錄
Table 1. 雪蓮植物之種類及其分佈 5
Table 2. 常見雪蓮花之化學成分(7種) 7
Table 3. 雪兔子、新疆雪蓮及水母雪蓮之揮發油成分 10
Table 4. 雪蓮組織培養外植體及培養條件 (3種) 13
Table 5. 新疆雪蓮之化學成分 15
Table 6. 新疆雪蓮化學成分之結構 16
Table 7. 蕨之Pterosins類化合物 26
Table 8. 蕨之其他類化合物 27
Table 9. 1H and 13C NMR Chemical shifts, 1H-1H COSY and HMBC Correlations of (-)-11βH-11,13-dihydrodehydrocostus lactone-
8-O-β- D-glucoside (SI-1) 39
Table 10. 13C NMR Chemical shifts of SI-1 and Involucratolactone - 8-
O-β-D-glucoside 41
Table 11. 1H and 13C NMR Chemical shifts, HMBC Correlations of SI-2
and 13C spectra of Quercetin 54
Table 12. 1H and13C NMR Chemical shifts of PA-1 and p-hydroxybenzoic
acid 62
Table 13. 1H and 13C chemical shift of PA-2 and 13C chemical shift of
papera(d4-methanol) 66
Table 14. 1H and 13C NMR Chemical shifts, 1H-1H COSY and HMBC
Correlations of PA-3 74
Table 15. 1H and 13C NMR Chemical shifts, 1H-1H COSY and HMBC
Correlations of PA-4 87
Table 16. 1H and 13C NMR Chemical shifts, 1H-1H COSY and HMBC
Correlations of PA-5 101
Table 17. 1H and 13C NMR Chemical shifts, 1H-1H COSY and HMBC
Correlations of PA-6 116
Table 18. 1H and 13C NMR Chemical shifts, 1H-1H COSY and HMBC
Correlations of PA-7 129
Table 19 The compounds isolated from aS. involucrara Kar. Et Kir.
Ex Maxim.,b P. aquilinum (L.) Kuhn subsp. latiusculum (Desv.)
Underw.and yield 142

參考文獻 參考文獻
1. 陳發菊, 楊映根, 趙德修, 桂耀林, 郭仲琛.我國雪蓮植物的種類、生境分布及
化學成分的研究進展. 植物學通報, 1999, 16(5), 561-568.
2. 李君山,蔡少青.雪蓮花類藥材的化學和藥理研究進展.中國藥學雜誌, 1998, 33
(8), 449-452.
3. 鄭尚珍, 余建華, 沈序維.雪兔子黃酮成分的研究.西北師範大學學報, 1990, 4,
42-45.
4. 鄭尚珍, 余建華, 沈序維.雪兔子的化學成分.高等學校化學學報, 1991, 12,
1613-1616.
5. 陳金瑞, 王葉富, 邱林剛, 楊竟生, 楊崇仁. 藏藥雪蓮花的化學成分. 雲南植物
研究, 1989, 11(2), 271-276
6. Chemical and Pharmaceutical Bulletin , 2005, 53(11), 1416-1422
7. Tian-Min Wang, Toshinari Hojo, Fu-Xiang Ran, Ru-Feng Wang, Rui-Qing Wang
et. al. Cardenolides from Saussurea stella with Cytotoxicity toward Cancer Cells.
Journal of Natural Products, 2007, 70 ,1429-1433
8. Hong-Bing Wang, Hua-Ping Zhang, Yu Zhou, Jian-Ping Zuo, and Guo-Wei Qin.
Sesquiterpenoids from Saussurea laniceps. Journal of Natural Products, 2005,
68(5), 762-765
9. 李玉林, 王洪倫, 索有瑞.尖苞雪蓮的化學成分.西北植物學報, 2004, 24(7),
1292-1294.
10.趙莉, 王曉玲.新疆雪蓮的化學成分,藥理作用及其臨床作用.西南民族大學學報
(自然科學版), 2003, 29(4), 424-428
11.Ferdinand Bohlmann, Pahup Singh, Jasmin Jakupovic, Siegfried Huneck.Futher
Guaianolides from Saussurea Species.Planta Medica, 1985, 1, 74-75
12. Yu Li, Zhong-Jian Jia. Guaianolides form Saussurea Involucrata.Phytochemistry
, 1989, 28, 3395-3397.
13.李瑜, 賈忠建, 黃海波, 杜牧, 朱子清.雪蓮中兩個倍半萜內酯的研究.蘭州大學
學報(自然科學版), 1983, 19, 202.
14.王惠康, 林章代, 何侃, 萬樹文.新疆雪蓮學成份的研究.藥學學報, 1986, 21(9),
680-682.
15.宋治中, 賈忠建.新疆雪蓮化學成分的研究VI. 中草藥, 1990, 21(12), 4-5.
16.Yan Li, Chunlan Wang, Shunxing Guo, Junshan Yang, Peigen Xiao.Three
Guaianolides from Sauussurea Involucrata and Their Contents Determination by
HPLC. Journal of Pharmaceutical and Biomedical analysis, 2007, 44, 288-292
17.李燕, 郭順星, 王春蘭, 楊峻山, 肖培根.新疆雪蓮化學成分的研究.中國中藥雜
誌, 2007, 32(2), 162-163
18.楊峻山, 謝鳳指, 劉慶華, 吳霞.新疆雪蓮的香豆素類化學成分的研究.中國中
藥雜誌, 2006, 41(23),1774-1776
19.李瑜, 賈忠建, 朱子清.新疆雪蓮化學成分研究V. 高等學校化學學報, 1989,
10(9), 909-912
20.鄭尚珍, 余建華. 雪兔子的揮發油和微量元素成分的研究.中國藥學雜誌,
1991, 26(9), 526-529
21.賈忠建, 李瑜, 杜牧.大苞雪蓮揮發油成分的研究.蘭州大學學報(自然科學版),
1986, 22(3), 100-105.
22.國外儀器分析技術與應用, 1989, 19(9), 25
23何新, 李觀海等.新疆雪蓮黃酮的抗炎鎮痛作用及抗炎機理研究.西北藥學雜
誌, 1990, 5(3), 17-18.
24.祝繼英.綿頭雪蓮花及其藥物應用.中國民族民間醫藥雜誌, 2002, 58, 295-296.
25.王一峰, 吳依茜等.甘肅鳳毛菊屬藥用植物資源研究.中華實用中西醫雜誌,
2006, 19(23), 2851-2854.
26. Midori Takasaki, Takao Konoshima, Katsuko Komatsu, Harukuni Tokuda,
Hoyoku Nishino.Anti-tumor-promoting activity of lignans from the aerial part of
Saussurea medusa. Cancer Letters, 2000, 158, 53-59.
27.韓書亮.大苞雪蓮四種成分抗癌作用研究. 癌變•畸變•突變,1995, 7(2) , 80-83
28.劉力生, 鄭榮梁, 賈忠建等.大苞雪蓮中兩種黃酮對癌細胞DNA合成的影響.蘭
州大學學報(自然科學版), 1985, 21(4), 80-83.
29.劉力生, 鄭榮梁等.大苞雪蓮總生物鹼對L7712癌細胞DNA,RNA和蛋白質代
謝的影響.蘭州大學學報(自然科學版),1986, 22(4), 102-105.
30.陳金瑞, 王葉富, 邱林剛, 楊竟生, 楊崇仁. 藏藥雪蓮花的化學成分. 雲南植
物研究, 1989, 11(2), 271-276
31.張本國, 方枚等.雪蓮注射液在疼痛治療中的實驗研究及臨床應用.中華麻醉
學雜誌, 1995, 15(1), 24-27.
32.包力, 卓鷹, 陳志嬋, 徐新玉李雪梅.雪蓮注射液治療風寒濕性關節痛療效觀
察. 中國中醫藥信息雜誌, 2006, 13(9), 69-70.
33.莊麗, 李衛紅, 孟麗紅.新疆雪蓮資源的利用, 研發與保護. 乾旱區資源與環
境, 2006, 20(2), 195-202.
34.趙莉, 王曉玲.新疆雪蓮的化學成分,藥理作用及其臨床作用.西南民族大學學
報(自然科學版), 2003, 29(4), 424-428.
35.黃繼紅, 譚敦炎.雪蓮的研究進展.新疆農業大學學報, 2002, 25(2), 8-13.
36.中華本草,page:6996
37.鄭榮梁, 劉光順, 賈忠建等.大苞雪蓮花多糖清除自由基及抗疲勞作用.中國藥
理學報, 1993, 14, Suppl, 47-49.
38.黃明勤, 趙國珍.雪蓮抗疲勞抗缺氧效應以及對血紅蛋白含量的影響,西北師
範大學學報, 1996, 32(2), 58-60.
39.高博, 梁中琴, .天山雪蓮水提取物抗輻射損傷作用的機理研究.江蘇醫藥雜誌,
2003, 29(1), 17-19.
40.陳阿城,李勃.新疆雪蓮的藥效學研究.天水師範學院學報, 2005, 25(2), 60-61.
41.高博,梁中琴等.天山雪蓮水提取物對小鼠輻射損傷的保護作用.中草藥, 2003,
34(5), 443-445.
42.王振海, 韓鋒.對雪蓮通脈丸延緩衰老作用的分析.新疆中醫藥, 1994, 4, 28-29.
43.晁威.雪蓮花及其藥理作用,食品與藥品, 2005, 7(4), 68-69.
44.蕨類圖鑑:台灣三百多種蕨類生態圖鑑, 郭城孟著 台北市 遠流
出版社 2001年, 136頁
45. Yoshihira K, Fukuoka M, Kuroyannagi M, Natori S, Umeda M, Morohoshi T,
Enomoto M, Saito M. Chemical and toxicological studies on bracken fern,
Pteridium aquilinum var. latiusculum. I. Introduction, extraction and fractionation of constituents, and toxicological studies including carcinogenicity tests., Chemical and Pharmaceutical Bulletin, 1978, 26(8), 2346-2364.
46. Masamichi Fukuoka. Chemical and toxicological studies on bracken fern,
Pteridium aquilinum var. latiusculum. VI. Isolation of 5-O-Caffeoylshikimic Acid as an Antithiamine Factor, Chemical and Pharmaceutical Bulletin, 1982, 30(9), 3219-3224.
47. Castillo UF, Wilkins AL, Lauren DR, Smith BL, Alonso-Amelot M. Pteroside
A2-a new illudane-type sesquiterpene glucoside from Pteridium caudatum L.
Maxon, and the spectrometric characterization of caudatodienone, Journal of
Agricultural and Food Chemistry., 2003, 51, 2559-2564.
48. Ptaquiloside Z, a New Toxic Unstable Sesquiterpene Glucoside from the
Neotropical Bracken Fern Pteridium aquilinum var. caudatum. Bioorganic and
Medicinal chemistry, 1998, 6, 2229-2233.
49. Natural product research and development, 2004, 16(2), 121-123.
50. Evans IA, Al-Samarrai AM, Smith RM. Bracken toxicology: identification of
some water soluble compounds from crozier and rhizome, Reserch in veterinary
science, 1984, 37, 261-265.
51. Uvidelio F. Castillo, Alistair L. Wikins, Denis R. Lauren et. al. Structure
Elucidation of 1,4-dihydroxy-2-iso-propyl-5-methylphenyl-1-O-β-glucopyranoside, a Constituent of Pteridium aquilinum var. caudatum. Journal of Natural products, 1995,58(12) , 1889-1891.
52. Makoto Ojika, Hideo Kigoshi, Hiroki Kuyama et. al. Studies on Pteridium aquilinum var. latiusculum. IV. Isolation of Three p-Hydroxystyrene Glycosides and an Efficient Method for the Isolation of Ptaquiloside, an Unstable Bracken Carcinogen. Journal of Natural products, 1985, 48(4), 634-637.
53. Unvidelio F.Castillo, Alistair L., Wilkinset. Al. Isoptaquiloside and Caudatoside,
Illudane-type Sesquiterpene Glucosides from Pteridium aquilinum var. caudatum,
Phytochemistry, 1997, 44(5), 901-906.
54. Kimiaki Saito, Takayuki Nagao, Masayuki Matoba et. al. Chemical Assay of
Ptaquiloside, the Carcinogen of Pteridium aquilinum and the Distribution of
Related Compounds in the Pteridaceae, Phytochemistry, 1989, 28(6), 1605-1611.
55.張帆,羅水忠等.蕨菜的化學成分,天然產物研究與開發, 2004, 16(2), 121-123.
56.周瓊,張濤等.蕨及其研究進展,中國野生植物資源, 2003, 22(6), 66-68.
57. Kiyoyuki Yamada ,Makoto Ojika and Hideo Kigoshi.Ptaquiloside,the major toxin of bracken, and related terpene glycoside: chemistry, biology and ecology, Natural product reports, 2007, 24, 798-813.
58.黃能慧, 李誠秀,羅俊等,蕨菜致癌作用的實驗研究,貴陽醫學院學報, 1994, 19(3), 250-253.
59. Rasmussen LH, Kroghsbo S, Frisvad JC, Hansen HC. Occurrence of the
carcinogenic Bracken constituent ptaquiloside in fronds, topsoils and organic soil
layers in Denmark, Chemosphere, 2003, 51, 117-127.
60. Iwao Hirono,Chiken Shibuya et. al. Carcinogenic Activity of Processed Bracken
Used as Human Food, Journal of the National Cancer Institute, 1972, 48, 1245-
1250.
61. Pamukcu AM, Wang CY, Hatcher J, Bryan GT. Carcinogenicity of Tannin and Tannin-Free Extracts of Bracken fern in Rats, Journal of the National Cancer Institute, 1980, 65(1), 131-137.
62. Wang CY, Chiu CW, Pamukcu AM, Bryan GT. Identification of carcinogenic Tannin Isolated from Bracken Fern (Pteridium aquilinum). Journal of the National Cancer Institute, 1976, 56(1), 33-36.
63. R. H. KENTEN. Manomeric Studies of Bracken [Pteridium aquilinum (L.) Kuhn]
Thiaminase The Biochemical Journal, 1958, 69(3), 439-448.
64. R. H. KENTEN. The Partial Purification and Properties of a Thiaminase from Bracken [Pteridium aquilinum (L.) Kuhn]. The Biochemical Journal, 1957, 67(1)), 25-33.
65. Takayuki Nagao, Kimiaki Saito, Emiko Hirayama et. al. Mutagenicity of Ptaquiloside, the carcinogen in bracken, and its related illudane-type sesquiterpenes I Mutagenicity in Salmonella typhimurium, Mutation Research, 1989, 215, 173-178.
66. J.C.M.van der Hoeven, W.J.Lagerweij, M.A.Posthumus,A.van Veldhuizen and H.A.J.Holterman, Aquilide A, a new mutagenic compound isolated from bracken fern Carcinogenesis, 1983, 4(12), 1587-1590.
67. Matoba M, Saito E, Saito K, Koyama K, Natori S, Matsushima T, Takimoto M.
Assay of ptaquiloside, the carcinogenic principle of bracken, Pteridium aquilinum,
by mutagenicity testing in Salmonella typhimurium, Mutagenesis, 1987, 2(6),
419-423.
68. Saito M, Umeda M, Enomoto M, Hatanaka Y, Natori S. Cytotoxicity and
carcinogenicity of pterosins and pterosides, 1-indanone derivatives from bracen
(Pteridium aquilinum). Specialia, 1975, 15(7), 829-831.
69. Kiyoyuki Yamada ,Makoto Ojika and Hideo Kigoshi.Ptaquiloside,the major toxin of bracken, and related terpene glycoside: chemistry, biology and ecology, Natural product reports, 2007, 24, 798-813.
70. Yu Li, Zhong-Jian Jia. Guaianolides form Saussurea Involucrata.Phytochemistry
, 1989, 28, 3395–3397.
71.13C-CP-MAS-NMR Studies of Flavonoids. I. Solid-State Conformation
Quercetin, Quercetin-5'-sulphonic acid and Some Simple Polyphenols . Solid
State Nuclear Magnetic Resonance, 1997, 10, 33-38.
72. Katherine Nasfay. Carbon-13 Nuclear Magnetic Resonance of Biologically
Important Aromatic Acids. I. Chemical Shifts of Benzoic Acid and Derivatives.
Journal of The American Chemical Society, 1972, 94(24), 8564-8569.
73. Journal of Agricultural and Food Chemistry , 2007, 55, 8251-8260.
74. Virendra S. Rana, Mohan S. M. Rawat, Geeta Pant, Akito Nagatsu. Chemical
Constituents and Antioxidant Activity of Mallotus roxburghianus Leaves.
Chemistry and biodiversity, 2005, 2, 792-798.
75. Mitsumasa Haruna, Tomoko Koube, Kazuo Ito, Hiroyuki Murata. Balanophonin, a
New Neo-Lignan from Balanophora Japonica Makino.Chemical and Pharmaceu-
cetical Bulletin, 1982, 30(4), 1525-1527.
76. Noriko Matsuda, Hiromi Sato, Yasunori Yaoita, Masao Kikuchi. Isolation and
Absolute Structures of the Neoligna Glycoside with the Enantiomeric Aglycones
from the Leaves of Viburnum awabuki K. KOCH. Chemical and Pharmaceutical
Bulletin, 1996, 44(5), 1122-1123.
77. C. K. Atal, K. L. Dhar . Isolation and Structure Determination of (+)-Diaeudesm-
in, the First Naturally Occurring Diaxially Substituted 3,7-Dioxabicyclo[3,3,0]
octane Lignan. Journal of the Chemical Society. C, Organic, 1967, 2228-2230.
78. Revised Structures for Pluviatilol, Methyl Pluviatilol and Xanthoxylol.
Tetrahedron, 1976, 32, 2783-2788.
79. Revised Structures for Epiaschantin and Epimagnolin. Tetrahedron Letters,
1977, 47, 4137-4140.
80. Maiada M. A. Rahman, Paul M. Dewick, David E. Jackson, John A. Lucas.
Lignans of Forsythia Intermedia.Phytochemistry, 1990, 29(6), 1971-1980.
81. Adriana C. Casabuono and Alicia B. Pomilio. Liganas and a Stilbene from Festuca
Argentina. Phytochemistry, 1994, 35(2), 479-483.
82. Mariko Chiba, Sueo Hisada, Sansei Nishibe, H. Thieme. 13C NMR Analysis of
Symplocosin and (+)-Epipinoresinol glucoside.Phytochemistry, 1980, 19, 335-
336.
83. Chinese Chemical Letters, 2004, 15(1), 43-45.
84.中國中藥雜誌, 2006, 31(2), 133-135.
85.劉海利, 吳立軍, 吳斌. 板藍根木脂素苷A的平面結構研究. 波譜學雜誌,
2002, 19(3), 315-319.
86. Li-Hua Xie, Teruaki Akao, Kenjiro Hamasaki, Takeshi Deyama, Masao Hattori.
Biotransformation of Pinoresinol Diglucoside of Enterococcus faecalis Strain
PDG-1 Responsible for the Transformation of (+)-Pinoresinol to (+) -Lariciresin-
ol . Chemical and Pharmaceutical Bulletin, 2003, 51(5), 508-515
87. A. Estevez-Braun, R. Estevez-Reyes, J.A. Gonzaiez-Perez et. al. Busaliol and
Busalicifol, Two New Tetrahydrofuran Lignans form Bupleurum Salicifolium.
Journal of Natural Products, 1995, 58(6), 887-892.
88. Shaheen Faizi, Muhammad Ali, Rubeena Saleem, Irfanullah, Sarah Bibi. Spectral
Assignments and Reference Data: Complete 1H and 13C NMR assignments of
stigma-5-en-3-O-β-glucoside and its acetyl derivative. Magnetic Resonance in
Chemistry, 2001, 39, 399-405.

------------------------------------------------------------------------ 第 6 筆 ---------------------------------------------------------------------
系統識別號 U0007-1206200816072000
論文名稱(中文) 1,3-Benzothiazinone衍生物之合成及細胞保護作用之活性評估
論文名稱(英文) Synthesis and Biological Evaluation of 1,3-Benzothiazinone Derivatives In Cell Protective Activities
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 96
學期 2
出版年 97
研究生(中文) 蘇琪勝
學號 M301095007
學位類別 碩士
語文別 中文
口試日期 2007-06-26
論文頁數 130頁
口試委員 指導教授-吳建德
委員-郭憲壽
委員-王惠珀
關鍵字(中) 細胞保護;神經膠質瘤;星狀細胞
關鍵字(英) Cell protection;C6 glioma;C2-Ceramide;1,3-Benzothiazinone
學科別分類
中文摘要 神經退化性疾病包括 Alzheimer's Disease、Parkinson's Disease,另外,物理性造成之神經傷害,例如缺血性神經傷害(Ischemia/Stroke) 或頭部劇烈撞擊都是常見之神經傷害疾病。而研究指出,這些傷害會因為神經細胞中之膠質細胞如星狀細胞的維持而具有被保護之作用,相反的疾病造成之星狀細胞受損或凋亡,皆會進一步造成神經細胞之保護喪失而造成神經細胞之傷害甚至凋亡反應之發生,並可能為神經退化性疾病之重要機轉之一。因此保護星狀細胞可能具有保護神經細胞之作用。
在眾多研究中發現,上述之傷害皆與 Ceramide 具有關連性,因此本實驗利用易於穿透細胞膜之 C2-ceramide 作為模擬星狀細胞(C6 glioma)因疾病或外力傷害而凋亡之過程,並以此作為藥物篩選之工具,評估合成化合物對於細胞保護之作用。
1,3-Benzothiazinone 衍生物在細胞毒性評估時發現具有細胞數量增加之現象,並且於正常細胞中不具有明顯毒性之特性,再加上關於抑制凋亡活性作用之報導,因此將這類衍生物作為評估細胞保護作用之化合物。
其中發現,compound 5 在 5 及 10 μM下具有微弱的dose-dependent 的保護作用趨勢,但當濃度提高至 20μM以上即產生毒性作用,由結果推測compound 5 確實具有細胞保護之作用。
如果藉由compound 5 作為 lead compound 並設法去除其毒性作用,可能有機會發展成為具有細胞保護功能之藥物。
英文摘要 Neurodegenerative diseases such as Alzheimer’s Disease, Parkinson’s Disease, and Stroke are common diseases of neuronal damage. It has been reported that these kind of damage might be protected by the maintance of astrocytes. On the contrary, diseases caused astrocyte damage or apoptosis would result in it’s loss in neuro- protective activities, even cause neuron damage and cell apoptosis. Which could be one of the mechanisms of neurodegenerative diseases. As a result, astrocytes protection might be a route for neuroprotection.
Many researches have been reported that such damage is related to ceramide. As a result, we use C2-ceramide to induce apoptotic effect in C6-glioma, the astrocyte like cell line, to mimic the apoptotic condition in neurodegenerative disease and use it as a drug screening model to evaluate the cell protective activities of our compounds.
During the cytotoxic evaluation of 1,3-benzothiazinone derivatives, we found that there is a increased cell number phenomena, their nearly no toxic character in the normal cell line, and reported antiapoptotic effect, which prompt us to evaluate if these compounds have cell protective activities
We found that compound 5 in 5 and 10μM seems to have minor dose-dependent trend of cell protective activities, but the toxicity become profound when the concentration doubled. The results showed that compound 5 actually have cell protective activity
Use compound 5 as a lead compound to reduce it’s toxicity might be a route for the development of cell protective agents.
論文目次 目錄
目錄 3
圖表目錄 6
光譜目錄 7
縮寫索引 9
摘要 10
Abstract 11
一、研究背景 12
Glial cell and Astrocyte 12
提供抗氧化物質 12
清除glutamate 12
1,3-Benzothiazinone 衍生物 14
Antiapoptotic effect of 2-Substituted 4H-1,3-Benzothiazin-4-one 衍生物 16
Ceramide 17
Ceramide 引發細胞凋亡之機轉: 19
1. 作為二級傳遞訊號 19
2. Ceramide本身具有的signaling lipid 的功能 20
Ceramide 與神經退化性疾病及缺血性腦傷害的關係: 20
Alzheimer’s disease 21
Parkinson’s disease 21
Ischemic brain injury / Stroke 22
二、研究方法及目的 24
化學部份 24
活性部份 25
以C2-Ceramide 對C6-glioma引發之凋亡反應作為神經傷害及神退化性疾病藥物治療以達到細胞保護作用之藥物篩選模型: 25
MTT Assay (評估細胞存活率) 25
C2-Ceramide Assay 26
三、結果與討論 27
化學合成 27
圖譜解析 29
合成討論 31
細胞保護作用評估 32
C2-Ceramide Assay 反應條件確認實驗 32
C2-Ceramide Assay 藥物篩選實驗 32
四、實驗部份 36
儀器與試藥 37
化合物合成流程及光譜資料 39
化合物(1) 40
2-mercapto-4H-benzo[e][1 ,3]thiazin-4-one 40
化合物(2) 41
2-(methylthio)-4H-benzo[e][1 ,3]thiazin-4-one 41
化合物(3) 42
2-hydroxy-4H-benzo[e][1 ,3]thiazin-4-one 42
化合物(4) 43
2-amino-4H-benzo[e][1 ,3]thiazin-4-one 43
化合物(5) 44
2-hydrazinyl-4H-benzo[e][1 ,3]thiazin-4-one 44
化合物(6) 45
2-(methylamino)-4H-benzo[e][1 ,3]thiazin-4-one 45
化合物(7) 46
2-(ethylamino)-4H-benzo[e][1 ,3]thiazin-4-one 46
化合物(8) 47
2-(butylamino)-4H-benzo[e][1 ,3]thiazin-4-one 47
化合物(9) 48
2-(octylamino)-4H-benzo[e][1 ,3]thiazin-4-one 48
化合物(10) 49
2-(3-hydroxypropylamino)-4H-benzo[e][1 ,3]thiazin-4-one 49
化合物(11) 50
2-(benzylamino)-4H-benzo[e][1 ,3]thiazin-4-one 50
化合物(12) 51
2-(phenylamino)-4H-benzo[e][1 ,3]thiazin-4-one 51
化合物(13) 52
2-(naphthalen-1-ylmethylamino)-4H-benzo[e][1 ,3]thiazin-4-one 52
化合物(14) 53
2-(naphthalen-2-ylamino)-4H-benzo[e][1 ,3]thiazin-4-one 53
化合物(15) 54
2-(furan-2-ylmethylamino)-4H-benzo[e][1 ,3]thiazin-4-one 54
化合物(16) 55
2-(pyridin-2-ylmethylamino)-4H-benzo[e][1 ,3]thiazin-4-one 55
化合物(17) 56
2-(pyrrolidin-1-yl)-4H-benzo[e][1 ,3]thiazin-4-one 56
化合物(19) 58
2-(azepan-1-yl)-4H-benzo[e][1 ,3]thiazin-4-one 58
化合物(20) 59
2-(cyclohexylamino)-4H-benzo[e][1 ,3]thiazin-4-one 59
化合物(21) 60
2-((1r ,4r)-4-hydroxycyclohexylamino)-4H-benzo[e][1 ,3]thiazin-4-one 60
化合物(22) 61
3-(chloromethyl)-5H-benzo[e][1 ,2 ,4]triazolo[3 ,4-b][1 ,3]thiazin-5-one 61
化合物(23) 62
2-(chloromethyl)-9H-benzo[e][1 ,2 ,4]triazolo[5 ,1-b][1 ,3]thiazin-9-one 62
化合物(24) 63
2-(azidomethyl)-9H-benzo[e][1 ,2 ,4]triazolo[5 ,1-b][1 ,3]thiazin-9-one 63
化合物(25) 64
2-((9-oxo-9H-benzo[e][1 ,2 ,4]triazolo[5 ,1-b][1 ,3]thiazin-2-yl)methyl)isoindoline-1 ,3-dione 64
化合物(26) 65
(9-oxo-9H-benzo[e][1 ,2 ,4]triazolo[5 ,1-b][1 ,3]thiazin-2-yl)methyl carbamimidothioate 65
化合物(27) 66
2-((9-oxo-9H-benzo[e][1 ,2 ,4]triazolo[5 ,1-b][1 ,3]thiazin-2-yl)methylthio)benzoic acid 66
活性測試實驗 67
細胞培養 68
試藥處理 68
MTT Assay實驗步驟: 68
C2-Ceramide確認試驗之實驗步驟: 69
C2-Ceramide 試藥篩選之實驗步驟: 69
C2-Ceramide 測試試藥dose-dependent之實驗步驟: 70
數據統計: 70
五、圖譜 71
六、參考文獻 125
參考文獻 參考文獻
1. Purves, D. Neuroscience 4th ed. Sunderland, Mass. : Sinauer: 2008.
2. Takuma, K.; Baba, A.; Matsuda, T. Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 2004, 72, 111-27.
3. Bèahr, M. Neuroprotection : models, mechanisms, and therapies Wiley-VCH: 2004.
4. Tanaka, K.; Watase, K.; Manabe, T.; Yamada, K.; Watanabe, M.; Takahashi, K.; Iwama, H.; Nishikawa, T.; Ichihara, N.; Kikuchi, T.; Okuyama, S.; Kawashima, N.; Hori, S.; Takimoto, M.; Wada, K. Epilepsy and Exacerbation of Brain Injury in Mice Lacking the Glutamate Transporter GLT-1. Science 1997, 276, 1699-1702.
5. Smith, G. M.; Rutishauser, U.; Silver, J.; Miller, R. H. Maturation of astrocytes in vitro alters the extent and molecular basis of neurite outgrowth. Developmental Biology 1990, 138, 377-390.
6. Tiveron, M.-C.; Barboni, E.; Pliego Rivero, F. B.; Gormley, A. M.; Seeley, P. J.; Grosveld, F.; Morris, R. Selective inhibition of neurite outgrowth on mature astrocytes by Thy-1 glycoprotein. Nature 1992, 355, 745-748.
7. Burkhard Becher, A. P. J. P. A. Brain-immune connection: Immuno-regulatory properties of CNS-resident cells. Glia 2000, 29, 293-304.
8. de Bernardo, S.; Canals, S.; Casarejos, M. J.; Solano, R. M.; Menendez, J.; Mena, M. A. Role of extracellular signal-regulated protein kinase in neuronal cell death induced by glutathione depletion in neuron/glia mesencephalic cultures. Journal of Neurochemistry 2004, 91, 667-682.
9. Fiona E. Parkinson, J. F. C. R. Z. W. X. Gene expression for enzymes and transporters involved in regulating adenosine and inosine levels in rat forebrain neurons, astrocytes and C6 glioma cells. Journal of Neuroscience Research 2006, 84, 801-808.
10. Bohme, H.; Schmidt, W. Oxo compounds of the benzothiazine series. Arch. Pharm. 1953, 286, 437-41.
11. Sheu, S.-Y.; Lin, C.-Y.; Wu, J.-D.; Chiang, H.-C. Inhibition of xanthine oxidase by benzothiazinone analogs. Anticancer Research 1999, 19, 119-123.
12. Perkins, E.; Sun, D.; Nguyen, A.; Tulac, S.; Francesco, M.; Tavana, H.; Nguyen, H.; Tugendreich, S.; Barthmaier, P.; Couto, J.; Yeh, E.; Thode, S.; Jarnagin, K.; Jain, A.; Morgans, D.; Melese, T. Novel inhibitors of poly(ADP-ribose) polymerase/PARP1 and PARP2 identified using a cell-based screen in yeast. Cancer Research 2001, 61, 4175-4183.
13. Melese, T.; Perkins, E. L.; Yeh, E.; Sun, D. Heterocyclic poly(ADP-ribose) polymerase (PARP) inhibitors. 2001-US46811
2002044157, 20011203., 2002.
14. Kajino, M.; Kawada, A.; Nakayama, Y.; Kimura, H. Preparation of 2-heterocyclyl-1,3-benzothiazinone derivatives as inhibitors of apoptosis or cytoprotective agents. 2002-JP8866
2003020719, 20020902., 2003.
15. Kajino, M.; Nakayama, Y.; Kimura, A. Preparation of 1,3-benzothiazinones as macrophage migration inhibitory factor binders and apoptosis inhibitors, and treatment of diseases with them or their prodrugs. 2003-406172
2004196792, 20031204., 2004.
16. Kimura, H.; Sato, Y.; Takizawa, M.; Horiguchi, T.; Notoya, K. Cell death inhibitor. 2003-JP5256
2003090782, 20030424., 2003.
17. Kimura, H.; Tanida, S.; Kaneko, T. Preparation of benzothiazinone derivatives as heart muscular cell apoptosis inhibitors and remedies for heart diseases. 2001-JP7468
2002018356, 20010830., 2002.
18. Kajino, M.; Imaeda, T. Preparation of 1,3-benzothiazinone derivatives having a capability of binding to a macrophage migration inhibitory factor (MIF) and activating of an antioxidant response element (ARE). 2006-JP311977
2006132438, 20060608., 2006.
19. Gilkerson, T.; Jennens, D. C.; Coombs, M. E. Preparation of benzothiazinone derivatives as agrochemical fungicide. 87-200819
245902, 19870429., 1987.
20. Wolf, M.; Sellstedt, J. H. Analgesic 2-substituted-4H-1,3-benzothiazin-4-ones. 67-627296
3470168, 19670331., 1969.
21. Gheorghiu, C. V.; Stoicescu-Crivetz, L.; Budeanu, C.; Budeanu, E.; Alexa-Petrovanu, M.; Mandasescu, L.; Constantinescu, N.; Toma, A.; Stavri, G. Antituberculous substances. Rev. chim., Acad. rep. populaire Roumaine 1956, 1, 97-125.
22. 李惠玲. Synthesis of 2-Amino-Benzo[e][1,3]thiazin-4-ones Derivatives and Studies of Their Central Nervous System Activities. Taipei Medical University, Taipei, 2002.
23. Posse de Chaves, E. I. Sphingolipids in apoptosis, survival and regeneration in the nervous system. Biochim Biophys Acta 2006, 1758, 1995-2015.
24. Pettus, B. J.; Chalfant, C. E.; Hannun, Y. A. Ceramide in apoptosis: an overview and current perspectives. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2002, 1585, 114-125.
25. Lahiri, S.; Futerman, A. H. The metabolism and function of sphingolipids and glycosphingolipids. Cell Mol Life Sci 2007, 64, 2270-84.
26. Muller, G.; Ayoub, M.; Storz, P.; Rennecke, J.; Fabbro, D.; Pfizenmaier, K. PKC ζ is a molecular switch in signal transduction of TNF-α, bifunctionally regulated by ceramide and arachidonic acid. EMBO Journal 1995, 14, 1961-1969.
27. Lozano, J.; Berra, E.; Municio, M. M.; Diaz-Meco, M. T.; Dominguez, I.; Sanz, L.; Moscat, J. Protein kinase C ζ isoform is critical for κB-dependent promoter activation by sphingomyelinase. J. Biol. Chem. 1994, 269, 19200-19202.
28. Heinrich, M.; Wickel, M.; Winoto-Morbach, S.; Schneider-Brachert, W.; Weber, T.; Brunner, J.; Saftig, P.; Peters, C.; Kro?nke, M.; Schu?tze, S. Ceramide as an activator lipid of cathepsin D. In Advances in Experimental Medicine and Biology, 2000; Vol. 477, pp 305-315.
29. Wolff, R. A.; Dobrowsky, R. T.; Bielawska, A.; Obeid, L. M.; Hannun, Y. A. Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J. Biol. Chem. 1994, 269, 19605-19609.
30. Dobrowsky, R. T.; Kamibayashi, C.; Mumby, M. C.; Hannun, Y. A. Ceramide activates heterotrimeric protein phosphatase 2A. J. Biol. Chem. 1993, 268, 15523-15530.
31. Dobrowsky, R. T.; Hannun, Y. A. Ceramide stimulates a cytosolic protein phosphatase. J. Biol. Chem. 1992, 267, 5048-5051.
32. Bourbon, N. A.; Yun, J.; Kester, M. Ceramide directly activates protein kinase C z to regulate a stress-activated protein kinase signaling complex. J. Biol. Chem. 2000, 275, 35617-35623.
33. Muller, G.; Ayoub, M.; Storz, P.; Renneck, J.; Fabbro, D.; Pfizenmaier, K. PKC z is a molecular switch in signal transduction of TNF-alpha , bifunctionally regulated by ceramide and arachidonic acid. Embo J. 1995, 14, 1961-9.
34. Ruvolo, P. P. Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol. Res. 2003, 47, 383-392.
35. Zhang, Y.; Yao, B.; Delikat, S.; Bayoumy, S.; Lin, X.-H.; Basu, S.; McGinley, M.; Chan-Hui, P.-Y.; Lichenstein, H.; Kolesnick, R. Kinase suppressor of Ras is ceramide-activated protein kinase. Cell (Cambridge, Mass.) 1997, 89, 63-72.
36. Gulbins, E.; Grassme, H. Ceramide and cell death receptor clustering. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2002, 1585, 139-145.
37. Huwiler, A.; Johansen, B.; Skarstad, A.; Pfeilschifter, J. Ceramide binds to the CaLB domain of cytosolic phospholipase A2 and facilitates its membrane docking and arachidonic acid release. Faseb J. 2001, 15, 7-9.
38. Westwick, J. K.; Bielawska, A. E.; Dbaibo, G.; Hannun, Y. A.; Brenner, D. A. Ceramide activates the stress-activated protein kinases. J. Biol. Chem. 1995, 270, 2689-92.
39. Blazquez, C.; Galve-Roperh, I.; Guzman, M. De novo-synthesized ceramide signals apoptosis in astrocytes via extracellular signal-regulated kinase. Faseb J. 2000, 14, 2315-2322.
40. Yao, B.; Zhang, Y.; Delikat, S.; Mathias, S.; Basu, S.; Kolesnick, R. Phosphorylation of Raf by ceramide-activated protein kinase. Nature (London) 1995, 378, 307-10.
41. Gulbins, E.; Bissonnette, R.; Mahboubi, A.; Martin, S.; Nishioka, W.; Brunner, T.; Baier, G.; Baier-Bitterlich, G.; Byrd, C.; et al. Fas-induced apoptosis is mediated via a ceramide-initiated Ras signaling pathway. Immunity 1995, 2, 341-51.
42. Brenner, B.; Koppenhoefer, U.; Weinstock, C.; Linderkamp, O.; Lang, F.; Gulbins, E. Fas- or ceramide-induced apoptosis is mediated by a Rac1-regulated activation of Jun N-terminal kinase/p38 kinases and GADD153. J. Biol. Chem. 1997, 272, 22173-22181.
43. Embade, N.; Valeron, P. F.; Aznar, S.; Lopez-Collazo, E.; Lacal, J. C. Apoptosis induced by Rac GTPase correlates with induction of FasL and ceramides production. Mol. Biol. Cell 2000, 11, 4347-4358.
44. Gruber, C.; Henkel, M.; Budach, W.; Belka, C.; Jendrossek, V. Involvement of tyrosine kinase p56/Lck in apoptosis induction by anticancer drugs. Biochem. Pharmacol. 2004, 67, 1859-1872.
45. Gulbins, E.; Szabo, I.; Baltzer, K.; Lang, F. Ceramide-induced inhibition of T lymphocyte voltage-gated potassium channel is mediated by tyrosine kinases. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 7661-7666.
46. Bollinger Claudia, R.; Teichgraber, V.; Gulbins, E. Ceramide-enriched membrane domains. Biochim Biophys Acta 2005, 1746, 284-94.
47. Gulbins, E.; Kolesnick, R. Raft ceramide in molecular medicine. Oncogene 2003, 22, 7070-7077.
48. Brown, D. A.; London, E. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 1998, 164, 103-114.
49. Siskind, L. J.; Kolesnick, R. N.; Colombini, M. Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations. Mitochondrion 2006, 6, 118-125.
50. Siskind, L. J.; Kolesnick, R. N.; Colombini, M. Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J. Biol. Chem. 2002, 277, 26796-26803.
51. Gudz, T. I.; Tserng, K.-Y.; Hoppel, C. L. Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J. Biol. Chem. 1997, 272, 24154-24158.
52. Garcia-Ruiz, C.; Morales, A.; Colell, A.; Rodes, J.; Yi, J.-R.; Kaplowitz, N.; Fernandez-Checa, J. C. Evidence that the rat hepatic mitochondrial carrier is distinct from the sinusoidal and canalicular transporters for reduced glutathione. Expression studies in Xenopus laevis oocytes. J. Biol. Chem. 1995, 270, 15946-9.
53. Yang, D.-I.; Yeh, C.-H.; Chen, S.; Xu, J.; Hsu, C. Y. Neutral sphingomyelinase activation in endothelial and glial cell death induced by amyloid beta-peptide. Neurobiol. Dis. 2004, 17, 99-107.
54. Yoshimura, S.-I.; Banno, Y.; Nakashima, S.; Hayashi, K.; Yamakawa, H.; Sawada, M.; Sakai, N.; Nozawa, Y. Inhibition of neutral sphingomyelinase activation and ceramide formation by glutathione in hypoxic PC12 cell death. J. Neurochem. 1999, 73, 675-683.
55. Wang, C. X.; Brindley, D. N.; Shuaib, A. Role of ceramide in ischemic brain injury in an embolic model of stroke in rats. Int. J. Angiol. 2006, 15, 165-170.
56. Mathias, S.; Pena, L. A.; Kolesnick, R. N. Signal transduction of stress via ceramide. Biochem. J. 1998, 335, 465-480.
57. Schenck, M.; Carpinteiro, A.; Grassme, H.; Lang, F.; Gulbins, E. Ceramide: Physiological and pathophysiological aspects. Arch. Biochem. Biophys. 2007, 462, 171-175.
58. Brugg, B.; Michel, P. P.; Agid, Y.; Ruberg, M. Ceramide Induces Apoptosis in Cultured Mesencephalic Neurons. Journal of Neurochemistry 1996, 66, 733-739.
59. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983, 65, 55-63.
60. Wilson, A. P. Cytotoxicity and viability assays. Anim. Cell Cult. (3rd Ed.) 2000, 175-219.
61. Chen, Y.-C.; Chow, J.-M.; Lin, C.-W.; Wu, C.-Y.; Shen, S.-C. Baicalein inhibition of oxidative-stress-induced apoptosis via modulation of ERKs activation and induction of HO-1 gene expression in rat glioma cells C6. Toxicol. Appl. Pharmacol. 2006, 216, 263-273.
62. Liu, K. C.; Shih, B. J. An efficient synthesis of 2-hydrazono-3,4 dihydro-2H-1,3-benzothiazin-4-one. Chung-hua Yao Hsueh Tsa Chih 1988, 40, 245-51.
63. Liu, K. C.; Shih, B. J.; Chern, J. W. Condensed 1,3-benzothiazinones. 3. Synthesis of 3-substituted 1,2,4-triazolo[3,4-b][1,3]benzothiazin-5-ones. J. Heterocycl. Chem. 1990, 27, 391-5.
64. Brown, D. J.; Nagamatsu, T. Isomerizations akin to the Dimroth rearrangement. III. The conversion of simple s-triazolo[4,3-a]pyrimidines into their [1,5-a] isomers. Australian Journal of Chemistry 1977, 30, 2515-25.
65. Alvarez, S. G.; Alvarez, M. T. A practical procedure for the synthesis of alkyl azides at ambient temperature in dimethyl sulfoxide in high purity and yield. Synthesis 1997, 413-414.
66. Sheehan, J. C.; Bolhofer, W. A. An improved procedure for the condensation of potassium phthalimide with organic halides. Journal of the American Chemical Society 1950, 72, 2786-8.
67. Urquhart, G. G.; Gates, J. W., Jr.; Connor, R. Dodecyl (lauryl) mercaptan. Org. Synth. 1941, 21, 36-8.
68. Saito, Y.; Wada, N.; Kusano, S.; Miyazawa, T.; Takahashi, S.; Toyokawa, Y.; Kajiwara, I. Preparation and formulation of 2-[(carboxyphenyl)thio]-4,6-dimethoxypyrimidines as herbicides. 89-415871
4932999, 19891002., 1990.
69. Robert M. Silverstein, F. X. W., David J. Kiemle. Spectrometric identification of organic compounds. John Wiley & Sons: 2005.
70. Khlifi, M.; Paillous, P.; Bruston, P.; Raulin, F.; Guillemin, J. C. Absolute IR Band Intensities of CH2N2, CH3N3, and CH3NC in the 250-4300 cm-1Region and Upper Limits of Abundance in Titan's Stratosphere. Icarus 1996, 124, 318-328.
71. Wagner, G.; Richter, P. Preparation and Dimroth rearrangement of 2-imino-4-oxodihydro-5,6-benzo-1,3-thiazines. Z. Chem. 1967, 7, 231.
72. Wagner, G.; Richter, P. Synthesis and reaction of 2-imino-4-oxo- and 2-oxo-4-iminodihydro-2H-1,3-benzothiazines. Pharmazie 1969, 24, 100-8.
73. Ceraulo, L.; Agozzino, P.; Ferrugia, M.; Giannola, L. I. Studies in organic mass spectrometry. I. Electron impact-induced fragmentation of 2-substituted 4H-1,3-benzothiazin-4-ones. Ann. Chim. (Rome) 1977, 67, 707-19.
74. Liu, K. C.; Shih, B. J.; Chern, J. W. Condensed 1,3-benzothiazinones. 2. Synthesis of 2-substituted 1,2,4-triazolo[5,1-b][1,3]benzothiazin-9-ones. J. Heterocycl. Chem. 1989, 26, 457-60.

------------------------------------------------------------------------ 第 7 筆 ---------------------------------------------------------------------
系統識別號 U0007-1407200816165200
論文名稱(中文) 淫羊藿苷對於LPS誘發的退化性關節炎之作用
論文名稱(英文) Effects of Icariin on LPS-Induced Osteoarthritis
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 96
學期 2
出版年 97
研究生(中文) 蔡曉雯
學號 M301095002
學位類別 碩士
語文別 中文
口試日期 2008-06-19
論文頁數 102頁
口試委員 指導教授-許秀蘊
共同指導教授-孫瑞昇
委員-蔡麗雪
委員-邱仁輝
關鍵字(中) 淫羊藿苷
退化性關節炎
關鍵字(英) Icariin
osteoarthritis
學科別分類
中文摘要 隨著老年人囗的成長,關節炎病症的持續惡化會嚴重影響病人的生活起居,並增加社會經濟的負擔。對年長者而言,關節炎是限制行動的首要原因,而且可能是造成殘疾的主要因素。關節軟骨是由水份、軟骨細胞和軟骨細胞分泌的胞外基質(extracellular matrix,ECM)所組成,分布在可動關節的表面,保護骨頭、減輕磨損、幫助關節活動和承載身體重量。當關節軟骨發生病變,日常活動就會受到阻礙;最常見的關節病變是骨關節炎,又稱退化性關節炎,全球約有6%的人(台灣約有15%)罹患此病,是由於老化、遺傳或是過度使用所造成,其最主要病理特徵是軟骨ECM瓦解。而基質金屬蛋白酶 (matrix metalloproteinase,MMP) 則可以分解ECM中的蛋白質成分,造成ECM的瓦解。
淫羊藿苷(icariin)是從植物劍葉淫羊藿(Epimedium sagittatum, Berberidaceae )中所萃取出來具藥理活性的成分。它具有很多的作用,例如:抗氧化、免疫調節和勃起功能…等。除了上述的作用之外,它還能夠刺激骨母細胞 (osteoblasts) 的分化,提高alkaline phosphatase (ALP) 的活性,增加大鼠體內第一型膠原蛋白(Type I collagen)的表現,幫助骨頭的生長。並且,icariin在發炎反應上面,可以降低組織胺的量,因此可以降低毛细血管通透,並且能夠減輕腳腫脹的程度。到目前為止,icariin 還沒有明顯的不良反應。本研究欲探討在軟骨受傷害的情況下,icariin是否有治療或保護的作用,更進一步的說,或許可提供另一個對於軟骨傷害治療的新方向。本實驗取用初生四天之幼鼠為動物模式,取其膝關節軟骨培養軟骨母細胞,並採用三度空間培養法 (3-dimensional cultures) 培養軟骨細胞,然後再加入icariin 或在lipopolysaccharide (LPS)存在的情況下,分別來模擬自然老化退化性關節炎的情形,並檢測軟骨細胞增生情形,再進一步的檢測軟骨細胞內基質glycosaminoglycans (GAG),以及軟骨細胞內基質total collagen的量,與一些會造成軟骨傷害的物質的表現,如nitric oxide (NO),metalloproteinases (MMPs),COX-2..等等。並且利用即時定量反轉錄聚合酶連鎖反應 (Real Time - PCR) 來探討基因MMP-1,MMP-3,MMP-13,COX-2,iNOS對軟骨細胞的影響。或許可提供另一個預防軟骨傷害及治療的新方向。
結果顯示,Icariin在誘導軟骨細胞增生時,在10-9M濃度下時最佳,而在加LPS 情況時,10-9M濃度下icariin對LPS的傷害具有保護作用,LPS可以誘導NO、MMP1、MMP3、MMP13產生,但可以抑制GAG、total collagen合成。Icariin可以部分的減少NO、MMP1、MMP3、MMP13產生。所以Icariin在軟骨細胞受傷害的情況下具有保護作用。所以Icariin可扮演一個對抗軟骨傷害的角色。
英文摘要 With the growth of the population of elder persons, arthritis disease will seriously affect the continued deterioration of the patient's daily life, and to increase the socio-economic burden. To the elderly, arthritis is the first cause of restrictions on movement, and may cause disability is the main reason. Articular cartilage is composed of water, chondrocytes and extracellular matrix (extracellular matrix, ECM). The components are in the distribution of movable joints on the surface, the protection of the bones, reducing wear and tear, to joint activities and help carry the body weight. When the articular cartilage lesion occurs, the daily life will be hindered; the most common joint disease is osteoarthritis, and it is also known as degenerative arthritis, about 6% people of the world suffering from the disease is the result of aging , genetic or caused by the excessive use. Its main feature is the cartilage ECM collapse. The MMP (matrix metalloproteinase) can break down the proteins in ECM, resulting in the collapse of ECM. Icariin is the major pharmacologically active component of Epimedium sagittatum (Berberidaceae) It has a lot of functions, for example: antioxidant, immune regulation and erectile function, et. Al. One of the components, Icariin can reduce the amount of histamine in the inflammatory response. It also could reduce capillary permeability, and reduce the degree of swelling of feet. So far, Icariin has no obvious adverse reactions. The study was to investigate the effects of icariin on lps-induced osteoarthritis. The animal model is four days of newborn ICR mice, using its knee cartilage to culture chondrocytes. To avoid the change of phenotype on chondrocyte, we use three-dimensional culture model . Further detection of glycosaminoglycan (GAG) within the matrix, we use DMB assay. The OHP assay is used to detect the content of total collagen, and DMB assay to glycosaminoglycan (GAG) within the matrix. Real time PCR was used to investigate gene MMP1, MMP3, MMP13, COX-2 and iNOS on cartilage cells. It might provide another treatment for cartilage damage in the new direction. The results show that icariin in the induction of chondrocyte proliferation, at the 10-9 M concentration is the best. In the same concentration, icariin has a protective effect from the injury of LPS. LPS can induce NO, MMP-1, MMP-3, MMP-13 production, but it inhibits the GAG, total collagen synthesis. Icariin can reduce part of NO, MMP-1, MMP-3, MMP-13 production.Therefore, in the situations of cartilage cells injury, icariin may have a protective effect. It showed us that icariin might provide another treatment for cartilage damage in the new direction.
論文目次 第一章 緒論 12
1-1前言 12
1-2 研究目的 14
第二章 理論基礎 16
2-1 硬骨的發育與生長 16
2-1-1膜內骨化(Intramembranous ossification) 16
2-1-2 軟骨內骨化 (Endochondral ossification) 17
2-2 軟骨的發育與生長 (相關參考資料 Wheater’s Functional Histology) 19
2-2-1造成軟骨損傷原因 20
2-3 軟骨相關之病理研究 (相關參考資料 Robbins Pathologic Basis of Disease) 21
2-3-1關節炎 21
2-3-1-1退化性關節炎(Osteoarthritis) 22
2-3-1-2感染性關節炎(Infectious Arthritis) 24
2-3-1-3化膿性關節炎(Suppurative Arthritis) 24
2-3-1-4結核性關節炎(Tuberculous Arthritis) 24
2-3-1-5病毒性關節炎(Viral arthritis) 25
2-3-2治療方法 26
2-4軟骨相關成分分析 28
2-4-1 膠原蛋白 (collagen) 29
2-4-2 醣蛋白 (proteoglycan) 30
2-4-3 前列腺素(prostaglandins) 31
2-4-4金屬蛋白分解酵素Matrix metalloproteinase (MMPs) 33
2-4-5 一氧化氮合成酶Nitric oxide synthases (NOS) 36
2-4-6 Icariin (icarrin,icarin) 38
第三章 材料與方法 40
3-1實驗試薬與耗材 40
3-1-1試薬 40
3-1-2耗材 42
表 3-1-2 1耗材 42
3-2實驗儀器 43
3-3 Icariin試藥配製 44
3-4細胞培養試藥配製 45
3-6初代培養軟骨細胞方 49
3-6-1軟骨細胞3D培養方法 51
3-6-2 Agarose cell specimens溶解方法 54
3-7細胞活性分析 54
3-8 GAG (DMB assay) 57
3-9 NO (Griess reaction) 58
3-10 Hydroxyproline assay (OHP) 59
3-11即時(Real-time)定量反轉錄聚合酶連鎖反應 61
3-11-1 Total RNA之純化 61
3-11-2 Total RNA含量分析 62
3-11-3反轉錄(Reverse transcriptase reaction, RT)合成cDNA 62
3-11-4即時定量聚合酶連鎖反應 63
3-11-5即時定量聚合酶連鎖反應使用之primer 64
第四章 結果與討論 66
4-1 細胞活性分析 ( MTT assay ) 66
4-1-1 Icariin 對 Chondrocyte 體外培養模式整體活性(MTT assay)的影響 66
4-1-2 Icariin 對lipopolysaccharide(LPS) 刺激chondrocyte的影響 70
4-2 Griess Assay 73
4-2-1 Icariin對chondrocyte產生NO的影響 73
4-2-2 Icariin對lipopolysaccharide (LPS)刺激chondrocyte產生NO的影響 75
4-3 Real Time PCR 80
4-3-1 10-9 M Icariin對COX-2 mRNA的表現 80
4-3-2 10-9 M Icariin對iNOS mRNA的表現 81
4-3-3 Icarii對MMP mRNA的表現 84
4-3-3-1 10-9 M Icariin對MMP-1 mRNA的表現 84
4-3-3-2 10-9 M Icariin對MMP-3 mRNA的表現 85
4-3-3-3 10-9 M Icariin對MMP-13 mRNA的表現 86
4-4 Icariin對LPS抑制軟骨細胞產生GAG的影響 88
4-5 Icariin對LPS抑制軟骨細胞產生Total collagen的影響 90
第五章 結論 與 未來展望 92
第六章 參考文獻 93
參考文獻 1. Ahmed S, Rahman A, Hasnain A, et al. Green tea polyphenol epigallocatechin-3-gallate inhibits the IL-1 beta-induced activity and expression of cyclooxygenase-2 and nitric oxide synthase-2 in human chondrocytes. Free Radic Biol Med 2002; 33:1097-1105
2. Aigner T, Kim HA. Apoptosis and cellular vitality: issues in osteoarthritic cartilage degeneration. Arthritis Rheum 2002; 46:1986-1996
3. Aldridge C, Razzak A, Babcock TA, Helton WS, Espat NJ. Lipopolysaccharide-Stimulated RAW 264.7 Macrophage Inducible Nitric Oxide Synthase and Nitric Oxide Production Is Decreased by an Omega-3 Fatty Acid Lipid Emulsion. J Surg Res 2008
4. Andreas K, Lubke C, Haupl T, et al. Key regulatory molecules of cartilage destruction in rheumatoid arthritis: an in vitro study. Arthritis Res Ther 2008; 10:R9
5. Arner EC. Aggrecanase-mediated cartilage degradation. Curr Opin Pharmacol 2002; 2:322-329
6. Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 2004; 25:3211-3222
7. Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in arthritis. Front Biosci 2006; 11:529-543
8. Candelario-Jalil E, de Oliveira AC, Graf S, et al. Resveratrol potently reduces prostaglandin E2 production and free radical formation in lipopolysaccharide-activated primary rat microglia. J Neuroinflammation 2007; 4:25
9. Cao M, Westerhausen-Larson A, Niyibizi C, et al. Nitric oxide inhibits the synthesis of type-II collagen without altering Col2A1 mRNA abundance: prolyl hydroxylase as a possible target. Biochem J 1997; 324 ( Pt 1):305-310
10. Chandrasekhar S, Esterman MA, Hoffman HA. Microdetermination of proteoglycans and glycosaminoglycans in the presence of guanidine hydrochloride. Anal Biochem 1987; 161:103-108
11. Chen XJ, Ji H, Zhang QW, et al. A rapid method for simultaneous determination of 15 flavonoids in Epimedium using pressurized liquid extraction and ultra-performance liquid chromatography. J Pharm Biomed Anal 2008; 46:226-235
12. Chowdhury TT, Bader DL, Lee DA. Dynamic compression inhibits the synthesis of nitric oxide and PGE(2) by IL-1beta-stimulated chondrocytes cultured in agarose constructs. Biochem Biophys Res Commun 2001; 285:1168-1174
13. Chowdhury TT, Bader DL, Lee DA. Dynamic compression counteracts IL-1 beta-induced release of nitric oxide and PGE2 by superficial zone chondrocytes cultured in agarose constructs. Osteoarthritis Cartilage 2003; 11:688-696
14. Claassen H, Schunke M, Kurz B. Estradiol protects cultured articular chondrocytes from oxygen-radical-induced damage. Cell Tissue Res 2005; 319:439-445
15. Clancy RM, Amin AR, Abramson SB. The role of nitric oxide in inflammation and immunity. Arthritis Rheum 1998; 41:1141-1151
16. Creemers LB, Jansen DC, van Veen-Reurings A, van den Bos T, Everts V. Microassay for the assessment of low levels of hydroxyproline. Biotechniques 1997; 22:656-658
17. David F, Farley J, Huang H, Lavoie JP, Laverty S. Cytokine and chemokine gene expression of IL-1beta stimulated equine articular chondrocytes. Vet Surg 2007; 36:221-227
18. Dingle JT. Cartilage maintenance in osteoarthritis: interaction of cytokines, NSAID and prostaglandins in articular cartilage damage and repair. J Rheumatol Suppl 1991; 28:30-37
19. Dvorak LD, Cook JL, Kreeger JM, Kuroki K, Tomlinson JL. Effects of carprofen and dexamethasone on canine chondrocytes in a three-dimensional culture model of osteoarthritis. Am J Vet Res 2002; 63:1363-1369
20. Eliopoulos AG, Dumitru CD, Wang CC, Cho J, Tsichlis PN. Induction of COX-2 by LPS in macrophages is regulated by Tpl2-dependent CREB activation signals. EMBO J 2002; 21:4831-4840
21. Enobakhare BO, Bader DL, Lee DA. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1,9-dimethylmethylene blue. Anal Biochem 1996; 243:189-191
22. Farndale RW, Buttle DJ, Barrett AJ. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 1986; 883:173-177
23. Fernandes JC, Martel-Pelletier J, Pelletier JP. The role of cytokines in osteoarthritis pathophysiology. Biorheology 2002; 39:237-246
24. Fukui N, McAlinden A, Zhu Y, et al. Processing of type II procollagen amino propeptide by matrix metalloproteinases. J Biol Chem 2002; 277:2193-2201
25. Furukawa T, Eyre DR, Koide S, Glimcher MJ. Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg Am 1980; 62:79-89
26. Gilad E, Wong HR, Zingarelli B, et al. Melatonin inhibits expression of the inducible isoform of nitric oxide synthase in murine macrophages: role of inhibition of NFkappaB activation. FASEB J 1998; 12:685-693
27. Goldring MB. The role of the chondrocyte in osteoarthritis. Arthritis Rheum 2000; 43:1916-1926
28. Goldring MB, Berenbaum F. The regulation of chondrocyte function by proinflammatory mediators: prostaglandins and nitric oxide. Clin Orthop Relat Res 2004: S37-46
29. Goldring SR, Goldring MB. The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin Orthop Relat Res 2004: S27-36
30. Gunther M, Haubeck HD, van de Leur E, et al. Transforming growth factor beta 1 regulates tissue inhibitor of metalloproteinases-1 expression in differentiated human articular chondrocytes. Arthritis Rheum 1994; 37:395-405
31. Huang AH, Yeger-McKeever M, Stein A, Mauck RL. Tensile properties of engineered cartilage formed from chondrocyte- and MSC-laden hydrogels. Osteoarthritis Cartilage 2008
32. Jakob RP, Franz T, Gautier E, Mainil-Varlet P. Autologous osteochondral grafting in the knee: indication, results, and reflections. Clin Orthop Relat Res 2002: 170-184
33. Joosten LA, Lubberts E, Helsen MM, et al. Protection against cartilage and bone destruction by systemic interleukin-4 treatment in established murine type II collagen-induced arthritis. Arthritis Res 1999; 1:81-91
34. Kitamura T, Kabuyama Y, Kamataki A, et al. Enhancement of lymphocyte migration and cytokine production by ephrinB1 system in rheumatoid arthritis. Am J Physiol Cell Physiol 2008; 294:C189-196
35. Knight MM, Lee DA, Bader DL. The influence of elaborated pericellular matrix on the deformation of isolated articular chondrocytes cultured in agarose. Biochim Biophys Acta 1998; 1405:67-77
36. Kronenberg HM. Developmental regulation of the growth plate. Nature 2003; 423:332-336
37. Lee DA, Frean SP, Lees P, Bader DL. Dynamic mechanical compression influences nitric oxide production by articular chondrocytes seeded in agarose. Biochem Biophys Res Commun 1998; 251:580-585
38. Lee MS, Ikenoue T, Trindade MC, et al. Protective effects of intermittent hydrostatic pressure on osteoarthritic chondrocytes activated by bacterial endotoxin in vitro. J Orthop Res 2003; 21:117-122
39. LeFrock JL, Kannangara DW. Treatment of infectious arthritis. Am Fam Physician 1984; 30:252-257
40. Leszczynski DE, Schafer RM, Perkins EG, Jerrell JP, Kummerow FA. Esterification of dehydroepiandrosterone by human plasma HDL. Biochim Biophys Acta 1989; 1014:90-97
41. Liu KL, Chen HW, Wang RY, et al. DATS reduces LPS-induced iNOS expression, NO production, oxidative stress, and NF-kappaB activation in RAW 264.7 macrophages. J Agric Food Chem 2006; 54:3472-3478
42. Liu ZQ. Icariin: a special antioxidant to protect linoleic acid against free-radical-induced peroxidation in micelles. J Phys Chem A 2006; 110:6372-6378
43. Lohi J, Wilson CL, Roby JD, Parks WC. Epilysin, a novel human matrix metalloproteinase (MMP-28) expressed in testis and keratinocytes and in response to injury. J Biol Chem 2001; 276:10134-10144
44. Lundon K, Bolton K. Structure and function of the lumbar intervertebral disk in health, aging, and pathologic conditions. J Orthop Sports Phys Ther 2001; 31:291-303; discussion 304-296
45. Mathy-Hartert M, Martin G, Devel P, et al. Reactive oxygen species downregulate the expression of pro-inflammatory genes by human chondrocytes. Inflamm Res 2003; 52:111-118
46. Mauck RL, Wang CC, Oswald ES, Ateshian GA, Hung CT. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthritis Cartilage 2003; 11:879-890
47. McCawley LJ, Matrisian LM. Matrix metalloproteinases: they're not just for matrix anymore! Curr Opin Cell Biol 2001; 13:534-540
48. Morales TI, Wahl LM, Hascall VC. The effect of bacterial lipopolysaccharides on the biosynthesis and release of proteoglycans from calf articular cartilage cultures. J Biol Chem 1984; 259:6720-6729
49. Morquette B, Shi Q, Lavigne P, et al. Production of lipid peroxidation products in osteoarthritic tissues: new evidence linking 4-hydroxynonenal to cartilage degradation. Arthritis Rheum 2006; 54:271-281
50. Nagase H, Kashiwagi M. Aggrecanases and cartilage matrix degradation. Arthritis Res Ther 2003; 5:94-103
51. Nagase H, Woessner JF, Jr. Matrix metalloproteinases. J Biol Chem 1999; 274:21491-21494
52. Naito K, Takahashi M, Kushida K, et al. Measurement of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases-1 (TIMP-1) in patients with knee osteoarthritis: comparison with generalized osteoarthritis. Rheumatology (Oxford) 1999; 38:510-515
53. Nedelec E, Abid A, Cipolletta C, et al. Stimulation of cyclooxygenase-2-activity by nitric oxide-derived species in rat chondrocyte: lack of contribution to loss of cartilage anabolism. Biochem Pharmacol 2001; 61:965-978
54. Neidert MR, Lee ES, Oegema TR, Tranquillo RT. Enhanced fibrin remodeling in vitro with TGF-beta1, insulin and plasmin for improved tissue-equivalents. Biomaterials 2002; 23:3717-3731
55. O'Meara PM, Bartal E. Septic arthritis: process, etiology, treatment outcome. A literature review. Orthopedics 1988; 11:623-628
56. Pan Y, Zhang WY, Xia X, Kong LD. Effects of icariin on hypothalamic-pituitary-adrenal axis action and cytokine levels in stressed Sprague-Dawley rats. Biol Pharm Bull 2006; 29:2399-2403
57. Pannu R, Singh I. Pharmacological strategies for the regulation of inducible nitric oxide synthase: neurodegenerative versus neuroprotective mechanisms. Neurochem Int 2006; 49:170-182
58. Parisien JS, Shaffer B. Arthroscopic management of pyarthrosis. Clin Orthop Relat Res 1992:243-247
59. Pelletier JP, Mineau F, Fernandes JC, Duval N, Martel-Pelletier J. Diacerhein and rhein reduce the interleukin 1beta stimulated inducible nitric oxide synthesis level and activity while stimulating cyclooxygenase-2 synthesis in human osteoarthritic chondrocytes. J Rheumatol 1998;25: 2417-2424
60. Poole AR, Kobayashi M, Yasuda T, et al. Type II collagen degradation and its regulation in articular cartilage in osteoarthritis. Ann Rheum Dis 2002; 61 Suppl 2:ii78-81
61. Richette P, Corvol M, Bardin T. Estrogens, cartilage, and osteoarthritis. Joint Bone Spine 2003; 70:257-262
62. Sadowski T, Steinmeyer J. Effects of non-steroidal antiinflammatory drugs and dexamethasone on the activity and expression of matrix metalloproteinase-1, matrix metalloproteinase-3 and tissue inhibitor of metalloproteinases-1 by bovine articular chondrocytes. Osteoarthritis Cartilage 2001; 9:407-415
63. Salvemini D, Manning PT, Zweifel BS, et al. Dual inhibition of nitric oxide and prostaglandin production contributes to the antiinflammatory properties of nitric oxide synthase inhibitors. J Clin Invest 1995; 96:301-308
64. Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 2001; 3:107-113
65. Singh R, Ahmed S, Islam N, Goldberg VM, Haqqi TM. Epigallocatechin-3-gallate inhibits interleukin-1beta-induced expression of nitric oxide synthase and production of nitric oxide in human chondrocytes: suppression of nuclear factor kappaB activation by degradation of the inhibitor of nuclear factor kappaB. Arthritis Rheum 2002; 46:2079-2086
66. Studer RK, Decker K, Melhem S, Georgescu H. Nitric oxide inhibition of IGF-1 stimulated proteoglycan synthesis: role of cGMP. J Orthop Res 2003; 21:914-921
67. Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum 2001; 44:585-594
68. Tiku ML, Shah R, Allison GT. Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation. Possible role in cartilage aging and the pathogenesis of osteoarthritis. J Biol Chem 2000; 275:20069-20076
69. Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN. Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 2006; 38:1654-1661
70. van Vollenhoven RF, Engleman EG, McGuire JL. An open study of dehydroepiandrosterone in systemic lupus erythematosus. Arthritis Rheum 1994; 37:1305-1310
71. Victor VM, Rocha M, De la Fuente M. Immune cells: free radicals and antioxidants in sepsis. Int Immunopharmacol 2004; 4:327-347
72. Vincenti MP, Brinckerhoff CE. Signal transduction and cell-type specific regulation of matrix metalloproteinase gene expression: can MMPs be good for you? J Cell Physiol 2007; 213:355-364
73. Watkins BA, Seifert MF. Conjugated linoleic acid and bone biology. J Am Coll Nutr 2000; 19:478S-486S
74. Wo YB, Zhu DY, Hu Y, et al. Reactive oxygen species involved in prenylflavonoids, icariin and icaritin, initiating cardiac differentiation of mouse embryonic stem cells. J Cell Biochem 2008; 103:1536-1550
75. Woessner JF, Jr. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys 1961; 93:440-447
76. Xu HB, Huang ZQ. Icariin enhances endothelial nitric-oxide synthase expression on human endothelial cells in vitro. Vascul Pharmacol 2007; 47:18-24
77. Yan C, Boyd DD. Regulation of matrix metalloproteinase gene expression. J Cell Physiol 2007; 211:19-26
78. Ye HY, Lou YJ. Estrogenic effects of two derivatives of icariin on human breast cancer MCF-7 cells. Phytomedicine 2005; 12:735-741
79. Yoshino S, Ohsawa M. The role of lipopolysaccharide injected systemically in the reactivation of collagen-induced arthritis in mice. Br J Pharmacol 2000; 129:1309-1314
80. Zhang DW, Cheng Y, Wang NL, et al. Effects of total flavonoids and flavonol glycosides from Epimedium koreanum Nakai on the proliferation and differentiation of primary osteoblasts. Phytomedicine 2008; 15:55-61
81. Zhang HF, Yang TS, Li ZZ, Wang Y. Simultaneous extraction of epimedin A, B, C and icariin from Herba Epimedii by ultrasonic technique. Ultrason Sonochem 2008; 15:376-385
82. Zhang ZB, Yang QT. The testosterone mimetic properties of icariin. Asian J Androl 2006; 8:601-605
83. Zhao J, Ohba S, Shinkai M, Chung UI, Nagamune T. Icariin induces osteogenic differentiation in vitro in a BMP- and Runx2-dependent manner. Biochem Biophys Res Commun 2008; 369:444-448





------------------------------------------------------------------------ 第 8 筆 ---------------------------------------------------------------------
系統識別號 U0007-1408200815384600
論文名稱(中文) 臺灣款冬之抗發炎活性研究
論文名稱(英文) The Anti-inflammation principle constituents of Petasites formosanus Kitam.
校院名稱 臺北醫學大學
系所名稱(中) 生藥學研究所
系所名稱(英) Graduate Institute of Pharmacognosy
學年度 96
學期 2
出版年 97
研究生(中文) 鄧學聯
學號 M303095004
學位類別 碩士
語文別 中文
口試日期 2008-07-22
論文頁數 85頁
口試委員 委員-李連滋
委員-林建煌
指導教授-王靜瓊
關鍵字(中) 臺灣款冬
菊科
抗發炎
止痛
S-isopetasin
S-petasin
關鍵字(英) Petasites formosanus Kitam
RAW 264.7
iNOS
Carrageenan
Acetic acid-induce writhing response
學科別分類
中文摘要 菊科植物被報導指出具有諸多生理活性,如抗腫瘤、抗菌、抗虐以及抗發炎等…,且台灣菊科植物種類繁多,因此本研究將選用30種菊科植物,將其利用50%甲醇迴流萃取,並利用酯多糖來誘導老鼠RAW 264.7巨噬細胞表現iNOS及釋放一氧化氮,並以Griess reaction 分析方法來測NO含量變化。結果顯示:大花咸豐草、南美蟛蜞菊、台灣款冬具有明顯的抑制NO產生,其IC50分別為72.09、41.08、29.57 μg/ml。其中又以臺灣款冬葉萃取物對iNOS的表現具有顯著抑制作用,且於Carrageenan誘導小鼠足掌發炎、醋酸扭體和輻射熱源法等動物實驗中,結果顯示:餵服400 mg/kg之實驗組,在誘導後的 4、5、6小時皆具有意義的抑制足腫反應;而餵服100 mg/kg即有意義的抑制疼痛。進而利用NO抑制活性追縱方式,分離臺灣款冬葉之消炎和止痛活性成份。分離純化結果得到isopetasin、S-isopetasin、S-petasin和caffeic acid methyl ester等活性成份。再以體內、體外試驗評估天然物消炎、止痛作用,結果顯示:S-isopetasin和S-petasin皆會抑制NO的產生,其IC50分別為4.67 μM、4.45 μM,且S-isopetasin和S-petasin具有抑制iNOS及COX-2的表現;於體內實驗中,餵服5mg/kg即具有很明顯的消炎、止痛作用,其中以S-isopetasin作用較為明顯,所以S-isopetasin是一個具有開發為消炎止痛潛力的天然物,而臺灣款冬是經濟價值高的藥用植物。
英文摘要 In Taiwan, several species of Compositae plants are used as Chinese herbs. In this study, 30 kinds of Composite family plants were extracted by 50% MeOH, the anti-inflammatory and analgesic effects of these extracts were measured by in vitro and in vivo models. The nitric oxide (NO) production which induced by LPS-stimulated RAW 264.7 macrophage and quantitatively deteproduction by Griss reaction. Results showed that Bidens pilosa L. var. radiata Sch., Petasites formosanus Kitam., Wedelia trilobata (L.) Hitchc. suppressed NO production from lipopolysaccharide(LPS)induced RAW 264.7 cells and the IC50 values were 72.09, 29.57, 41.08 μg/ml, respectively. P. formosanus (PF) inhibited inducible nitric oxide synthase (iNOS) a expression on LPS induced RAW 264.7 cells but COX-2 not. Therefore, the anti-inflammation effects of PF were evaluated by carrageenan-induced paw edema in mice. PF also significantly inhibited the paw edema after treatment with 400 mg/kg. The analgesic activity evaluated by Acetic acid-induce writhing response in mice and Radiant heat method. PF also significantly exhibited analgesic effects after treatment with 100mg/kg. Continuously, the anti-inflammation principle constituents of PF were isolated by column chromatography combined bioassay-guided fractionation. Four kinds of natural products, isopetasin, S-isopetasin, s-petasin, caffeic acid methyl ester were obtained and S-isopetasin and S-petasin more significant inhibited NO production than the others and IC50 values were 4.67 μM and 4.45 ?nμM and inhibited iNOS and COX-2 expression in LPS induced-RAW 264.7 cells. In vivo studies, S-isopetasin also exhibited anti-inflammatory and analgesic effects and more than effects than S-petasin. Therefore, we suggested S-isopetasin was major anti-inflammatory and analgesic components in PF and was a good lead compound.
論文目次 目錄
目錄…………………………………………...……………………………. ……… i
圖目錄……………………………………………………………................ ……… ii
表目錄…………………………………………………………...…………. ……… iii
縮寫表……………………………………………………………................ ………. iv
中文摘要…………………………………………………...………………................ 1
英文摘要………………………………………………………...…………………… 2
壹、緒論…………………………………………………………………………… 3
貳、實驗部分……………………………………………………………………….. 22
2-1. 體外抗發炎模式……………………………………………………………... 22
2-1-1. 材料和設備……………………………………………………................. 22
2-2-2. 實驗方法…………………………………………………………………. 26
2-2. 體內抗發炎模式………………………………………................................. 33
2-2-1. 實驗材料………………………………………………………………… 33
2-2-2. 實驗方法……………………………………………................................ 33
2-3. 台灣款冬葉部之分離與純化……………………………................................ 37
2-3-1. 材料和設備…………………………………………................................ 37
2-3-2. 分離與純化之方法………………..………………….............................. 39
参、結果……………………………………………………………………………... 43
3-1. 體外LPS 誘導RAW264.7 抑制NO 生成之試驗………………………… 43
3-1-1. 菊科植物之50%甲醇萃取物對NO抑制作用之分析結果.................... 43
3-1-2. 臺灣款冬之各部位之活性追蹤……………………………................... 45
3-1-3. 臺灣款冬葉部對LPS 誘導RAW 之iNOS、COX-2 蛋白質表現抑制
作用……………………….………………………………………..…… 46
3-2. 臺灣款冬葉部之體內之止痛、消炎作用……………….………………… 47
3-2-1. 誘導小鼠足掌發炎試………………………………………... ………... 47
3-2-2 醋酸扭體試驗………………………………………….. ……….. 48
3-2-3. 輻射熱源法試驗……………………………………………................... 49
3-3. 臺灣款冬之活性追蹤分離有效成分……………………………………… 50
3-4. 臺灣款冬葉部成份之結構解析…………………………………………… 52
3-5. 臺灣款冬活性成份之止痛、抗發炎之作用…………………….................. 57
3-5-1. S-Isopetasin 及S-petasin 對LPS 誘導RAW 之iNOS、COX-2 蛋白質
表現抑制作用…………………………………………………………… 57
3-5-2. S-Isopetasin 及S-petasin 之體內之止痛、抗發炎之試驗結果……….. 59
肆、討論…………………………………………………………………………….. 61
伍、參考文獻……………………………………………………………………….. 65
陸、附錄…………………………………………………………………… 72
ii
圖目錄
圖一花生四烯酸代謝之機制圖…………………………………………… 5
圖二發炎反應與細胞激素之作用機制圖………………………………… 6
圖三巨噬細胞受到LPS刺激活化COX-2、iNOS之作用機制圖…………… 8
圖四臺灣款冬的外部型態………………………………………………… 19
圖五臺灣款冬葉部成份…………………………………………………… 20
圖六Griess Reaction之反應圖……………………………………………… 27
圖七MTT被活細胞粒線體內去氫酶間接還原成formazan之原理……… 29
圖八臺灣款冬成分分離流程……………………………………………… 40
圖九台灣款冬之IV-2 沖提物之細部成分分離及純化流程……………… 41
圖十台灣款冬之Va 沖提物之細部成分分離及純化流程圖…………… 42
圖十一臺灣款冬對LPS誘導RAW 264.7 之iNOS蛋白質的表現變化…… 46
圖十二臺灣款冬對LPS誘導RAW 264.7 之COX-2 蛋白質的表現變化…… 46
圖十三臺灣款冬萃取物對小鼠足掌發炎試驗之足腫變化曲線圖…………… 47
圖十四臺灣款冬萃取物對小鼠扭體止痛作用……………………………… 48
圖十五乙酸乙酯劃分部對LPS誘導RAW 264.7 之iNOS蛋白質的表現變化50
圖十六
乙酸乙酯劃分部對LPS誘導RAW 264.7 之COX-2 蛋白質的表現
變化…………………………………………………………………… 51
圖十七Isopetasin之化學結構………………………………………………… 52
圖十八S-isopetasin之化學結構………………………………………………… 53
圖十九S-petasin之化學結構…………………………………………………… 54
圖二十Caffeic acid methyl ester之化學結構………………………………… 55
圖二十一S-Isopetasin對LPS誘導RAW 264.7 之iNOS蛋白質的表現變化……… 57
圖二十二S-Isopetasin對LPS誘導RAW 264.7 之COX-2 蛋白質的表現變……… 57
圖二十三S-petasin對LPS誘導RAW 264.7 之iNOS蛋白質的表現變化………… 58
圖二十四S-petasin對LPS誘導RAW 264.7 之COX-2 蛋白質的表現變化……… 58
圖二十五活性成份對小鼠足掌發炎試驗……………………………………… 59
圖二十六活性成份S-Isopetasin之小鼠扭體止痛試驗…………………………… 60
圖二十七活性成份S-petasin之小鼠扭體止痛試驗……………………………… 60
iii
表目錄
表一急性發炎的介質與生理反應………………………………………… 3
表二慢性發炎的介質與生理反應… … … … … … … … … … … … … 6
表三目前臨床使用之非選擇性選擇性抑制COX-2 之抗發炎藥物……… 9
表四款冬屬植物活性與成分……………………………………………… 14
表五款冬屬在生物學上之分類…………………………………………… 18
表六本研究使用之三十種菊科植物……………………………………… 22
表七菊科萃取物抑制NO和細胞性………………………………………… 43
表八臺灣款冬各部位對RAW 264.7 之NO抑制和細胞毒性……………… 45
表九臺灣款冬萃取物對大鼠輻射熱源法之延遲痛閥效果……………… 49
表十乙酸乙酯和水進行初步分離對NO抑制的IC50……………………… 50
表十一經Silica gel之分離對NO抑制的IC50………………………………… 51
表十二活性成份對RAW 264.7 細胞之NO抑制和細胞毒性…………………… 55
表十三
Isopetasin、S-Isopetasin、S-petasin及Caffeic acid methyl ester之NMR
數據比較………………………………………………………………… 56
參考文獻 1.最新人體藥理學 P811~825 合記圖書出版社
2.Martin LD, Rochelle LG, Fischer BM, Krunkosky TM, Adler KB. Airway epithelium as an effector of inflammation:molecular regulation of secondary mediators. Eur. Respi.r J. 10: 2139–2146; 1997.
3.Thomas P, Shanley, Roscoe L. Warner, Peter A. Ward. The role of cytokines and adhesion molecules in the development of inflammatory injury. Elsevier Science Ltd. 5: 1357 – 4310; 1995.
4.B. Grimaldi, I. Cloez-Tayarani, M.P. Fillion, J.C. Mazie, R. Hen, G. Fillion. Production and characterization of an antibody directed against the ouse 5HT1B receptor. Neuroscience Research 24 97-101; 1995.
5.Trifilieff, A., Da Silva, A. and Gies, J.P. Kinins and rpiratory tract diseases. Eur Respir J, 6, 576-587; 1993.
6.Proud, D. The kinin system in rhinitis and asthma. Clin Rev Allergy Immunol, 16, 351-364;1998.
7.Goetzl EJ, An S, and Smith WL. Specificity of expression and effects of eicosanoid mediators in normal physiology and human disease. FASEB J 9:1051-1058 ; 1995
8.Phipps RP, Stein SH, and Roper RL. A new view of prostaglandin-E regulation of the immune response. Immunology Today 12:349-352; 1991
9.Colin DF. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871-1875; 2001
10.Lewis RA and Austen KF. The biologically active leukotrienes. Biosynthesis, metabolism, receptors, functions, and pharmacology.J Clin Invest 73:889-897; 1984.
11.Nathan RA. Anti-leukotriene agents: a new direction in asthma therapy. J Asthma 33:353-366; 1996.
12.Wenzel SE. Arachidonic acid metabolites: mediators of inflammation in asthma. Pharmacotherapy 17:3S-12S; 1997.
13.
14.<www.medscape.com>
15.Qureshi ST, Gros P and Malo D. The LPS locus: Genetic regulation of host respones to bacterial lipopolysaccharide. Inflammation Research. 48:613-620;1999
16.Schwacha MG. Macrophages and post-burn immune dysfunction. Burn. 29:1-14;2003
17.Kashii Y, Giorda R, Herberman RB, Whiteside TL, Vujanovic NL. Constitutive expression and role of the TNF family ligands in apoptotic killing of tumor cells by human NK cells. J Immunol; 163(10):5358-5366;1999
18.中醫藥年報第24期,第2 冊,P.95-P.148;2006
19.Dinarello CA. Biologic basis for interleukin-1 in disease. Blood.
87(6):2095-2147. Mar;1996.
20.Sanceau, J., Hiscott, J., Delattre, O. and Wietzerbin, J. IFN-beta induces serine phosphorylation of Stat-1 in Ewing's sarcoma cells and mediates apoptosis via induction of IRF-1 and activation of caspase-7. Oncogene, 19, 3372-3383.;2000
21.Deng, L., Zhou, Y., Peng, X., Deng, H., Deng, Y. and Yao, J. [Serum markers and pathological evaluation in hepatitis fibrosis of chronic hepatitis B treated with interferon alpha]. Zhonghua Gan Zang Bing Za Zhi, 9 Suppl, 66-67;2001
22.Cippitelli, M., Sica, A., Viggiano, V., Ye, J., Ghosh, P., Birrer, M.J. and Young, H.A. Negative transcriptional regulation of the interferon-gamma promoter by glucocorticoids and dominant negative mutants of c-Jun. J Biol Chem, 270, 12548-12556.;1995

23.Nick, J.A., Avdi, N.J., Gerwins, P., Johnson, G.L. and Worthen, G.S. Activation of a p38 mitogen-activated protein kinase in human neutrophils by lipopolysaccharide. J Immunol, 156, 4867-4875.;1996
24.Zhang, G., and Ghosh, S. Toll-like receptor-mediated NF-κB activation: a phylogenetically conserved paradigm in innate immunity. J. Clin. Invest. 107, 13-19;2001
25.Tam, W.F., and Sen, R. IkappaB family members function by different mechanisms. J. Biol. Chem. 276, 7701-7704.;2001
26.Barnes PJ. Nuclear Factor-κB. Int. J. Biochem. Cell Biol. 29(6):867-870.;1997
27.Chin F, Castranova V, Shi X and Demers LM. New insights into the role of nuclear factor-kappa B, a ubiquitous transcription factor in the initiation of disease. Clin. Chem. 45:7-17.;1999
28.Lane P, Gross SS: Nitric oxide: promiscuous and duplicitous. Science& Medicine 96-97.; 2002
29.最新圖解藥理學P401~406 合記圖書出版社
30.Cheng HF, Harris RC .Renal effects of non-steroidal anti- inflammatory drugs and selective cyclooxygenase-2 inhibitors. Curr Pharm Des. 11(14):1795-804; 2005.
31.Lee Y, Rodriguez C, Dionne RA. The role of COX-2 in acute pain and the use of selective COX-2 inhibitors for acute pain relief. Curr Pharm Des. 11(14):1737-55;2005.
32.Patrignani P, Tacconelli S, Sciulli MG, Capone ML. New insights into COX-2 biology and inhibition.Brain Res Brain Res Rev. 2005 Apr;48(2):352-9.
33.Newman DJ, Cragg GM. Nature products as sources of new drugs over the last 25 years. J. Nat. Prod. 2007, 70, 461-477.
34.Hanada T and Yoshimura A. Regulation of cytokine signaling and inflammation.Cytokine&Growth Factor Review. 13:413-421.;2002
35.李儀奎(1991)中藥藥理實驗方法學,上海科學技術出版社
36.杜冠國 譯(1999)藥理學實驗指南,北京科學出版社
37.應用藥理學 第六版,P355~P395,豪峰出版社
38.Alexa T Smolinski, James J Pestka. Comparative effects of the herbal constituent parthenolide (Feverfew) on lipopolysaccharide-induced inflammatory gene expression in murine spleen and liver. J Inflammation. 2005 Jun 29;2:6.
39.N. J. White. Qinghaosu (Artemisinin): The Price of Success. Science. 2008 Apr 18;320(5874):330-4. Review.
40.中國植物誌電子版。
41.鄭武燦(2000)台灣植物圖鑑(下冊),臺北茂昌圖書公司。
42.許喬木、邱年永(1980)原色野生食用植物圖鑑,臺北南天書局。
43.張碧員、張蕙芬(1977)臺灣野花365天,臺北大樹文化事業。
44.Chun-Hua Lin, Chia-Ying Li, Tian-Shung Wu. A novel phenylpropenoyl sulfonic acid and a new chlorophyll from the leaves of Petasites formosanus KITAMURA. Chem Pharm Bull (Tokyo). 52(9):1151-2;2004.
45.Guei-Jane Wang, Jyh-Fei Liao, Kadon K. Hintz, Wen-Pin Chen, Ming-Jai Su, Yun-Lian Lin, Chuen-Chao Shi, Chieh-Fu Chen, Jun Ren. Calcium-antagonizing activity of S-petasin, a hypotensive sesquiterpene from Petasites formosanus, on inotropic and chronotropic responses in
isolated rat atria and cardiac myocytes. Naunyn Schmiedebergs Arch Pharmacol. 369(3):322-9; 2004.
46.Lucy B. Esberg, Guei-Jane Wang, Yun-Lian Lin, Jun Ren. Iso-S-petasin, a hypotensive sesquiterpene from Petasites formosanus, depresses cardiac contraction and intracellular Ca2+ transients in adult rat ventricular myocytes. J Pharm Pharmacol. Jan;55(1):103-7; 2003
47.Sheng-Nan Wu, Hsinyo Chen, Yun-Lian Lin. The mechanism of inhibitory actions of S-petasin, a sesquiterpene of Petasites formosanus, on L-type calcium current in NG108-15 neuronal cells. Planta Med. Feb;69(2):118-24; 2003.
48.Wun-Chang Ko, Sheng-Hao Wang, Mei-Chun Chen, Yun-Lian Lin, Chieh-Fu Chen, S-Isopetasin, a sesquiterpene of Petasites formosanus, allosterically antagonized carbachol in isolated guinea pig atria. Planta Med. Jul;68(7):652-5; 2002
49.Guei-Jane Wang, Xi-Chen Wu, Yun-Lian Lin, Jun Ren, Andrew Yau-Chik Shum, Yu-Yuan Wu, Chieh-Fu Chen. Ca2+ channel blocking effect of iso-S-petasin in rat aortic smooth muscle cells. Eur J Pharmacol. 12;445(3):239-45; 2002
50.Wun-Chang Ko, Chien-Bang Lei, Yan-Lian Lin, Chieh-Fu Chen.Mechanisms of relaxant action of S-petasin and S-isopetasin, sesquiterpenes of Petasites formosanus, in isolated guinea pig trachea. Planta Med; 7(3):224-9. 2001
51.Guei-Jane Wang, Andrew Yau-Chik Shum, Yun-Lian Lin, Jyh-Fei Liao, Xi-Chen Wu, Jun Ren, Chieh-Fu Chen. Calcium channel blockade in vascular smooth muscle cells: major hypotensive mechanism of S-petasin, a hypotensive sesquiterpene from Petasites formosanus. J Pharmacol Exp Ther. ;297(1):240-6; 2001.
52.Wu TS, Kao MS, Wu PL, Lin FW, Shi LS, Liou MJ, Li CY. The bakkenolides from the root of Petasites formosanus and their cytotoxicity. Chem Pharm Bull (Tokyo). 47(3):375-82; 1999
53.Yun-Lian Lin, Ching-Hua Mei, Shou-Ling Huang, Yueh-Hsiung Kuo. Four new sesquiterpenes from Petasites formosanus. J Nat Prod. 61(7):887-90; 1998.
54.Liao CH, Ko FN, Wu TS, Teng CM. Bakkenolide G, a natural PAF-receptor antagonist. J Pharm Pharmacol. 49(12):1248-53; 1997.
55.Chun-Hua Lin, Chia-Ying Li, Chang-Sheng Kuoh, Tian-Shung Wu. Constituents of the leaves of Petasites formosanus and their antioxidative activity. Heterocycles 60 (8), 1881-1889; 2003
56.Yoko Goto, Yasuo Kojima, Tomoki Nakayama, Minoru Terazawa. Allelopathic sesquiterpenoids from rhizomes of Petasites japonicus ssp. giganteus Kitam. Phytochemistry.. 57(1):109-13;2001
57.Mauricio G. Constantino, Kleber T. de Oliveira, Ellen C. Polo, Gil V. J. da Silva, Timothy J. Brocksom. Core structure of eremophilanes and bakkanes through niobium catalyzed Diels-Alder reaction: Synthesis of (±)-bakkenolide A Journal of Organic Chemistry 71 (26), 9880-9883; 2006
58.Chemical constituents in root of Petasites tricholobus Franch. and their anti-inflammatory activity. Academic Journal of Second Military Medical University 27 (11), 1210-1213; 2006.
59.Antje Bodensieck, Olaf Kunert, Ernst Haslinger, and Rudolf Bauer. New Eremophilane Sesquiterpenes from a Rhizome Extract of Petasites
Hybridus. Helvetica Chimica Acta Vol. 90, 183-195, 2007
60.SESQUITERPENOIDS FROM PETASITES FRAGRANS. Phytochemittry, Vol 22, No. 7, 1619-1622; 1983.
61.Markus Neuenschwander, Andreas Neuenschwander, Peter Engel. Struktur der Sesquiterpene von Petmites hybridus (L.) G. M. et SCH.: Petasol- und Isopetasol-Abkommlinge') Helvetica Chimica Acta Vol. 62, 609-626, Fasc. 2, 1979.
62.顏焜熒:原色生藥學,南天書局,1985:217-223
63.James E Robbers, Marilyn K. Speedile, Varro E. Tyler, Pharmacognosy and Pharmacobiotechnology,1996:80-93
64.Young AJ, Lowe GM. Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys. 2001;385(1):20-7.
65.鄭瑞棠 陳文旭:藥理學P.407-27。華杏出版股份有限公司,台北, 1991.
66.Vane J, Botting R. Inflammation and the mechanism of action of anti- inflammatory drugs. FASEB Journal 1987;1:89-96.
67.Dubuisson D, Dennis SG. The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 1977; 4: 161-74.
68.Vinegar R. Truax JF. Selph JL. Johnston PR. Venable AL. McKenzie KK.Pathway to carrageenan-induced inflammation in the hind limb of the rat.Federation Proceedings 1987;46:118-26.
69.孫維仁、侯文詠、謝正勇、劉健強、林瑞明:C-fos 細胞致癌基因在疼痛訊號
70.傳遞過程中所扮演的角色。疼痛醫學雜誌 1994; 4: 75-88.

------------------------------------------------------------------------ 第 9 筆 ---------------------------------------------------------------------
系統識別號 U0007-1707200815100700
論文名稱(中文) 評估對胺基水楊酸次微米化促進生體可用率之研究
論文名稱(英文) Improve the Bioavailability of p-Aminosalicylic Acid by Submicronization
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 96
學期 2
出版年 97
研究生(中文) 曾宣凱
學號 M301095011
學位類別 碩士
語文別 中文
口試日期 2008-07-01
論文頁數 157頁
口試委員 指導教授-許光陽
委員-廖嘉鴻
委員-汪佑襄
關鍵字(中) 對胺基水楊酸
次微米化粒子
生體可用率
關鍵字(英) p-aminosalicylic acid
submicron particles
bioavailability
學科別分類
中文摘要 對胺基水楊酸( p-Aminosalicylic acid, PAS)為抗肺結核藥品,因溶解度不佳及首渡效應強烈導致口服生體可用率低而退居為第二線。
本實驗目的在於評估以超重力沉澱法所製成之次微米化PAS 粒子
(Higee, 平均粒徑: 1 μm)投與至家兔體中是否具有提升生體可用率
的效果。
本實驗血漿中PAS 及其代謝物乙醯胺基水楊酸(N-AcPAS)的濃度
分析方法乃以逆向高效液相層析法為之。PAS 及N-AcPAS 之檢量線
在本實驗濃度範圍內具有良好之線性關係及準確性與精確性。
兔子乙醯代謝型之篩選乃利用Sulfadiazine (10 mg/kg)靜脈投與於8 隻家兔體內定之,其中5 隻為快速乙醯化代謝型,3 隻為慢速
乙醯化代謝型。
將10、30、50 mg PAS 靜脈投與至家兔(n=8)後,PAS 之藥動學參數呈現清除率隨著劑量增加而降低(p<0.01),血中濃度曲線下面積
(AUC)也不呈現等比例上升之現象,顯示在此劑量範圍內PAS 具有非
線性藥物動力學特性。
將10、30、50 mg 之PAS(平均粒徑: 10 μm)及Higee 口服投與至家兔後,在(1)10 mg 劑量:Higee 之AUC、生體可用率及最高血中濃度相較於對照組均沒有顯著差異。(2)30 mg 劑量: Higee 之AUC
(p<0.01)、生體可用率(p<0.01)及最高血中濃度(p<0.05)相較於對照組均呈現1.6~1.7 倍之顯著差異。(3) 50 mg 劑量: Higee 之AUC (p<0.05)、生體可用率(p<0.05)及最高血中濃度(p<0.05)相較於對照組也呈現1.5~1.6 倍之顯著差異。由此可知Higee 於中高劑量PAS 下對於家兔之生體可用率有顯著之增進。
將PAS 口服給藥與乙醯代謝型結果相互比較後,在50 mg 劑量
下,Higee 均可增進快速或慢速乙醯代謝型之生體可用率( p<0.05 );且在Higee,慢速乙醯代謝型之AUC 顯著大於快速乙醯代謝型
(p<0.05)。由此推論Higee 在快速溶離後可能會快速飽和慢速乙醯代
謝型家兔之乙醯化反應而使PAS 生體可用率增加;在30 mg 劑量條
件下亦有相似結果。
論文目次 中文摘要.......................................I
Abstract.....................................III
目次..........................................IV
表目錄......................................VIII
圖目錄........................................XI
縮寫表.......................................XIV
第一章緒論.....................................1
壹、前言.......................................1
貳、研究背景...................................2
一、肺結核.....................................2
1. 致病原及致病機轉............................3
2. 病理學......................................4
3. 傳播........................................5
4. 臨床徵照...................................10
5. 診斷.......................................12
6. 治療指引...................................16
7. 抗藥性肺結核...............................19
二、對胺基水楊酸..............................22
1. PAS 之化學特性.............................22
2. PAS 之抗菌機轉.............................24
3. PAS 之藥物動力學...........................26
三、乙醯化代謝酵素............................36
四、微粒化製藥技術及超重力再結晶法............46
參、研究目的..................................59
第二章實驗材料與方法..........................61
壹、實驗儀器及材料............................61
一、實驗試藥..................................61
二、實驗儀器..................................63
三、試藥之配製................................64
1. PAS 儲備溶液之配製.........................64
2. N-AcPAS 儲備溶液之配製.....................64
3. SDZ 儲備溶液之配製.........................64
貳、分析方法..................................66
一、PAS 及N-AcPAS 分析方法....................66
1. 分析條件...................................66
2. 動物檢品處理方法...........................68
3. 檢量線配製方法.............................70
4. 分析方法確效試驗...........................71
二、SDZ 分析方法..............................73
1. 分析條件...................................73
2. 動物檢品處理方法...........................75
3. 檢量線配製方法.............................77
4. 分析方法再確效試驗.........................77
參、動物實驗方法..............................78
一、篩選家兔乙醯化代謝型方法..................79
二、靜脈注射實驗方法..........................80
三、口服投與實驗方法..........................81
四、定量乙醯化代謝比例實驗....................82
肆、動物實驗數據處理..........................83
伍、統計方法..................................87
第三章實驗結果與討論..........................89
壹、分析方法結果與討論........................89
一、PAS 分析方法結果與討論....................89
1. 分析條件...................................89
2. 檢量線.....................................90
3. 同次及異次確效試驗.........................91
二、SDZ 分析方法結果與討論....................99
1. 分析條件...................................99
2. 檢量線.....................................99
3. 分析方法再確效.............................99
貳、動物實驗結果與討論.......................104
一、SDZ 篩選乙醯化代謝型結果與討論...........104
二、靜脈注射PAS 結果與討論...................106
三、口服實驗結果與討論.......................110
四、比較代謝型與次微米化粒子口服生體可用率
結果與討論...................................123
五、乙醯化代謝比例結果與討論.................143
第四章結論...................................148
參考文獻.....................................152
參考文獻 1. WHO, W.H.O., 2006 Tuberculosis facts. 2007.
2. 台灣疾病管制局, 台灣疾病管制局2007年傳染病防治年報. 2008.
3. Madison, B.M., Application of stains in clinical microbiology. Biotech Histochem, 2001. 76(3): p. 119-25.
4. Parish, T. and N.G. Stoker, Mycobacteria: bugs and bugbears (two steps forward and one step back). Mol Biotechnol, 1999. 13(3): p. 191-200.
5. Niemann, S., et al., Two cases of Mycobacterium microti derived tuberculosis in HIV-negative immunocompetent patients. Emerg Infect Dis, 2000. 6(5): p. 539-42.
6. Houben, E.N., L. Nguyen, and J. Pieters, Interaction of pathogenic mycobacteria with the host immune system. Curr Opin Microbiol, 2006. 9(1): p. 76-85.
7. Lutwick, L.I., Tuberculosis-A Clinical Handbook. 2000: Chapman & Hall Medical.
8. Kaufmann, S.H., Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis, 2002. 61 Suppl 2: p. ii54-8.
9. Phillip Onyebujoh, G.A.W.R., WHO Disease Watch: Focus: Tuberculosis. 2004.
10. Agarwal, R., et al., Tuberculous dilated cardiomyopathy: an under-recognized entity? BMC Infect Dis, 2005. 5(1): p. 29.
11. Herrmann, J.L. and P.H. Lagrange, Dendritic cells and Mycobacterium tuberculosis: which is the Trojan horse? Pathol Biol (Paris), 2005. 53(1): p. 35-40.
12. Kim, J.Y., et al., Miliary tuberculosis and acute respiratory distress syndrome. Int J Tuberc Lung Dis, 2003. 7(4): p. 359-64.
13. Grosset, J., Mycobacterium tuberculosis in the extracellular compartment: an underestimated adversary. Antimicrob Agents Chemother, 2003. 47(3): p. 833-6.
14. Carr, J. WHO unveils strategy to tackle tuberculosis. 2006 [cited; Available from: http://www.cbc.ca/health/story/2006/03/17/tb-who060317.html?ref=rss.
15. Prevention, C.f.D.C.a. Aerosol from Sneeze. 2007 [cited.
16. Johnston, R.N., et al., Haemoptysis. Br Med J, 1960. 1(5173): p. 592-5.
17. Nagami, P.H. and T.T. Yoshikawa, Tuberculosis in the geriatric patient. J Am Geriatr Soc, 1983. 31(6): p. 356-63.
18. Centers for Disease Control and Prevention, U. Mantoux tuberculin skin test. 2007 [cited; Available from: http://www.cdc.gov/tb/pubs/Mantoux/guide.htm.
19. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: controlling tuberculosis in the United States. Am J Respir Crit Care Med, 2005. 172(9): p. 1169-227.
20. WHO, W.H.O., Treatment of Tuberculosis: guidelines for national programmes. 2003, WHO, World Health Ognization.
21. David, H.L., Probability distribution of drug-resistant mutants in unselected populations of Mycobacterium tuberculosis. Appl Microbiol, 1970. 20(5): p. 810-4.
22. Correctional Health Care, a.t.A.C.A., Prevention and Control of Tuberculosis in Correctional and Detention Facilities:Recommendations from CDC, a.t.A.C.A. Correctional Health Care, Editor. 2007.
23. 台灣疾病管制局, 結核病, 台灣疾病管制局, Editor. 2007.
24. Frieden, T.R., et al., The emergence of drug-resistant tuberculosis in New York City. N Engl J Med, 1993. 328(8): p. 521-6.
25. Garrett, L., Betrayal of trust: the collapse of global public health. 2000, New York: Hyperion Books.
26. WHO Global Task Force outlines measures to combat XDR-TB worldwide. 2006 [cited.
27. Drobac, P.C., et al., Community-based therapy for children with multidrug-resistant tuberculosis. Pediatrics, 2006. 117(6): p. 2022-9.
28. Extensively drug-resistant tuberculosis (XDR-TB): recommendations for prevention and control. Wkly Epidemiol Rec, 2006. 81(45): p. 430-2.
29. Mitnick, C., et al., Community-based therapy for multidrug-resistant tuberculosis in Lima, Peru. N Engl J Med, 2003. 348(2): p. 119-28.
30. Ziganshina, L.E. and S.B. Squire, Fluoroquinolones for treating tuberculosis. Cochrane Database Syst Rev, 2008(1): p. CD004795.
31. Chambers, H.F., et al., Activity of amoxicillin/clavulanate in patients with tuberculosis. Clin Infect Dis, 1998. 26(4): p. 874-7.
32. Selgelid, M.J., P.M. Kelly, and A. Sleigh, Ethical challenges in TB control in the era of XDR-TB. Int J Tuberc Lung Dis, 2008. 12(3): p. 231-5.
33. XDR-TB--a global threat. Lancet, 2006. 368(9540): p. 964.
34. Peloquin, C.A., et al., Pharmacokinetic evaluation of para-aminosalicylic acid granules. Pharmacotherapy, 1994. 14(1): p. 40-6.
35. Pentikainen, P., S.H. Wan, and D.L. Azarnoff, Bioavailability studies on p-aminosalicylic acid and its various salts in man. II. Comparison of parasal and pascorbic. Am Rev Respir Dis, 1973. 108(6): p. 1340-70.
36. Spector, R. and A.V. Lorenzo, The active transport of para-aminosalicylic acid from the cerebrospinal fluid. J Pharmacol Exp Ther, 1973. 185(3): p. 642-8.
37. Nariman, S., Adverse reactions to drugs used in the treatment of tuberculosis. Adverse Drug React Acute Poisoning Rev, 1988. 7(4): p. 207-27.
38. Jenne, J.W., F.M. Macdonald, and E. Mendoza, A study of the renal clearances, metabolic inactivation rates, and serum fall-off interaction of isoniazid and paraminosalicylic acid in man. Am Rev Respir Dis, 1961. 84: p. 371-8.
39. Gilman AG, G.L., Rall TW Goodman and Gilman"s the pharmocological basis of therapeutics., ed. 7th. 1985, New York: Macmillan.
40. Pentikainen, P.J., S.H. Wan, and D.L. Azarnoff, Bioavailability of aminosalicylic acid and its various salts in humans IV: comparison of four brands of the sodium salt. J Pharm Sci, 1974. 63(9): p. 1431-4.
41. Wan, S.H., P.J. Pentikainen, and D.L. Azarnoff, Bioavailability of aminosalicylic acid and its various salts in humans. 3. Absorption from tablets. J Pharm Sci, 1974. 63(5): p. 708-11.
42. Peloquin, C.A., et al., Once-daily and twice-daily dosing of p-aminosalicylic acid granules. Am J Respir Crit Care Med, 1999. 159(3): p. 932-4.
43. Peloquin, C.A., et al., Pharmacokinetics of para-aminosalicylic acid granules under four dosing conditions. Ann Pharmacother, 2001. 35(11): p. 1332-8.
44. Tsapis, N., et al., Direct lung delivery of para-aminosalicylic acid by aerosol particles. Tuberculosis (Edinb), 2003. 83(6): p. 379-85.
45. Sim, E., I. Westwood, and E. Fullam, Arylamine N-acetyltransferases. Expert Opin Drug Metab Toxicol, 2007. 3(2): p. 169-84.
46. Butcher, N.J., et al., Pharmacogenetics of the arylamine N-acetyltransferases. Pharmacogenomics J, 2002. 2(1): p. 30-42.
47. Sinclair, J.C., et al., Structure of arylamine N-acetyltransferase reveals a catalytic triad. Nat Struct Biol, 2000. 7(7): p. 560-4.
48. Pompeo, F., et al., The pharmacogenetics of NAT: structural aspects. Pharmacogenomics, 2002. 3(1): p. 19-30.
49. Yamamura, E., et al., Purification and biochemical properties of an N-hydroxyarylamine O-acetyltransferase from Escherichia coli. Biochim Biophys Acta, 2000. 1475(1): p. 10-6.
50. Kattner, E., R. Dubbels, and W. Schloot, Acetylation of procainamide and isoniazid by a rat liver-N-acetyl-transferase. Eur J Drug Metab Pharmacokinet, 1981. 6(2): p. 81-4.
51. Merisko-Liversidge, E.M. and G.G. Liversidge, Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol, 2008. 36(1): p. 43-8.
52. Smirnova, I., et al., Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels. Pharm Dev Technol, 2004. 9(4): p. 443-52.
53. Rasenack, N. and B.W. Muller, Dissolution rate enhancement by in situ micronization of poorly water-soluble drugs. Pharm Res, 2002. 19(12): p. 1894-900.
54. Chiou, W.L., S.J. Chen, and N. Athanikar, Enhancement of dissolution rates of poorly water-soluble drugs by crystallization in aqueous surfactant solutions I: Sulfathiazole, prednisone, and chloramphenicol. J Pharm Sci, 1976. 65(11): p. 1702-4.
55. Imai, T., et al., Enhancement of the dissolution rates of poorly water-soluble drugs by water-soluble gelatin. Chem Pharm Bull (Tokyo), 1989. 37(8): p. 2251-2.
56. Rasenack, N., H. Hartenhauer, and B.W. Muller, Microcrystals for dissolution rate enhancement of poorly water-soluble drugs. Int J Pharm, 2003. 254(2): p. 137-45.
57. Umang Shah, C.V., Vanessa Askins, Mayur Lodaya, Paul Elzinga, Matthew J. Mollan, Jr., Nanoparticle Formation: A Modular High Pressure System to Enhance Biopharmaceutical Properties of Poorly Soluble Drugs. Pharmaceutical Technology, 2006.
58. Overhoff, K.A., et al., Novel ultra-rapid freezing particle engineering process for enhancement of dissolution rates of poorly water-soluble drugs. Eur J Pharm Biopharm, 2007. 65(1): p. 57-67.
59. 趙以諾, 奈米級粉體製造技術與設備介紹. 機械工業雜誌, 2004. 255: p. 140-150.
60. Song, D.J., Y. Ho, and K.Y. Hsu, Metabolic kinetics of p-aminobenzoic acid in rabbits. Biopharm Drug Dispos, 1999. 20(5): p. 263-70.
61. Gennaroa, M.C., Calvinob, R., Abrigoa, C. , Ion interaction reagent reversed-phase high-performance liquid chromatography determination of anti-tuberculosis drugs and metabolites in biological fluids. Journal of Chromatography B, 2001. 754: p. 477-486.
62. Vasbinder, E., et al., Quantitative determination of p-aminosalicylic acid and its degradation product m-aminophenol in pellets by ion-pair high-performance liquid chromatography applying the monolithic Chromolith Speedrod RP-18e column. Biomed Chromatogr, 2004. 18(1): p. 55-63.

------------------------------------------------------------------------ 第 10 筆 ---------------------------------------------------------------------
系統識別號 U0007-1707200817052500
論文名稱(中文) 預測HMG-CoA還原酶抑制劑藥物治療期間糖尿病患發生肝毒性之預測量表建立
論文名稱(英文) Development of a Risk Score for Predicting Hepatotoxicity during HMG-CoA Reductase Inhibitors Therapy in Diabetic Patients
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 96
學期 2
出版年 97
研究生(中文) 何紀賢
學號 M301095025
學位類別 碩士
語文別 中文
口試日期 2008-07-02
論文頁數 96頁
口試委員 委員-黃文鴻
委員-邱弘毅
指導教授-陳香吟
關鍵字(中) HMG-CoA還原酶
抑制劑
肝毒性
預測量表
關鍵字(英) HMG-CoA Reductase Inhibitors
Hepatotoxicity
Risk Score
學科別分類
中文摘要 HMG-CoA還原酶抑制劑 (3-hydroxy-3-methyl-gutaryl-CoA reductase inhibitors, statins) 引起的肝毒性雖常見,但多數病人肝功能指數會自發性回復正常,因此臨床上糖尿病人使用時監測情形並不如藥品仿單建議的頻繁。但若嚴重肝毒性發生,就可能會降低病人的服藥配合度,甚至損害健康。糖尿病盛行率逐年增加,估計其中約有50%患者會同時併有血脂異常,因此常需併用statins治療。除了高血脂,肝臟疾病也是一個重要卻常被忽略的糖尿病合併症。在糖尿病病人接受statins治療時,應要有符合臨床需要和經濟效應的肝功能監測建議,以有效的進行肝功能檢測,並避免肝臟相關不良反應導致服藥依順性低而造成浪費。
本研究目的為利用糖尿病患者在statins 治療期間發生肝毒性的危險因子,建立一套預測量表,以輔助肝功能監測的安排。收案地點為台北醫學大學-市立萬芳醫院,共回溯219名糖尿病患之病歷,收集資料包括病人基本資料與合併疾病、生化檢驗數據,與使用藥物品項與劑量等。以univariate analysis評估潛在危險因子與statins使用期間發生的肝毒性之相關性。具有統計意義的危險因子再以logistic regression進行分析,並以危險因子進行配分,建立statins使用期間發生肝毒性的預測量表。量表之配適度以Hosmer-Lemeshow test評估,其檢測力則以receiver-operating characteristic (ROC) curve 下的面積(AUC)、sensitivity與specificity示之。
經過logistic regression分析並建立的量表總共包括五項危險因子:(1)男性,(2)三酸甘油脂的檢驗基準值,(3)糖尿病罹病期間,(4)合併疾病數,以及(5)病患所使用的angiotensin-converting enzyme inhibitors (ACEI)之每日處方劑量(Prescribed Daily Dose, PDD) 與每日定義劑量(Defined Daily Dose,DDD) 的比率。ROC 曲線下面積為0.864,Hosmer-Lemeshow test 的p 值為0.674,所得預測量最佳切點(cutoff point)為4.5分。大於50%以上的肝毒性發生在statins使用後半年內,因此建議STH預測量表得分大於4.5分的糖尿病患,應在statins開始使用的第三個月、第六個月、第十二個月,與第十八個月進行肝功能監測。
英文摘要 HMG-CoA reductase inhibitors (statins)-induced hepatotoxicity is a common adverse effect characterized by asymptomatic and transient elevations in liver enzymes. Due to the self-resolving nature, even without statin discontinuation, the frequency of monitoring of liver function tests (LFT) in patients receiving statin therapy is usually lower than the manifacturers’ recommendations. Although hepatotoxicity is rarely severe, once it occurs, patients are endangered directly by the event itself and indirectly from lowered patient compliance. Hyperlipidemia and liver diseases are important diabetic comorbidities. While statin is the most commonly prescribed lipid lowering agent, its hepatotoxicity in diabetic hyperlipidemic patients requires further evaluation. Current LFT monitoring recommendations should adjust to accommodate the clinical needs of diabetic patients during statins therapy.
This retrospective analysis was conducted to determine factors associated with hepatotoxicity among diabetic patients during statins therapy and to develop a risk score. Data of 219 patients were collected from the medical charts of Municipal Wan-Fang Hospital. Potential risk factors were assessed by univariate analysis for their association with hepatotoxicity during statin therapy. Factors significantly associated with the outcome were further evaluated in logistic regression analysis. A risk model was constructed by regression coefficients. Hosmer-Lemeshow test was performed to evaluate model fit. Discriminatory power was determined by area under receiver-operating characteristic curve (ROC curve).
Five risk factors were found significantly associated with hepatotoxicity during statin therapy and were incorporated to construct a risk model predicting hepatotoxicity. These factors included: (1) male gender, (2) baseline triglyceride level, (3) years since diabetes diagnosis, (4) number of diagnoses, and (5) PDD/DDD (Prescribed Daily Dose/Defined Daily Dose) ratio of angiotensin converting enzyme inhibitors. Area under ROC curve was 0.864 for the predictive model. Hosmer-Lemeshow test revealed a p-value of 0.674. Base on the findings in this study, it is advised that diabetic patients with STH score of 4.5 or above should monitor liver function at baseline, month 1, 3, 6, 9, 12, and 18 after initiation of statins.
論文目次 中文摘要 3
英文摘要 4
目次 5
表目錄 7
圖目錄 9
第1章 緒論 1
第2章 文獻探討 2
2.1 HMG-COA REDUCTASE於糖尿病血脂異常之臨床用途與使用現況 2
2.1.1 糖尿病血脂異常 2
2.1.2 降血脂藥物在糖尿病合併血脂異常的治療 7
2.1.3 HMG-CoA Reducatse Inhibitors之臨床用途與使用現況 9
2.2 HMG-COA REDUCTASE INHIBITORS引起之藥物不良反應 12
2.3 藥物引起之肝毒性 15
2.3.1 藥物引起肝毒性之分類與機轉 15
2.3.2 藥物引起肝毒性的危險因子 17
2.3.3 HMG-CoA Reductase抑制劑引起之肝毒性 18
2.3.4 HMG-CoA Reductase 抑制劑引起肝毒性的危險因子 18
第3章 研究目的 20
第4章 研究方法 21
4.1 研究設計 21
4.2 研究對象 22
4.2.1 本研究納入之對象 22
4.2.2 本研究之排除標準 22
4.3 資料收集 23
4.3.1 資料收集之內容 23
4.3.2 研究相關定義 24
4.4 肝毒性判定與評估 30
4.4.1 藥物引起之肝毒性分類 30
4.4.2 肝毒性與Statins相關性之評估 30
4.5 資料統計與分析 32
4.5.1 基本資料分析 32
4.5.2 肝毒性相關因子分析 32
4.5.3 預測量表建立與驗證 33
第5章 研究結果 35
5.1 研究對象初步資料分析 35
5.1.1 研究對象納入狀況 35
5.1.2 基本資料分析 35
5.1.3 糖尿病患者Statins與併用藥物使用情形 36
5.1.4 研究對象檢驗基準值 38
5.2 糖尿病患者STATINS使用期間肝毒性發生率 41
5.2.1 肝毒性發生率 41
5.2.2 肝毒性發生時間點與檢驗值 41
5.2.3 肝毒性與不良反應的相關性評估 43
5.3 肝毒性相關危險因子分析 45
5.3.1 研究對象基本資料 45
5.3.2 生化檢測基準值 47
5.3.3 Statins與併用藥物 48
5.4 預測量表的建立 52
5.5 預測量表的驗證 55
第6章 討論 63
6.1 糖尿病患在STATINS治療期間發生之肝毒性 63
6.2 肝毒性的危險因子 65
6.2.1 性別 65
6.2.2 糖尿病罹病時間 67
6.2.3 三酸甘油酯檢驗基準值 68
6.2.4 合併疾病 69
6.2.5 Statins與合併藥物 70
6.3 使用STATINS期間之肝功能監測 76
第7章 研究限制 78
第8章 結論 79
參考文獻 80
附件 87
參考文獻 1. 潘文涵, 傅茂祖, 戴東原, 莊立民, 林宏達. 糖尿病防治手冊(糖尿病預防、診斷與控制流程指引): 行政院衛生署國民健康局; 2004.
2. Tolman KG, Fonseca V, Dalpiaz A, Tan MH. Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. Diabetes Care 2007;30:734-43.
3. International Diabetes Federation. (Accessed June, 10, 2008, at http://www.idf.org/home/index.cfm?unode=3B96906B-C026-2FD3-87B73F80BC22682A.)
4. Brun E, Nelson RG, Bennett PH, et al. Diabetes duration and cause-specific mortality in the Verona Diabetes Study. Diabetes Care 2000;23:1119-23.
5. De Marco R, Locatelli F, Zoppini G, Verlato G, Bonora E, Muggeo M. Cause-specific mortality in type 2 diabetes. The Verona Diabetes Study. Diabetes Care 1999;22:756-61.
6. Garg A, Grundy SM. Management of dyslipidemia in NIDDM. Diabetes Care 1990;13:153-169.
7. Chitturi S, George J. Hepatotoxicity of commonly used drugs: nonsteroidal anti-inflammatory drugs, antihypertensives, antidiabetic agents, anticonvulsants, lipid-lowering agents, psychotropic drugs. Semin Liver Dis 2002;22:169-83.
8. Cohen DE, Anania FA, Chalasani N. An assessment of statin safety by hepatologists. Am J Cardiol 2006;97:77C-81C.
9. Jacobson TA. Statin safety: lessons from new drug applications for marketed statins. Am J Cardiol 2006;97:44C-51C.
10. Rathmann W, Giani G. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:2568-9; author reply 9.
11. Cockram CS. The epidemiology of diabetes mellitus in the Asia-Pacific region. Hong Kong Med J 2000;6:43-52.
12. 白其卉, 游山林, 簡國龍. 台灣地區高血壓、高血糖、高血脂之盛行率調查: 行政院衛生署國民健康局; 2003.
13. 全民健康保險統計年報:前二十大死因戶籍縣市鄉鎮別就診統計-年齡五歲組別. 2006. (Accessed at http://www.doh.gov.tw/statistic/.)
14. Roper NA, Bilous RW, Kelly WF, Unwin NC, Connolly VM. Cause-specific mortality in a population with diabetes: South Tees Diabetes Mortality Study. Diabetes Care 2002;25:43-8.
15. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002;106:3143-421.
16. 中華民國血脂及動脈硬化學. 高血脂防治手冊國人血脂異常診療及預防指引.行政院衛生署國民健康局; 2004.
17. U.K. Prospective Diabetes Study 27. Plasma lipids and lipoproteins at diagnosis of NIDDM by age and sex. Diabetes Care 1997;20:1683-7.
18. Alexander CM, Landsman PB, Teutsch SM, Haffner SM. NCEP-defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES III participants age 50 years and older. Diabetes 2003;52:1210-4.
19. Cottrell DA, Marshall BJ, Falko JM. Therapeutic approaches to dyslipidemia in diabetes mellitus and metabolic syndrome. Curr Opin Cardiol 2003;18:301-8.
20. American Diabetes Association Clinical Practice Recommendations 2007. Diabetes Care 2007;30:13~5.
21. Grundy. Erratum: Implications of recent clinical trials for the national cholesterol education program adult treatment panel III guidelines (Circulation (July 13, 2004) 110 (227-239)). Circulation 2004;110:763.
22. Haffner SM. Management of dyslipidemia in adults with diabetes. Diabetes Care 2003;26 Suppl 1:S83-6.
23. Haffner SM. Dyslipidemia management in adults with diabetes. Diabetes Care 2004;27 Suppl 1:S68-71.
24. Guan J-Z, Tamasawa N, Murakami H, et al. HMG-CoA Reductase inhibitor Simvastain Improves Reverse Cholesterol TRansport in Type 2 Diabetic Patients with Hyperlipidemia. Journal of Atherosclerosis and Thrombosis 2008;15:1-5.
25. Jerwood S, Cohen J. Unexpected antimicrobial effect of statins. J Antimicrob Chemother 2008;61:362-4.
26. Jasinska M, Owczarek J, Orszulak-Michalak D. Statins: a new insight into their mechanisms of action and consequent pleiotropic effects. Pharmacol Rep 2007;59:483-99.
27. Collins R, Armitage J, Parish S, Sleigh P, Peto R. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 2003;361:2005-16.
28. Kearney PM, Blackwell L, Collins R, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 2008;371:117-25.
29. Chiang CW, Chiu HF, Chen CY, Wu HL, Yang CY. Trends in the use of lipid-lowering drugs by outpatients with diabetes in Taiwan, 1997-2003. Pharmacoepidemiology and Drug Safety 2008;17:62-9.
30. Bolego C, Baetta R, Bellosta S, Corsini A, Paoletti R. Safety considerations for statins. Curr Opin Lipidol 2002;13:637-44.
31. Farmer JA, Torre-Amione G. Comparative tolerability of the HMG-CoA reductase inhibitors. Drug Saf 2000;23:197-213.
32. Kiortsis DN, Filippatos TD, Mikhailidis DP, Elisaf MS, Liberopoulos EN. Statin-associated adverse effects beyond muscle and liver toxicity. Atherosclerosis 2007;195:7-16.
33. Pasternak RC, Smith SC, Jr., Bairey-Merz CN, Grundy SM, Cleeman JI, Lenfant C. ACC/AHA/NHLBI Clinical Advisory on the Use and Safety of Statins. Stroke 2002;33:2337-41.
34. Law M, Rudnicka AR. Statin safety: a systematic review. Am J Cardiol 2006;97:52C-60C.
35. McKenney JM, Davidson MH, Jacobson TA, Guyton JR. Final conclusions and recommendations of the National Lipid Association Statin Safety Assessment Task Force. Am J Cardiol 2006;97:89C-94C.
36. Cziraky MJ, Willey VJ, McKenney JM, et al. Statin safety: an assessment using an administrative claims database. Am J Cardiol 2006;97:61C-8C.
37. Alsheikh-Ali AA, Karas RH. Adverse events with concomitant use of simvastatin or atorvastatin and thiazolidinediones. Am J Cardiol 2004;93:1417-8, A9.
38. Bottorff M. Concomitant use of cytochrome P450 3A4 inhibitors and simvastatin. Am J Cardiol 2000;85:1042-3.
39. Bottorff MB. Statin safety and drug interactions: clinical implications. Am J Cardiol 2006;97:27C-31C.
40. Chang CY, Schiano TD. Review article: drug hepatotoxicity. Aliment Pharmacol Ther 2007;25:1135-51.
41. Davidson MH, Clark JA, Glass LM, Kanumalla A. Statin safety: an appraisal from the adverse event reporting system. Am J Cardiol 2006;97:32C-43C.
42. Russo MW, Jacobson IM. How to use statins in patients with chronic liver disease. Cleve Clin J Med 2004;71:58-62.
43. CD Holt, Arriola E. Adverse Effects of Drugs on the Liver. In: Koda-Kimble MA YL, Kradjan WA, Guglielmo BJ, Alldredge BA, Corelli RL, ed. Applied Therapeutics: The Clinical Use of Drugs. 8 ed: Lippincott Williams & Wilkins; 2004:1-25.
44. RJ Temple, Himmel MH. Safety of newly approved drugs: implications for prescribing. JAM 2002;287:2273-5.
45. Y Meier, M Cavallaro, M Roos, al e. Incidence of Drug-induced Hepatic Injuries: A French Population-Based Study. Hepatology 2005;2002:451-5.
46. MacLaren R. Hepatic and Cholestatic Disease. In: Drug-Induced Disease:515-35.
47. Bénichou C. Criteria of drug-induced liver disorders : Report of an International Consensus Meeting. Journal of Hepatology 1990;11:272-6.
48. Lee WM. Drug-induced hepatotoxicity. N Engl J Med 2003;349:474-85.
49. Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther 2006;80:565-81.
50. Ghali P, Lindor KD. Hepatotoxicity of drugs used for treatment of obesity and its comorbidities. Semin Liver Dis 2004;24:389-97.
51. Bhardwaj SS, Chalasani N. Lipid-lowering agents that cause drug-induced hepatotoxicity. Clin Liver Dis 2007;11:597-613, vii.
52. Parra JL, Reddy KR. Hepatotoxicity of hypolipidemic drugs. Clin Liver Dis 2003;7:415-33.
53. Chalasani N, Aljadhey H, Kesterson J, Murray MD, Hall SD. Patients with elevated liver enzymes are not at higher risk for statin hepatotoxicity. Gastroenterology 2004;126:1287-92.
54. Vuppalanchi R, Teal E, Chalasani N. Patients with elevated baseline liver enzymes do not have higher frequency of hepatotoxicity from lovastatin than those with normal baseline liver enzymes. Am J Med Sci 2005;329:62-5.
55. OPDRA safety review: statins and hepatotoxicity. AERS Food and Drug Administration, 2000. (Accessed May 1, 2000., at http://www.fdagov/medwatch/safety /2000.)
56. Deambrosis P, Saramin C, Terrazzani G, et al. Evaluation of the prescription and utilization patterns of statins in an Italian local health unit during the period 1994-2003. Eur J Clin Pharmacol 2007;63:197-203.
57. WHO Collaborating Centre for Drug Statistics Methodology. (Accessed at http://www.whocc.no/atcddd/.)
58. Danan G, Benichou C. Causality assessment of adverse reactions to drugs--I. A novel method based on the conclusions of international consensus meetings: application to drug-induced liver injuries. J Clin Epidemiol 1993;46:1323-30.
59. Naranjo CA, Busto U, Sellers EM, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther 1981;30:239-45.
60. Linden A. Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. J Eval Clin Pract 2006;12:132-9.
61. 台灣地區各類法定傳染病個案報告表. 2008. (Accessed May, 2, 2008, at https://teb.cdc.gov.tw/upload/doc/21232_台灣地區各類法定傳染病個案報告表.pdf.)
62. 國際疫情及新知. 2008. (Accessed May, 2, 2008, at http://teb.cdc.gov.tw:8080/CDC_KSP/readFile.)
63. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. N Engl J Med 1998;339:1349-57.
64. Pedersen TR, Kjekshus J, Berg K, et al. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). 1994. Atheroscler Suppl 2004;5:81-7.
65. Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med 1996;335:1001-9.
66. Schwartz GG, Olsson AG, Ezekowitz MD, et al. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA 2001;285:1711-8.
67. Shear CL, Franklin FA, Stinnett S, et al. Expanded Clinical Evaluation of Lovastatin (EXCEL) study results. Effect of patient characteristics on lovastatin-induced changes in plasma concentrations of lipids and lipoproteins. Circulation 1992;85:1293-303.
68. Tonkin AM. Management of the Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) study after the Scandinavian Simvastatin Survival Study (4S). Am J Cardiol 1995;76:107C-12C.
69. Clark JM, Diehl AM. Hepatic steatosis and type 2 diabetes mellitus. Curr Diab Rep 2002;2:210-5.
70. Hickman IJ, Macdonald GA. Impact of diabetes on the severity of liver disease. Am J Med 2007;120:829-34.
71. Hoppin AG. Obesity and the liver: developmental perspectives. Semin Liver Dis 2004;24:381-7.
72. Moran A, Jacobs DR, Jr., Steinberger J, et al. Changes in insulin resistance and cardiovascular risk during adolescence: establishment of differential risk in males and females. Circulation 2008;117:2361-8.
73. Chiu KC, Cohan P, Lee NP, Chuang LM. Insulin sensitivity differs among ethnic groups with a compensatory response in beta-cell function. Diabetes Care 2000;23:1353-8.
74. Donahue RP, Bean JA, Donahue RA, Goldberg RB, Prineas RJ. Insulin response in a triethnic population: effects of sex, ethnic origin, and body fat. Miami Community Health Study. Diabetes Care 1997;20:1670-76.
75. Sumner AE, Kushner H, Sherif KD, Tulenko TN, Falkner B, Marsh JB. Sex differences in African-Americans regarding sensitivity to insulin's glucoregulatory and antilipolytic actions. Diabetes Care 1999;22:71-7.
76. Rincon J, Holmang A, Wahlstrom EO, et al. Mechanisms behind insulin resistance in rat skeletal muscle after oophorectomy and additional testosterone treatment. Diabetes 1996;45:615-21.
77. 吳家雯. 全民健康保險研究資料庫HMG-CoA Reductase Inhibitors處方型態及用藥安全性分析:自藥品交互作用觀點探討. In: 國立台灣大學醫學院臨床藥學研究所; 2005.
78. Ratz Bravo AE, Tchambaz L, Krahenbuhl-Melcher A, Hess L, Schlienger RG, Krahenbuhl S. Prevalence of potentially severe drug-drug interactions in ambulatory patients with dyslipidaemia receiving HMG-CoA reductase inhibitor therapy. Drug Saf 2005;28:263-75.
79. Efficacy of atorvastatin in primary hypercholesterolemia. Japan Cholesterol Lowering Atorvastatin Study (J-CLAS) Group. Am J Cardiol 1997;79:1248-52.
80. Pravastatin use and risk of coronary events and cerebral infarction in japanese men with moderate hypercholesterolemia: the Kyushu Lipid Intervention Study. J Atheroscler Thromb 2000;7:110-21.
81. Nakamura H. Primary prevention of cardiovascular diseases among hypercholesterolemic Japanese with a low dose of pravastatin. Atheroscler Suppl 2007;8:13-7.
82. Saito Y, Goto Y, Dane A, Strutt K, Raza A. Randomized dose-response study of rosuvastatin in Japanese patients with hypercholesterolemia. J Atheroscler Thromb 2003;10:329-36.
83. Sasaki J, Arakawa K, Iwashita M, Matsushita Y, Kono S. Reduction in serum total cholesterol and risks of coronary events and cerebral infarction in Japanese men: the Kyushu Lipid Intervention Study. Circ J 2003;67:473-8.
84. Wang KY, Ting CT. A randomized, double-blind, placebo-controlled, 8-week study to evaluate the efficacy and safety of once daily atorvastatin (10 mg) in patients with elevated LDL-cholesterol. Jpn Heart J 2001;42:725-38.
85. Wu CC, Sy R, Tanphaichitr V, Hin AT, Suyono S, Lee YT. Comparing the efficacy and safety of atorvastatin and simvastatin in Asians with elevated low-density lipoprotein-cholesterol--a multinational, multicenter, double-blind study. J Formos Med Assoc 2002;101:478-87.
86. Yamamoto A, Arakawa K, Sasaki J, et al. Clinical effects of rosuvastatin, a new HMG-CoA reductase inhibitor, in Japanese patients with primary hypercholesterolemia: an early phase II study. J Atheroscler Thromb 2002;9:48-56.
87. Saito M, Hirata-Koizumi M, Urano T, Miyake S, Hasegawa R. A literature search on pharmacokinetic drug interactions of statins and analysis of how such interactions are reflected in package inserts in Japan. J Clin Pharm Ther 2005;30:21-37.
88. Romero-Gomez M, Miralles EJ, EG D. Hepatotoxicity induced by fosinopril. J Hepatol 2001;35:309.
89. Jeserich M, Ihling C, H-P A. Acute liver failure due to enalapril. HERZ 2000; 25(7):689-693.
90. Bristol-Myers Squibb Co. Product Information: Capoten(R), captopril. . 1996.
91. Hagley MT, Hulisz DT, CM: B. Hepatotoxicity associated with angiotensin-converting enzyme inhibitors. . Ann Pharmacother 1993;27:228.
92. Nunes ACR, Amaro P, F M. Fosinopril-induced prolonged cholestatic jaundice and pruritus: first case report. Eur J Gastroenterolo Hepatol 2001;13:279.
93. Deira JL, Corbacho L, A B. Captopril hepatotoxicity in a case of renal crisis due to systemic sclerosis Nephrol Dial Transplant 1997;12:1717.
94. Guo JJ, Wigle PR, Lammers K, Vu O. Comparison of potentially hepatotoxic drugs among major US drug compendia. Res Social Adm Pharm 2005;1:460-79.
95. Hilburn RB, Bookstaver D, WL W. Comment: angiotensin-converting enzyme inhibitor hepatotoxicity: further insights Ann Pharmacother 1993;27:1142.
96. MICROMEDEX 2008. (Accessed May,15, 2008, at
97. Andrade RJ, Lucena MI, Fernandez MC, et al. Cholestatic hepatitis related to use of irbesartan: a case report and a literature review of angiotensin II antagonist-associated hepatotoxicity. Eur J Gastroenterol Hepatol 2002;14:887-90.
98. Basile G, Villari D, Gangemi S, Ferrara T, Accetta MG, Nicita-Mauro V. Candesartan cilexetil-induced severe hepatotoxicity. J Clin Gastroenterol 2003;36:273-5.
99. Bosch X. Losartan-induced hepatotoxicity. JAMA 1997;278:1572.
100. Lahoti S, Lee WM. Hepatotoxicity of anticholesterol, cardiovascular, and endocrine drugs and hormonal agents. Gastroenterol Clin North Am 1995;24:907-22.
101. Nygaard B, Strandgaard S. Marked hepatotoxicity associated with losartan treatment. Blood Press 1996;5:190-1.
102. Herman RJ. Drug interactions and the statins. CMAJ 1999;161:1281-6.
103. de Arriba G, Garcia-Martin F, Sanchez-Heras M, Aldeguer M, Tejero E, Jarillo MD. Hepatotoxicity due to verapamil hydrochloride. Eur J Med 1993;2:179-81.
104. Kumar KL, Colley CA. Verapamil-induced hepatotoxicity. West J Med 1994;160:485-6.
105. Lafuente NG. Calcium channel blockers and hepatotoxicity. Am J Gastroenterol 2000;95:2145.
106. Stravitz RT, Sanyal AJ. Drug-induced steatohepatitis. Clin Liver Dis 2003;7:435-51.
107. Chon EM, Middleton RK. Labetalol hepatotoxicity. Ann Pharmacother 1992;26:344-5.
108. Hagmeyer KO, Stein J. Hepatotoxicity associated with carvedilol. Ann Pharmacother 2001;35:1364-6.
109. Marinella MA. Labetalol-induced hepatitis in a patient with chronic hepatitis B infection. J Clin Hypertens (Greenwich) 2002;4:120-1.
110. Isley WL. Hepatotoxicity of thiazolidinediones. Expert Opin Drug Saf 2003;2:581-6.
111. Alsheikh-Ali AA, Abourjaily HM, Karas RH. Risk of adverse events with concomitant use of atorvastatin or simvastatin and glucose-lowering drugs (thiazolidinediones, metformin, sulfonylurea, insulin, and acarbose). Am J Cardiol 2002;89:1308-10.
112. Alander SW, Dowd MD, Bratton SL, Kearns GL. Pediatric acetaminophen overdose: risk factors associated with hepatocellular injury. Arch Pediatr Adolesc Med 2000;154:346-50.
113. Bongiovanni M, Cicconi P, Landonio S, et al. Predictive factors of lopinavir/ritonavir discontinuation for drug-related toxicity: results from a cohort of 416 multi-experienced HIV-infected individuals. Int J Antimicrob Agents 2005;26:88-91.
114. Gil AC, Lorenzetti R, Mendes GB, et al. Hepatotoxicity in HIV-infected children and adolescents on antiretroviral therapy. Sao Paulo Med J 2007;125:205-9.
115. Schaberg T, Rebhan K, Lode H. Risk factors for side-effects of isoniazid, rifampin and pyrazinamide in patients hospitalized for pulmonary tuberculosis. Eur Respir J 1996;9:2026-30.
116. .羅敏. 結合病人使用抗結核藥物所致肝毒性之回溯性分析研究. 台灣大學碩士論文 1999.
117. Wang P. Epidemiology and control of tuberculosis in Taipei. J infect 2002;45:82.
118. 陳映蓉. 抗結核藥物致肝毒性之前瞻性研究. 國立台灣大學碩士論文 2002.
119. 蕭斐元. 預測抗結核藥物治療期間肝毒性之評分系統的建立. 台北醫學大學碩士論文 2003. 120. Yee D, Valiquette C, Pelletier M, Parisien I, Rocher I, Menzies D. incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. . Am J Respir crit Care Med 2003;167:1472.
121. Tedaldi EM, Absalon J, Thomas AJ, Shlay JC, van den Berg-Wolf M. Ethnicity, race, and gender. Differences in serious adverse events among participants in an antiretroviral initiation trial: results of CPCRA 058 (FIRST Study). J Acquir Immune Defic Syndr 2008;47:441-8
122. Abboud G, Kaplowitz N. Drug-induced liver injury. Drug Safty 2007;30:277-94.
123. 蔡春玉, 曾彥閔, 陳玉瑩, 許光陽, 陳恆德. 使用HMG-CoA 還原酶抑制劑病患的肝功能檢測之探討--以某醫學中心為例. Drug Safety Newsletter 2006;14.
124. Andrade SE, Donahue JG, Chan KA, Watson DJ, Platt R. Liver function testing in patients on HMG-CoA reductase inhibitors. Pharmacoepidemiol Drug Saf 2003;12:307-13.
125.中央健保局.藥品使用量分析.2003.(Accessed May, 28, 2008, at http://www.nhi.gov.tw/webdata/webdata.asp?menu=1&menu_id=56&webdata_id=1172&WD_ID=.)
126. National Cancer Institution. Common Terminology Criteria for Adverse Events v3.0(CTCAE). 2006. (Accessed at http://ctep.cancer.gov/forms/CTCAEv3.pdf.)
127. Yang SY, Kao Yang YH, Chong MY, Yang YH, Chang WH, Lai CS. Risk of extrapyramidal syndrome in schizophrenic patients treated with antipsychotics: a population-based study. Clin Pharmacol Ther 2007;81:586-94.
128. Patten S, Cipriani A, Brambilla P, Nose M, Barbui C. International dosage differences in fluoxetine clinical trials. Can J Psychiatry 2005;50:31-8.
129. Thomas SV, Koshy S, Nair CR, Sarma SP. Frequent seizures and polytherapy can impair quality of life in persons with epilepsy. Neurol India 2005;53:46-50.
130. Hach I, Maywald U, Meusel D, Konig JU, Kirch W. Continuity of long-term medication use after surgical hospital stay. Eur J Clin Pharmacol 2005;61:433-8.
131. Talmor D, Jones AE, Rubinson L, Howell MD, Shapiro NI. Simple triage scoring system predicting death and the need for critical care resources for use during epidemics. Crit Care Med 2007;35:1251-6.

------------------------------------------------------------------------ 第 11 筆 ---------------------------------------------------------------------
系統識別號 U0007-1907200814513900
論文名稱(中文) 雙環磺胺雜環類抗癌化合物之合成和結構與活性關係的研究
論文名稱(英文) Synthesis and Structure-Activity Relationships of Biphenyl-Sulfonamides Heterocycles as Anticancer Agents
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 96
學期 2
出版年 97
研究生(中文) 張怡婷
學號 M301095010
學位類別 碩士
語文別 中文
口試日期 2008-06-26
論文頁數 157頁
口試委員 委員-陳繼明
指導教授-劉景平
委員-忻凌偉
關鍵字(中) 雙環
磺胺
雜環
抗癌
結構與活性關係
關鍵字(英) Biphenyl-Sulfonamides Heterocycles
Anticancer Agents
學科別分類
中文摘要 以生物等效性的概念為基礎,先前已將N-[2-[(4-hydroxyphenyl)amino]-3-pyridinyl]-4- methoxybenzene- sulfonamide(ABT-751)此基本骨架進行修飾,合成出兩個新系列7-苯胺基-6-氮基吲哚-1-磺胺和7-苯基-6-氮基吲哚-1-磺胺且均具抗增生活性之化合物。ABT-751是透過和微小管上的秋水仙素鹼鍵結位置鍵結產生作用的口服有活性的抗癌化合物。現正在美國進行人體臨床試驗第二期。在先前的研究中發現 7-苯基-6-氮基吲哚-1-磺胺類衍生物的活性較7-苯胺基-6-氮基吲哚-1-磺胺類衍生物的活性強,於是更進一步研究其抗增生機轉與結構之間關係,另合成了7-苯基吲哚-1-磺胺和7-苯基二氫吲哚-1-磺胺。7-苯基吲哚-1-磺胺類衍生物是以1-溴基-2-硝基苯與乙烯基鎂溴反應後與4-甲氧基-磺基氯苯反應得到7-溴基吲哚-1-磺胺。七號位碳上溴基與各種苯硼酸進行鈴木偶合反應即可得到7-苯基吲哚-1-磺胺。7-苯基二氫吲哚-1-磺胺類衍生物是將1-溴基-2-硝基苯與乙烯基鎂溴反應後得到之7-溴基吲哚以氰基硼氫化鈉還原後與4-甲氧基-磺基氯苯反應得到7-溴基二氫吲哚-1-磺胺。七號位碳上溴基再與各種苯硼酸進行鈴木偶合反應得到7-苯基二氫吲哚-1-磺胺。化合物1, 2, 4, 5, 9, 11, 12, 14, 15, 23及24表現出強效抗癌活性,IC50 在15-50 nM之間。而其結構與活性的關係顯示7位碳上接有拉電子基之苯環或五員、六員雜環皆可增加其活性,但真正之機轉仍待進一步確立。
英文摘要 Two novel series of 7-anilino-6-azaindole-1-sulfonamides and 7-aryl-6- azaindole-1-sulfonamides based on N-[2-[(4-hydroxyphenyl) amino]-3- pyridinyl]-4-methoxybenzenesulfonamide (ABT-751) as a template were synthesized as potent antiproliferative agents. ABT-751 is an orally-active anticancer agent acting through the binding with the colchicine binding site on the tubulin. It is now undergoing human clinical trial. Based on the more potent antiproliferative activity of 7-aryl-6-azaindole-1-sulfonamides, another two novel series of 7- arylindole-1-sulfonamides and 7-arylindoline-1-sulfonamides were synthesized. The synthesis of 7-aryl-6-azaindole-1-sulfonamide derivatives started from 2-bromo-3-nitropyridine, which was subjected to the vinyl magnesium bromide to give 7-bromo-6-azaindole, treated with 4-methoxybenzenesulfonyl chloride to afford the 6-azaindole -1-sulfonamides. A Suzuki reaction at 7-position, utilizing the 7-bromo -6-azaindole was treated with a variety of phenylboric acid to give the designed 7-aryl substituted 6-azaindoles. 7-arylindole-1-sulfonamides and 7-arylindoline-1-sulfonamide derivatives were prepared started from 1-bromo-2- nitrobenzene by the same procedure. Three types of core structure analogous, for example, 7-aryl-6-azaindoles (20-24), 7-arylindoles (18-19) and 7-arylindolines (1-17) were evaluated their antiproliferative activity against oral epidermoid carcinoma KB cells. In the preliminary data, compounds 1, 2, 4, 5, 9, 11, 12, 14, 15, 23, and 24 demonstrate substantial activity with IC50 values ranging from 15-50 nM. Structure- activity relationship information revealed that 7-aryl-6- azaindole-1- sulfonamide and 7-arylindoline-1-sulfonamide derivatives were more potent than 7-arylindole-1-sulfonamide derivatives. These findings have encouraged us to extensively explore these two novel sulfonamides and further investigate their mode of actions and mechanisms.
論文目次 目錄 1
附表目錄 5
附圖目錄 6
中文摘要 10
英文摘要 12
壹、緒論 14
一、前言 14
二、化學治療藥物3 17
三、微管與細胞增殖週期 29
四、作用在微管之抗癌藥物9 33
貳、研究背景 38
参、研究目的 44
肆、結果及討論 45
一、化學合成 45
二、生物活性(KB cell line) 55
三、結構與活性(Structure-Activity Relationship) 58
伍、結論 59
陸、實驗 60
一、實驗儀器 60
二、試藥與試劑 61
三、合成步驟 64
7-(3,4-Difluorophenyl)-1-(4-methoxyphenylsulfonyl)indoline (1) 64
7-(4-Hydroxyphenyl)-1-(4-methoxyphenylsulfonyl)indoline (2) 65
7-(4-Methoxyphenyl)-1-(4-methoxyphenylsulfonyl)indoline (3) 66
7-(4-Fluorophenyl)-1-(4-methoxyphenylsulfonyl)indoline (4) 67
7-(Furanyl-2-yl)-1-(4-methoxyphenylsulfonyl)indoline (5) 68
1-(4-Methoxyphenylsulfonyl)-7-(thiophen-2-yl)indoline (6) 69
7-(4-(N,N-dimethylamino)phenyl)-1-(4-methoxyphenylsulfonyl)indoline (7) 70
1-(4-Methoxyphenylsulfonyl)-7-(3,4,5-trimethoxyphenyl)indoline (8) 71
7-(4-Chlorophenyl)-1-(4-methoxyphenylsulfonyl)indoline (9) 72
1-(4-Methoxyphenylsulfonyl)-7-(4-(trifluoromethyl)phenyl)indoline (10) 73
7-(3-Fluorophenyl)-1-(4-methoxyphenylsulfonyl)indoline (11) 74
1-(4-Methoxyphenylsulfonyl)-7-phenylindoline (12) 75
1-(4-Methoxyphenylsulfonyl)-7-(3-pyridinyl)indoline (13) 76
1-(4-Methoxyphenylsulfonyl)-7-(4-nitrophenyl)indoline (14) 77
1-(4-Methoxyphenylsulfonyl)-7-(4-pyridinyl)indoline (15) 78
7-(4-Fluorophenyl)-1-(4-sulfonamidephenylsulfonyl)indoline (16) 79
7-(Pyridine-4-yl)-1-(4-sulfonamidephenylsulfonyl)indoline (17) 80
7-(4-Fluorophenyl)-1-(4- methoxyphenylsulfonyl)indole (18) 81
7-(4-Cyanophenyl)-1-(4- methoxyphenylsulfonyl)indole (19) 82
7-(4-Hydrophenyl)-1-(4-methoxyphenylsulfonyl)-6-azaindole (20) 83
1-(4-Methoxyphenylsulfonyl)-7-(4-pyridinyl)-6-azaindole (21) 84
1-(4-Methoxyphenylsulfonyl)-7-(4-nitrophenyl)-6-azaindole (22) 85
7-(2-Furanyl)-1-(4-methoxyphenylsulfonyl)-6-azaindole (23) 86
1-(4-Methoxyphenylsulfonyl)-7-(2-thiophenyl)-6-azaindole (24) 87
7-Bromo-1-(4-methoxyphenylsulfonyl)indoline (25) 88
7-Bromo-1-(4-sulfonamidephenylsulfonyl)indoline (26) 89
7-Bromo-1-(4-methoxyphenylsulfonyl)indole (27) 90
7-Bromo-1(4-methoxyphenylsulfonyl)-6-aza-indole (28) 91
7-Bromoindole (29) 92
7-Bromo-6-azaindole (30) 93
四、生物活性 94
柒、參考文獻 95
捌、附圖部分 100

附表目錄
表一、民國九十五年十大死因2 15
表二、化合物1-24抑制KB細胞株生長之活性 55

附圖目錄
圖一、民國九十五年臺灣地區主要死因死亡率趨勢圖2 16
圖二、細胞週期8 30
圖三、細胞週期 31
圖四、微小管的構造與動態性5 32
圖五、抗有絲分裂藥物於微小管的結合部位3 36
圖六、以苯磺醯胺(arylsulfonamide)為結構的藥物 39
圖七、ABT-751衍生化合物 43
圖八、化合物1的氫核磁共振圖 101
圖九、化合物1的碳核磁共振圖 102
圖十、化合物1的質譜圖 103
圖十一、化合物2的氫核磁共振圖 104
圖十二、化合物2的碳核磁共振圖 105
圖十三、化合物2的質譜圖 106
圖十四、化合物3的氫核磁共振圖 107
圖十五、化合物3的碳核磁共振圖 108
圖十六、化合物3的質譜圖 109
圖十七、化合物4的氫核磁共振圖 110
圖十八、化合物4的質譜圖 111
圖十九、化合物5的氫核磁共振圖 112
圖二十、化合物5的質譜圖 113
圖二十一、化合物6的氫核磁共振圖 114
圖二十二、化合物6的質譜圖 115
圖二十三、化合物7的氫核磁共振圖 116
圖二十四、化合物7的質譜圖 117
圖二十五、化合物8的氫核磁共振圖 118
圖二十六、化合物8的質譜圖 119
圖二十七、化合物9的氫核磁共振圖 120
圖二十八、化合物9的質譜圖 121
圖二十九、化合物10的氫核磁共振圖 122
圖三十、化合物10的質譜圖 123
圖三十一、化合物11的氫核磁共振圖 124
圖三十二、化合物11的質譜圖 125
圖三十三、化合物12的氫核磁共振圖 126
圖三十四、化合物12的質譜圖 127
圖三十五、化合物13的氫核磁共振圖 128
圖三十六、化合物13的質譜圖 129
圖三十七、化合物14的氫核磁共振圖 130
圖三十八、化合物14的質譜圖 131
圖三十九、化合物15的氫核磁共振圖 132
圖四十、化合物15的質譜圖 133
圖四十一、化合物16的氫核磁共振圖 134
圖四十二、化合物16的碳核磁共振圖 135
圖四十三、化合物16的質譜圖 136
圖四十四、化合物17的氫核磁共振圖 137
圖四十五、化合物17的質譜圖 138
圖四十六、化合物18的氫核磁共振圖 139
圖四十七、化合物18的碳核磁共振圖 140
圖四十八、化合物18的質譜圖 141
圖四十九、化合物19的質譜圖 142
圖五十、化合物20的氫核磁共振圖 143
圖五十一、化合物20的質譜圖 144
圖五十二、化合物21的氫核磁共振圖 145
圖五十三、化合物21的質譜圖 146
圖五十四、化合物22的氫核磁共振圖 147
圖五十五、化合物22的質譜圖 148
圖五十六、化合物23的氫核磁共振圖 149
圖五十七、化合物23的質譜圖 150
圖五十八、化合物24的氫核磁共振圖 151
圖五十九、化合物24的質譜圖 152
圖六十、化合物25的氫核磁共振圖 153
圖六十一、化合物26的氫核磁共振圖 154
圖六十二、化合物27的氫核磁共振圖 155
圖六十三、化合物4 的晶體結構圖 156
圖六十四、化合物15 的晶體結構圖 157


參考文獻 1. http://www.who.int/mediacentre/factsheets/fs297/en/index.html.
2. http://www.doh.gov.tw/statistic/index.htm.
3. Jordan, M. A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 2004, 4, 253-265.
4. Chen, W.; Zhang, D. Kinetochore fibre dynamics outside the context of the spindle during anaphase. Nat. Cell Biol. 2004, 6, 227-231.
5. Akhmanova, A.; Steinmetz, M. O. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat. Rev. Mol. Cell Bio. 2008, 9, 309-322.
6. Jordan, A.; Hadfield, J. A.; Lawrence, N. J.; McGown, A. T. Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med. Res. Rev. 1998, 18, 259-296.
7. Dinu, C. Z.; Chrisey, D. B.; Diez, S.; Howard, J. Cellular motors for molecular manufacturing. Anat. Rec. 2007, 290, 1203-1212.
8. http://fig.cox.miami.edu/~cmallery/255/255mitos/255division.htm.
9. Mahindroo, N.; Liou, J. P.; Chang, J. Y.; Hsieh, H. P. Antitubulin Agents for the Treatment of Cancer - a Medicinal Chemistry Update. Expert Opin. Ther. Patents 2006, 16, 647-691.
10. Eckhardt, S. Recent progress in the development of anticancer agents. Cur. Med. Chem. 2002, 2, 419-439.
11. Davis, P. D.; Dougherty, G. J.; Blakey, D. C.; Galbraith, S. M.; Tozer, G. M.; Holder, A. L.; Naylor, M. A.; Nolan, J.; Stratford, M. R.; Chaplin, D. J.; Hill, S. A. ZD6126: a novel vascular-targeting agent that causes selective destruction of tumor vasculature. Cancer Res. 2002, 62, 7247-7253.
12. Chaplin, D. J.; Horsman, M. R.; Siemann, D. W. Current development status of small-molecule vascular disrupting agents. Curr. Opin. Investig Drugs 2006, 7, 522-528.
13. Drews, J. Drug discovery: a historical perspective. Science 2000, 287, 1960-1964.
14. Supuran, C. T.; Scozzafava, A. Carbonic Anhydrase Inhibitors and their Therapeutic Potential. Exp. Opin.Ther. Patents 2000, 10, 575-600.
15. Maren, T. H. Relatons between structure and biological activity of sulfonamides. Annu. Rev. Pharmacol Toxicol 1976, 16, 309-327.
16. Wouters, J.; Michaux, C.; Durant, F.; Dogne, J. M.; Delarge, J.; Masereel, B. Isosterism among analogues of torasemide: conformational, electronic and lipophilic properties. Eur. J. Med. Chem. 2000, 35, 923-929.
17. Flores Toque, H. A.; Priviero, F. B. M.; Teixeira, C. E.; Perissutti, E.; Fiorino, F.; Severino, B.; Frecentese, F.; Lorenzetti, R.; Baracat, J. S.; Santagada, V.; Caliendo, G.; Antunes, E.; De Nucci, G. Synthesis and Pharmacological Evaluations of Sildenafil Analogues for Treatment of Erectile Dysfunction. J. Med. Chem. 2008, 51, 2807-2815.
18. Habeeb, A. G.; Rao, P. N. P.; Knaus, E. E. Design and Synthesis of Celecoxib and Rofecoxib Analogues as Selective Cyclooxygenase-2 (COX-2) Inhibitors: Replacement of Sulfonamide and Methylsulfonyl Pharmacophores by an Azido Bioisostere. J. Med. Chem. 2001, 44, 3039-3042.
19. Szabo, G.; Fischer, J.; Kis-Varga, A.; Gyires, K. New Celecoxib Derivatives as Anti-Inflammatory Agents. J. Med. Chem. 2008, 51, 142-147.
20. Weber, A.; Casini, A.; Heine, A.; Kuhn, D.; Supuran, C. T.; Scozzafava, A.; Klebe, G. Unexpected Nanomolar Inhibition of Carbonic Anhydrase by COX-2-Selective Celecoxib: New Pharmacological Opportunities Due to Related Binding Site Recognition. J. Med. Chem. 2004, 47, 550-557.
21. Wilkinson, B. L.; Bornaghi, L. F.; Wright, A. D.; Houston, T. A.; Poulsen, S.-A. Anti-mycobacterial activity of a bis-sulfonamide. Bioorg. Med. Chem. Lett. 2007, 17, 1355-1357.
22. Josien, H.; Bara, T.; Rajagopalan, M.; Asberom, T.; Clader, J. W.; Favreau, L.; Greenlee, W. J.; Hyde, L. A.; Nomeir, A. A.; Parker, E. M.; Pissarnitski, D. A.; Song, L.; Wong, G. T.; Zhang, L.; Zhang, Q.; Zhao, Z. Small conformationally restricted piperidine N-arylsulfonamides as orally active g-secretase inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 5330-5335.
23. Fuwa, H.; Hiromoto, K.; Takahashi, Y.; Yokoshima, S.; Kan, T.; Fukuyama, T.; Iwatsubo, T.; Tomita, T.; Natsugari, H. Synthesis of biotinylated photoaffinity probes based on arylsulfonamide g-secretase inhibitors. Bioorg. Med. Chem. Lett.2006, 16, 4184-4189.
24. Link, J. T.; Sorensen, B.; Patel, J.; Grynfarb, M.; Goos-Nilsson, A.; Wang, J.; Fung, S.; Wilcox, D.; Zinker, B.; Nguyen, P.; Hickman, B.; Schmidt, J. M.; Swanson, S.; Tian, Z.; Reisch, T. J.; Rotert, G.; Du, J.; Lane, B.; Von Geldern, T. W.; Jacobson, P. B. Antidiabetic Activity of Passive Nonsteroidal Glucocorticoid Receptor Modulators. J. Med. Chem. 2005, 48, 5295-5304.
25. Sawa, M.; Mizuno, K.; Harada, H.; Tateishi, H.; Arai, Y.; Suzuki, S.; Oue, M.; Tsujiuchi, H.; Furutani, Y.; Kato, S. Tryptamine-based human b3-adrenergic receptor agonists. Part 3: Improved oral bioavailability via modification of the sulfonamide moiety. Bioorg. Med. Chem. Lett.2005, 15, 1061-1064.
26. Senger, S.; Convery, M. A.; Chan, C.; Watson, N. S. Arylsulfonamides: A study of the relationship between activity and conformational preferences for a series of factor Xa inhibitors. Bioorg. Med. Chem. Lett.2006, 16, 5731-5735.
27. Kirby, S.; Gertler, S. Z.; Mason, W.; Watling, C.; Forsyth, P.; Aniagolu, J.; Stagg, R.; Wright, M.; Powers, J.; Eisenhauer, E. A. Phase 2 study of T138067-sodium in patients with malignant glioma: Trial of the National Cancer Institute of Canada Clinical Trials Group. Neuro Oncol. 2005, 7, 183-188.
28. Takagi, M.; Honmura, T.; Watanabe, S.; Yamaguchi, R.; Nogawa, M.; Nishimura, I.; Katoh, F.; Matsuda, M.; Hidaka, H. In vivo antitumor activity of a novel sulfonamide, HMN-214, against human tumor xenografts in mice and the spectrum of cytotoxicity of its active metabolite, HMN-176. Invest. New Drugs 2003, 21, 387-399.
29. Garland, L. L.; Taylor, C.; Pilkington, D. L.; Cohen, J. L.; Von Hoff, D. D. A phase I pharmacokinetic study of HMN-214, a novel oral stilbene derivative with polo-like kinase-1-interacting properties, in patients with advanced solid tumors. Clin. Cancer Res. 2006, 12, 5182-5189.
30. Owa, T.; Yoshino, H.; Okauchi, T.; Yoshimatsu, K.; Ozawa, Y.; Sugi, N. H.; Nagasu, T.; Koyanagi, N.; Kitoh, K. Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. J. Med. Chem. 1999, 42, 3789-3799.
31. Supuran, C. T. Indisulam: an anticancer sulfonamide in clinical development. Expert Opin. Investig. Drugs 2003, 12, 283-287.
32. Talbot, D. C.; von Pawel, J.; Cattell, E.; Yule, S. M.; Johnston, C.; Zandvliet, A. S.; Huitema, A. D.; Norbury, C. J.; Ellis, P.; Bosquee, L.; Reck, M. A randomized phase II pharmacokinetic and pharmacodynamic study of indisulam as second-line therapy in patients with advanced non-small cell lung cancer. Clin. Cancer Res. 2007, 13, 1816-1822.
33. Yoshino, H.; Ueda, N.; Niijima, J.; Sugumi, H.; Kotake, Y.; Koyanagi, N.; Yoshimatsu, K.; Asada, M.; Watanabe, T.; Nagasu, T.; et al. Novel sulfonamides as potential, systemically active antitumor agents. J. Med. Chem. 1992, 35, 2496-2497.
34. Yamamoto, K.; Noda, K.; Yoshimura, A.; Fukuoka, M.; Furuse, K.; Niitani, H. Phase I study of E7010. Cancer Chemother Pharmacol 1998, 42, 127-134.
35. Hande, K. R.; Hagey, A.; Berlin, J.; Cai, Y.; Meek, K.; Kobayashi, H.; Lockhart, A. C.; Medina, D.; Sosman, J.; Gordon, G. B.; Rothenberg, M. L. The pharmacokinetics and safety of ABT-751, a novel, orally bioavailable sulfonamide antimitotic agent: results of a phase 1 study. Clin. Cancer Res. 2006, 12, 2834-2840.
36.http://clinicaltrials.gov/ct/search;jsessionid=9A28592ABE12A3415D802076DEA08FE4?term=ABT-751.
37. Segreti, J. A.; Polakowski, J. S.; Koch, K. A.; Marsh, K. C.; Bauch, J. L.; Rosenberg, S. H.; Sham, H. L.; Cox, B. F.; Reinhart, G. A. Tumor selective antivascular effects of the novel antimitotic compound ABT-751: an in vivo rat regional hemodynamic study. Cancer Chemother Pharmacol 2004, 54, 273-281.
38. Gwaltney, S. L., 2nd; Imade, H. M.; Li, Q.; Gehrke, L.; Credo, R. B.; Warner, R. B.; Lee, J. Y.; Kovar, P.; Frost, D.; Ng, S. C.; Sham, H. L. Novel sulfonate derivatives: potent antimitotic agents. Bioorg. Med. Chem. Lett. 2001, 11, 1671-1673.
39. Chang, J. Y.; Hsieh, H. P.; Chang, C. Y.; Hsu, K. S.; Chiang, Y. F.; Chen, C. M.; Kuo, C. C.; Liou, J. P. 7-Aroyl-aminoindoline-1-sulfonamides as a novel class of potent antitubulin agents. J. Med. Chem. 2006, 49, 6656-6659.
40. Lebegue, N.; Gallet, S.; Flouquet, N.; Carato, P.; Pfeiffer, B.; Renard, P.; Leonce, S.; Pierre, A.; Chavatte, P.; Berthelot, P. Novel benzopyridothiadiazepines as potential active antitumor agents. J. Med. Chem. 2005, 48, 7363-7373.
41. Zhang, Z.; Yang, Z.; Meanwell, N. A.; Kadow, J. F.; Wang, T. A general method for the preparation of 4- and 6-azaindoles. J. Org. Chem. 2002, 67, 2345-2347.
42. Joule, J. A.; Joule, J.; Mills, K. Heterocyclic Chemistry. 4 ed.; Blackwell Science Oxford, 2000; p 361.
43. Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Couling Reaction of Organoboron Compounds. Chem. Rev. 1995, 95, 2457-2483.
44. Gellibert, F.; de Gouville, A. C.; Woolven, J.; Mathews, N.; Nguyen, V. L.; Bertho-Ruault, C.; Patikis, A.; Grygielko, E. T.; Laping, N. J.; Huet, S. Discovery of 4-{4-[3-(pyridin-2-yl)-1H-pyrazol-4-yl]pyridin-2-yl}-
N-(tetrahydro-2H- pyran-4-yl)benzamide (GW788388): a potent, selective, and orally active transforming growth factor-beta type I receptor inhibitor. J. Med. Chem. 2006, 49, 2210-2221.
45. Prieto, M.; Zurita, E.; Rosa, E.; Munoz, L.; Lloyd-Williams, P.; Giralt, E. Arylboronic acids and arylpinacolboronate esters in Suzuki coupling reactions involving indoles. Partner role swapping and heterocycle protection. J. Org. Chem. 2004, 69, 6812-6820.
46. Finlay, G. J.; Baguley, B. C.; Wilson, W. R. A semiautomated microculture method for investigating growth inhibitory effects of cytotoxic compounds on exponentially growing carcinoma cells. Anal. Biochem. 1984, 139, 272-277.

------------------------------------------------------------------------ 第 12 筆 ---------------------------------------------------------------------
系統識別號 U0007-2202200814395900
論文名稱(中文) 含吡啶之斑蝥素衍生物及其類似物合成與探討
論文名稱(英文) Study on the Synthesis of Pyridyl Cantharidins and their Analogs
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 96
學期 1
出版年 97
研究生(中文) 徐仕軒
學號 M301092017
學位類別 碩士
語文別 中文
口試日期 2007-01-10
論文頁數 89頁
口試委員 指導教授-林本元
委員-林大楨
委員-李安榮
委員-陳世銘
委員-劉景平
關鍵字(中) 斑蝥素
斑蝥亞胺素
細胞毒性
關鍵字(英) cantharidin
cantharidinimine
cytotoxicity
學科別分類
中文摘要 斑蝥為翹翅目(Coleoptera)莞青科(Meloidae)的昆蟲,在抵禦外敵時所分泌的化合物既為斑蝥素(Cantharidin; exo,exo-2,3–dimethyl–7–oxabi-cyclo [2.2.1] heptane-2,3-dicarboxlic acid anhydride)。在醫藥方面具有抗癌的作用,也具有除草劑,殺蟲劑及毛髮刺激劑等效果。基於改善斑蝥素抗癌活性的目的,因此我們選擇以斑蝥素和其相似物為起始原料和含一級胺基取代基的化合物進行化學修飾,利用無水酒精當溶劑高溫下(140 ℃)反應4小時,再以薄層層析法(TLC)純化,分別得到斑蝥亞胺素(cantharidinimine)和其類似衍生物。合成出的衍生物以核磁共振儀、紅外線光譜儀、質譜儀確定結構。最後進行細胞毒性的試驗的評估。
英文摘要 Mylabris phalerata, Meloidae family of Coleoptera, has been known since antiquity to produce toxic defensive agent, now known as cantharidin (exo,exo-2,3–dimethyl–7–oxabicyclo [2.2.1] heptane-2,3-dicarboxlic acid anhydride).
In the past, cantharidin has used as anticancer, herbicidal, pesticide, hair-
growth stimulator and treatment of molluscum contagiosum activities. In order to study the cytotoxic activities of related compounds, we synthesized a serious of cantharidinimines and their analogues by the following method: cantharidine and their analogues with various primary amines were heated to 140 ℃ for four hours. All of the cantharidinimines and their analogues were identified by 1H-NMR, IR and mass spectrometry, respectively. Moreover, we would try to evaluate cytotoxic activities of the cantharidinimines and their analogues.
論文目次 第一章 緒論•••••••••••••••••••••••••9
第二章 研究目的•••••••••••••••••••••••18
一、Cantharidinimines 衍生物••••••••••••••••18
二、Anhydride-imines衍生物••••••••••••••••19
第三章 結果與討論••••••••••••••••••••••21
一、化學合成部份••••••••••••••••••••••21
  1、斑蝥素(cantharidin)的製備•••••••••••••••21
  2、斑蝥素(cantharidin)和相似物之衍生物合成••••••••26
A Cantharidinimines衍生物之合成•••••••••••27
B Anhydride-imines衍生物之合成•••••••••••29
二、細胞毒性試驗部份••••••••••••••••••••31
第四章 實驗部份•••••••••••••••••••••••33
一、儀器及試藥•••••••••••••••••••••••33
1、實驗儀器•••••••••••••••••••••••33
2、試藥及試劑••••••••••••••••••••••34
3、細胞毒性實驗部份•••••••••••••••••••35
A 細胞••••••••••••••••••••••••35
B 培養液•••••••••••••••••••••••35
C 使用試劑••••••••••••••••••••••36
二、化學合成部份••••••••••••••••••••••36
三、細胞毒性實驗••••••••••••••••••••••56
1、細胞培養•••••••••••••••••••••••56
2、實驗部份•••••••••••••••••••••••57
第五章 參考文獻•••••••••••••••••••••••58
第六章 附圖部分•••••••••••••••••••••••62
參考文獻 1. 顏正華, 斑蝥. 中藥學(下冊), 人民衛生出版社, p959-962, 1998.
2. 劉接寶, 斑蝥. 臨床實用彩色科學中藥大典, ,立得出版社4th,
p202-203, 1982.
3. Matsuzawa. M.; Graziano. M.; Casida. J. E., Endothal and Cantharidin analogs: Relation of Structure to Herbicide Activity and Mammalian Toxicity. Journal of Agricultural and Food Chemistry, 35, p823-829, 1987.
4. McCluskey. A.; Bowyer. M. C.; Collins. E.; Sim. A. T. R.; Sakoff. J. A.; Baldwin. M. L., Anhydride Modified Cantharidin Analogues: Synthesis, Inhibition of Protein Phosphatases 1 and 2A and Anticancer Activity. Bioorganic & Medicinal Chemistry Letters, 10, p1687-1690, 2000.
5. McCluskey. A.; Sim. A. T. R.; Sakoff. J. A., Serine-Threonine Protein Phosphatase Inhibitors: Development of PotentialTherapeutic Strategies. Journal of Medicinal Chemistry, 45(6), p1151-1175, 2002.
6. Knapp. J.; Boknik. P.; Kuke. S.; Gombosova. I.; Linck. B.; Luss.H.; Muller. F. U.; Muller. T.; Nacke. P.; Schmitz. W.; Vahlensieck. U.; Neumann. J., Contractility and Inhibition of Protein Phosphatases by Cantharidin. General Pharmacology, 31(5), p729-733, 1998.
7. Honkanen. R. E., Cantharidin, another Natural Toxin that Inhibits the Activity of Serine/Threonine Protein Phosphatases Type 1 and 2A. FEBS Letters, 330(3), p283-286, 1993.
8. Efferth. T.; Rauh. R.; Kahl. S.; Tomicic. M.; Bochzelt. H.; Tome. M. E.; Briehl. M. M.; Bauer. R.; Kaina., B. Molecular Modes of Action of Cantharidin in Tumor Cells. Biochemical Pharmacology, 69(5), p811-818, 2005.
9. Bonness. K.; Aragon. I. V.; Rutland. B.; Ofori-Acquah. S.; Dean. N. M.; Honkanen. R. E., Cantharidin-Induced Mitotic Arrest is Associated with the Formation of Aberrant Mitotic Spindles and Lagging Chromosomes Resulting, in part, from the Suppression of PP2Aα.
Molecular Cancer Therapeutics, 5(11), p2727-2736, 2006.
10. Nickolls. L. C.; Teare. D., Poisoning by Cantharidine. British Medical Journal, 2, p1384-1386, 1954.11. Presto. A. J.; Muecke. E. C., A Dose of Spanish Fly. Am. Med. Assoc. J., 214, p591, 1970.
12. Lin, P. Y.; Shi, S. J.; Hsu, F. L.; Chen, C. F., New cantharidinimides from cantharidin and 2-arylethylamines: efficient synthesis under high pressure. Journal of the Chinese Chemical Society , 45(2), 323-326, 1998.
13. Lin, P. Y.; Shi, S. J.; Hsu, F. L., Synthesis of Cantharidinimide Derivatives via the Mitsunobu Reaction. Synthetic Communications, 29(9), p1611-1616, 1999.
14. Lin, P. Y.; Shi, S. J.; Shu, H. L.; Chen, H. F.; Lin, C. C.,; Liu, P. C.; Wang, L. F., A Simple Procedure for Preparation of N-Thiazolyl and N-Thiazolyl cantharidinimides and Evaluation of Their Cytotoxicities against Human Hepatocellular Carcinoma Cells. Bioorganic Chemistry, 28, p266-272, 2000.
15. Lin, P. Y.; Shi, S. J.; Lin, L. H.; Chen, H. F.; Hsu, F. L., Synthesis of Novel N-Tyridylcantharidinimides by Using High Pressure. Journal of the Chinese Chemical Society, 48, p49-53, 2001.
16. Lin, L. H.; Huang, H. S.; Lin, C. C.; Lee, L. W.; Lin, P. Y., Effects of Cantharidinimides on Human Carcinoma Cells. Chemical and Pharmaceutical Bulletin, 52(7), p855-857, 2004.
17. Wang. T. C.; Chen. I. L.; Lu. C. M.; Kuo. D. H.; Liao. C. H., Synthesis, and Cytotoxic and Antiplatelet Activities of Oxime- and Methyloxime- Containing Flavone, Isoflavone, and Xanthone Derivatives. Chemistry and Biodiversity, 2, p253-263, 2005.
18. Vicini. P.; Geronikaki. A.; Incerti. M.; Busonera. B.; Poni, G.; Cabras. C. A.
; Colla. P. L. Synthesis and Biological Evaluation of
Benzo[d]isothiazole , Benzothiazole and Thiazole Schiff Bases.
Bioorganic and Medicinal Chemistry, 11, p4785-4789, 2003.
19. 黃忠弘, 斑蝥胺素、斑蝥亞胺素及其相關衍生物合成與細胞毒性之探討, 臺北醫學大學碩士論文, 2007.
20. Doyle. A.; Griffiths. J. B. In Vitro Toxicity Testing. Cell and Tissure Culture for Medical Research, p402-423, 2000.
21. 陸承孝, 斑蝥胺素及其類似衍生物合成與活性之研究探討, 臺北醫學大學碩士論文, 2001.
23. Woodward. R. B.; Loftfield. R. B. The Structure of Cantharidine and the Synthesis of Desoxycantharidine. Journal of the American Chemical Society, 63, p3167-3171, 1941.
24. Stork. G.; Tamelen. E. E.; Friedman. L. J.; Burgstahler. A. W. Cantharidin. A Stereospecific Total Sythesis. Journal of the American Chemical Society, 73, p4501, 1951.
25. Stork. G.; Tamelen. E. E.; Friedman. L. J.; Burgstahler. A. W. A Stereospecific Synthesis of Cantharidine. Journal of the American Chemical Society, 75, p384-392, 1953.
26. Dauben. W. G.; Krabbenhoft. H. O. Organic Reaction at High Pressure Cycloadditions with Furans. Journal of the American Chemical Society, 98, p1992-1993, 1976.
27. Dauben. W. G.; Kessel. C. R.; Takemura. K. H. Simple, Efficient Total Synthesis of Cantharidine via a High-Pressure Diels-Alder Reaction. Journal of the American Chemical Society, 102, p6893-6894, 1980.
28. Salama, R. B.; Hammouda, Y.; Gassim, I., Isolation of Cantharidin from Cyaneolytta Sapphirina. Journal of Pharmacy and Pharmcology. 26, p268-269, 1974.

------------------------------------------------------------------------ 第 13 筆 ---------------------------------------------------------------------
系統識別號 U0007-2207200816123800
論文名稱(中文) 台灣三種海洋細菌醱酵液之生物活性成分研究
論文名稱(英文) Studies on the bioactive constituents of the fermented broth of three marine bacterial species isolated in Taiwan
校院名稱 臺北醫學大學
系所名稱(中) 生藥學研究所
系所名稱(英) Graduate Institute of Pharmacognosy
學年度 96
學期 2
出版年 97
研究生(中文) 李翊弘
學號 M303095003
學位類別 碩士
語文別 中文
口試日期 2008-06-25
論文頁數 166頁
口試委員 指導教授-李宗徽
委員-簡文達
委員-盧重光
關鍵字(中) 抗菌活性
瓊脂擴散法
綠膿桿菌
紅桿菌科
堅強芽孢桿菌
關鍵字(英) antibacterial activity
disc agar diffusion method
Pseudomonas aeruginosa
Rhodobacteraceae
Bacillus firmus
學科別分類
中文摘要 本研究利用瓊脂擴散法 (disc agar diffusion method) 來篩選105株台灣海洋細菌,藉以尋找出對抗藥性金黃色葡萄球菌 (Penicillin G-resistant Staphylococcus aureus, ATCC 11631 ) 具有抑制活性的海洋細菌。所得結果根據抑菌圈的大小判斷其中2株具較明顯的抑制活性,分別為#M1B (Pseudomonas aeruginosa) 和#AW52 (Rhodobacteraceae)。此外,所有海洋菌株萃取液在血管舒張活性 (vasorelaxing activities) 上,利用Phenylephrine誘發大鼠 (Sprague-Dawley Rat) 胸主動脈血管收縮,再以細菌醱酵液萃取物進行處理,得知其中2株菌之萃取物具有抑制血管收縮的活性,分別為#M1B (P. aeruginosa) 和#MO6 (B. firmus)。隨後將上述三株海洋菌以PY培養基擴大培養,針對其代謝物進行一系列的分析、分離、純化與結構解析,計分離出15個化合物,包括: 兩個喹林生物鹼 (quinoline alkaloide)、兩個吩嗪生物鹼 (phenazine alkaloids)、五個芳香胺衍生物 (phenylamides derivatives) 、六個環狀雙胺基酸 (diketopiperazines) 和 2-胺基苯乙酯(2-aminophenyl acetate)。分別為: 2-n-heptylquinol-4-one (1)、2-aminophenyl acetate (2)、cyclo-L-Pro-L-Phe (3)、cyclo-L-Tyr-L-Pro (4)、phenazine-1-carboxamide (5)、hydroxyphenazine (6)、N-(2’-Phenylethyl)isobutyramide (7)、2-Ethyl-N-(2’-phenethyl)butyramide (8)、2-Methyl-N-(2’-phenylethyl)butyramide (9)、N-(2’-phenylethyl)isovaleramide (10)、2-heptyl-4-hydroxyquinoline-N-oxide (11)、cyclo-L-Pro-L-Ile (12)、cyclo-L-Pro-L-Val (13)、cyclo-L-Pro-L-Leu (14) 和cyclo-L-Pro-L-Met sulfoxide (15),其中cyclo-L-Pro-L-Met sulfoxide (15) 是過去未曾報導過的新化合物。這些天然物純質更進一步進行抗菌活性試驗,結果顯示化合物1、5、6和11針對抗藥性金黃色葡萄球菌有明顯的抑制活性,其最小抑制濃度 (minimum inhibitory concentration, MIC) 分別為64、36、36和24 ?慊/ml。另外,細胞毒性檢測的結果顯示,化合物1和11具有顯著的細胞毒性,其對於 NPC-tw01、HCT-116、Jurkat和H661等四株癌細胞的半抑制濃度 (IC50) 範圍介於 7.1 ~ 14.7 ?嵱。
英文摘要 In this study, 105 strains of marine bacteria isolated from Taiwan were cultured for the screening of their antibacterial activities by disc agar diffusion method. Of these bacterial strains monitored, 2 strains exhibited antibacterial activities. Among them, bacterial strains M1B (Pseudomonas aeruginosa) and AW52 (Rhodobacteraceae) showed significant antibacterial activities toward Penicillin G-resistant Staphylococcus aureus. (ATCC 11631). Besides, all the marine bacterial extracts on vasorelaxing activities of SD rats induced by phenylephrine were also examined. Of these bacterial strains monitored, strains M1B (P. aeruginosa) and MO6 (B. firmus) exhibited vasorelaxing activities. Based on this findings, the 3 bacterial strains were mass cultured using PY broth. Then, the bioactive constituents were obtained by a series of chromatographic separation, and characterized by spectral analysis. Totally 15 compounds including 2 quinoline alkaloids, 2 phenazine alkaloids, 4 phenylamide derivates, 6 diketopiperazines and a 2-aminophenyl acetate were isolated and identified . Their structures were elucidated to be 2-n-heptylquinol-4-one (1), 2-aminophenyl acetate (2), cyclo-L-Pro-L-Phe (3), cyclo-L-Tyr-L-D-Pro (4), hydroxyphenazine (5), phenazine-1-carboxamide (6), N-(2’-Phenylethyl)isobutyramide (7), 2-Ethyl-N-(2’-phenethyl)butyramide (8), 2-Methyl-N-(2’-phenylethyl)butyramide (9), N-(2’-phenylethyl)isovaleramide (10), 2-heptyl-4-hydroxyquinoline-N-oxide (11), cyclo-L-Pro-L-Ile (12), cyclo-L-Pro-L-Val (13), cyclo-L-Pro-L-Leu (14), and cyclo-L-Pro-L-Met sulfoxide (15). Among them, cyclo-L-Pro-L-Met sulfoxide (15) was isolated for the first time from the natural source. The bioactivities of all the pure entities were further evaluated. The results of biological tests indicated that 1, 5, 6 and 11 exhibited strong antibacterial activity toward resistant S. aureus, with minimum inhibitory concentrations (MIC) of 64, 36, 36 and 24 ug/ml, respectively. Additionally, 1 and 11 showed significant cytotoxic activitives against NPC-tw01, HCT-116, Jurkat, and H661 cancer cell lines, with an IC50 values from 7.1 to 14.7 uM.
論文目次 總目錄
謝誌 1
中文摘要 2
Abstract 4
總目錄 6
表目錄 8
圖目錄 10
縮寫 14

壹 緒論與研究目的 15
1.1海洋細菌之活性天然物的研究發展 15
1.2 三種海洋細菌天然物之文獻回顧 31
貳、實驗結果與討論 39
2.1.1 2-n-heptylquinol-4-one (1) 之結構解析 45
2.1.2 2-aminophenyl acetate (2) 之結構解析 52
2.1.3 cyclo- L-Pro- L-Phe (3) 之結構解析 56
2.1.4 cyclo-L-Tyr-L-Pro (4) 之結構解析 63
2.1.5 Hydroxyphenazine (5) 的結構解析 68
2.1.6 Phenazine-1-carboxamide (6) 之結構解析 74
2.1.7 N-(2’-Phenylethyl)isobutyramide (7) 之結構解析 80
2.1.8 2-Ethyl-N-(2’-phenethyl)butyramide (8) 之結構解析 87
2.1.9 2-Methyl-N-(2’-phenylethyl)butyramide (9) 之結構解析 92
2.1.10 N-(2’-phenylethyl)isovaleramide (10) 之結構解析 96
2.1.11 2-heptyl-4-hydroxyquinoline-N-oxide (11) 之結構解析 104
2.1.12 cyclo-L-Pro-L- Leu (12) 之結構解析 110
2.1.13 cyclo-L-Pro-L-Val (13) 之結構解析 114
2.1.14 cyclo-L-Pro-L-Ile (14) 之結構解析 118
2.1.15 cyclo-L-Pro-L-Met sulfoxide (15) 之結構解析 123
2.2氨基酸水解分析結果 132
2.3抑制抗藥性金黃色葡萄球菌生長之試驗結果 133
2.3.1 105株海洋細菌初篩結果 133
2.3.2 抑制創傷弧菌及金黃色葡萄球菌生長之試驗結果 134
2.4 細胞毒性測試結果 136
2.5 討論 137
參、實驗部份 139
3.1 儀器設備與試劑 139
3.2 培養基配置 141
3.3 抑菌活性測試 : 142
3.3.1 瓊脂紙錠擴散試驗 (disc agar-diffusion test) 142
3.3.2 海洋細菌活性成分抑制抗藥性金黃色葡萄球菌之濃度測試 143
3.4海洋菌株之萃取與分離 144
3.4.1 #M1B之成份分離與純化 145
3.4.2 #MO6之成份分離與純化 147
3.5 胺基酸水解分析 151
3.6 各成分之物理數據 152
參考文獻 160















表目錄
表1、自不同環境單離出之海洋菌株及其活性代謝產物的文獻整理。 17
表2、綠膿桿菌所分離得到的天然物之文獻整理。 31
表3、1H- and 13C-NMR data of 1 47
表4、1H- and 13C-NMR data of 2 53
表5、1H- and 13C-NMR data of 3 58
表6、1H- and 13C-NMR data of 4 64
表7、1H- and 13C-NMR data of 5 69
表8、1H- and 13C-NMR data of 6 75
表9、1H- and 13C-NMR data of 7 81
表10、1H- and 13C-NMR data of 8 88
表11、1H- and 13C-NMR data of 9 93
表12、1H- and 13C-NMR data of 10 98
表13、1H- and 13C-NMR data of 11 106
表14、1H- and 13C-NMR data of 12 111
表15、1H- and 13C-NMR data of 13 115
表16、1H- and 13C-NMR data of 14 119
表17、1H- and 13C-NMR data of 15 125
表18、胺基酸分析結果。 132
表19、海洋細菌菌液萃取液汁抗菌活性初篩結果。 133
表20、化合物 1 ~ 15 對金黃色葡萄球菌之最小抑制濃度 135
表21、化合物1~5及7~11抑制人類多種癌細胞生長之IC50 136
表22、本研究中所使用之各種培養基配方。 141
表23、#M1B乙酸乙酯萃出物以膠濾管柱層析分離結果 145
表24、#MO6乙酸乙酯萃出物以膠濾管柱層析分離結果 147
表25、#AW52乙酸乙酯萃出物以膠濾管柱層析分離結果 149












圖目錄
圖 1、 #MIB 菌株培養液之乙酸乙酯萃取物分離流程 40
圖 2、 #MO6 菌株培養液之乙酸乙酯萃取物分離流程 41
圖 3、 #AW52 菌株培養液之乙酸乙酯萃取物分離流程 41
圖 4、化合物1之電噴灑電離質譜。 47
圖 5、化合物1之紅外光譜。 48
圖 6、化合物1之紫外光譜。 48
圖 7、化合物1之氫譜。 49
圖 8、化合物1之碳譜。 49
圖 9、化合物1之COSY圖譜。 50
圖 10、化合物1之HMBC圖譜 51
圖 11、化合物2之電噴灑電離質譜。 53
圖 12、化合物2之紅外光譜。 54
圖 13、化合物2之紫外光譜。 54
圖 14、化合物2之氫譜。 55
圖 15、化合物2之碳譜。 55
圖 16、化合物3之電噴灑電離質譜。 58
圖 17、化合物3之紅外光譜。 59
圖 18、化合物3之紫外光譜。 59
圖 19、化合物3之氫譜。 60
圖 20、化合物3之碳譜。 60
圖 21、化合物3之COSY圖譜。 61
圖 22、化合物3之HMBC圖譜。 62
圖 23、化合物4之電噴灑電離質譜。 65
圖 24、化合物4之紅外光譜。 65
圖 25、化合物4之紫外光譜。 66
圖 26、化合物4之氫譜。 66
圖 27、化合物4之碳譜。 67
圖 28、化合物5之電噴灑電離質譜。 70
圖 29、化合物5之紅外光譜。 70
圖 30、化合物5之紫外光譜。 71
圖 31、化合物5之氫譜。 71
圖 32、化合物5之碳譜。 72
圖 33、化合物5之COSY圖譜。 72
圖 34、化合物5之HMBC圖譜。 73
圖 35、化合物6之電噴灑電離質譜。 76
圖 36、化合物6之紅外光譜。 76
圖 37、化合物6之紫外光譜。 77
圖 38、化合物6之氫譜。 78
圖 39、化合物6之碳譜。 79
圖 40、化合物7之電噴灑電離質譜。 82
圖 41、化合物7之紅外光譜。 82
圖 42、化合物7之紫外光譜。 83
圖 43、化合物7之氫譜。 83
圖 44、化合物7之碳譜。 84
圖 45、化合物7之COSY圖譜。 85
圖 46、化合物7之HMBC圖譜。 86
圖 47、化合物8之電噴灑電離質譜。 89
圖 48、化合物8之紅外光譜。 89
圖 49、化合物8之紫外光譜。 90
圖 50、化合物8之氫譜。 90
圖 51、化合物8之碳譜。 91
圖 52、化合物9之電噴灑電離質譜。 94
圖 53、化合物9之紅外光譜。 94
圖 54、化合物9之紫外光譜。 95
圖 55、化合物9之氫譜。 95
圖 56、化合物10之電噴灑電離質譜。 98
圖 57、化合物10之紅外光譜。 99
圖 58、化合物10之紫外光譜。 99
圖 59、化合物10之氫譜。 100
圖 60、化合物10之碳譜。 101
圖 61、化合物10之COSY圖譜。 102
圖 62、化合物10之HMBC圖譜。 103
圖 63、化合物11之電噴灑電離質譜。 106
圖 64、化合物11之紅外光譜。 107
圖 65、化合物11之紫外光譜。 107
圖 66、化合物11之氫譜。 108
圖 67、化合物11之碳譜。 109
圖 68、化合物12之電噴灑電離質譜。 112
圖 69、化合物12之紅外光譜。 112
圖 70、化合物12之氫譜。 113
圖 71、化合物12之碳譜。 113
圖 72、化合物13之電噴灑電離質譜。 116
圖 73、化合物13之紅外光譜。 116
圖 74、化合物13之氫譜。 117
圖 75、化合物13之碳譜。 117
圖 76、化合物14之電噴灑電離質譜。 120
圖 77、化合物14之紅外光譜。 120
圖 78、化合物14之氫譜。 121
圖 79、化合物14之碳譜。 122
圖 80、化合物15之電噴灑電離質譜。 126
圖 81、化合物15之紅外光譜。 126
圖 82、化合物15之氫譜。 127
圖 83、化合物15之碳譜。 128
圖 84、化合物15之COSY圖譜。 129
圖 85、化合物15之HMBC圖譜。 130
圖 86、化合物15之HSQC圖譜。 131
圖 87、化合物15的兩個立體異構物。 131

參考文獻 1. Ruggieri, G. D., Drugs from the sea. Science 1976, 194, (4264), 491-7.
2. Chen, R. H.; Buko, A. M.; Whittern, D. N.; McAlpine, J. B., Pacidamycins, a novel
series of antibiotics with anti-Pseudomonas aeruginosa activity. II. Isolation and
structural elucidation. J Antibiot (Tokyo) 1989, 42, (4), 512-20.
3 Mayer, A. M.; Gustafson, K. R., Marine pharmacology in 2003-2004: anti-tumour
and cytotoxic compounds. Eur J Cancer 2006, 42, (14), 2241-70.
4. Proksch, P.; Edrada, R. A.; Ebel, R., Drugs from the seas - current status and
microbiological implications. Appl Microbiol Biotechnol 2002, 59, (2-3), 125-34.
5. Kim, H. S.; Shibata, Y.; Ko, N.; Ikemoto, N.; Ishizuka, Y.; Murakami, N.; Sugimoto,
M.; Kobayashi, M.; Wataya, Y., Potent in vivo antimalarial activity of 3,
15-di-O-acetylbruceolide against Plasmodium berghei infection in mice. Parasitol
Int 2000, 48, (3), 271-4.
6. Matsui, T.; Ohtsuka, Y.; Sakai, K., [Recent advances in tetrodotoxin research].
Yakugaku Zasshi 2000, 120, (10), 825-37.
7. Moore, R. E.; Scheuer, P. J., Palytoxin: a new marine toxin from a coelenterate.
Science 1971, 172, (982), 495-8.
8. Burkholder, P. R.; Pfister, R. M.; Leitz, F. H., Production of a pyrrole antibiotic by a
marine bacterium. Appl Microbiol 1966, 14, (4), 649-53.
9. Shibata, S.; Ishida, Y.; Kitano, H.; Ohizumi, Y.; Habon, J.; Tsukitani, Y.; Kikuchi, H.,
Contractile effects of okadaic acid, a novel ionophore-like substance from black
sponge, on isolated smooth muscles under the condition of Ca deficiency. J
Pharmacol Exp Ther 1982, 223, (1), 135-43.
10. Omura, S.; Iwai, Y.; Hirano, A.; Nakagawa, A.; Awaya, J.; Tsuchya, H.; Takahashi,
Y.; Masuma, R., A new alkaloid AM-2282 of Streptomyces origin. Taxonomy,
fermentation, isolation and preliminary characterization. J Antibiot (Tokyo) 1977, 30,
(4), 275-82.
11. Agata, N.; Mori, M.; Ohta, M.; Suwan, S.; Ohtani, I.; Isobe, M., A novel
dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole
formation in HEp-2 cells. FEMS Microbiol Lett 1994, 121, (1), 31-4.
12. Umezawa, H.; Okami, Y.; Kurasawa, S.; Ohnuki, T.; Ishizuka, M.; Takeuchi, T.;
Shiio, T.; Yugari, Y., Marinactan, antitumor polysaccharide produced by marine
bacteria. J Antibiot (Tokyo) 1983, 36, (5), 471-7.
13. Selvin, J.; Shanmugha Priya, S.; Seghal Kiran, G.; Thangavelu, T.; Sapna Bai, N.,
Sponge-associated marine bacteria as indicators of heavy metal pollution. Microbiol
Res 2007.
14. Erickson, K. L.; Beutler, J. A.; Cardellina, I. J.; Boyd, M. R., Salicylihalamides A
and B, Novel Cytotoxic Macrolides from the Marine Sponge Haliclona sp. J Org
Chem 1997, 62, (23), 8188-8192.
15. Jaruchoktaweechai, C.; Suwanborirux, K.; Tanasupawatt, S.; Kittakoop, P.;
Menasveta, P., New macrolactins from a marine Bacillus sp. Sc026. J Nat Prod
2000, 63, (7), 984-6.
16. Lindel, T. J., Paul R.; Fenical, William, Lagunapyrones A-C: cytotoxic acetogenins
of a new skeletal class from a marine sediment bacterium. Tetrahedron Letters 1996,
37, (9), 1327-30.
17. Kameyama, T.; Takahashi, A.; Kurasawa, S.; Ishizuka, M.; Okami, Y.; Takeuchi, T.;
Umezawa, H., Bisucaberin, a new siderophore, sensitizing tumor cells to
macrophage-mediated cytolysis I. Taxonomy of the producing organism, isolation
and biological properties. J Antibiot (Tokyo) 1987, 40, (12), 1664-70.
18. Torres, Y. R.; Berlinck, R. G.; Nascimento, G. G.; Fortier, S. C.; Pessoa, C.; de
Moraes, M. O., Antibacterial activity against resistant bacteria and cytotoxicity of
four alkaloid toxins isolated from the marine sponge Arenosclera brasiliensis.
Toxicon 2002, 40, (7), 885-91.
19. Kitahara, T.; Naganawa, H.; Okazaki, T.; Okami, Y.; Umezawa, H., The structure of
SS-228Y, an antibiotic from Chainia Sp. J Antibiot (Tokyo) 1975, 28, (4), 208-5.
20. Perez Baz, J.; Canedo, L. M.; Fernandez Puentes, J. L.; Silva Elipe, M. V.,
Thiocoraline, a novel depsipeptide with antitumor activity produced by a marine
Micromonospora II. Physico-chemical properties and structure determination. J
Antibiot (Tokyo) 1997, 50, (9), 738-41.
21. Imamura, N.; Nishijima, M.; Takadera, T.; Adachi, K.; Sakai, M.; Sano, H., New
anticancer antibiotics pelagiomicins, produced by a new marine bacterium
Pelagiobacter variabilis. J Antibiot (Tokyo) 1997, 50, (1), 8-12.
22. Takahashi, A.; Ikeda, D.; Nakamura, H.; Naganawa, H.; Kurasawa, S.; Okami, Y.;
Takeuchi, T.; IitakaY, Altemicidin, a new acaricidal and antitumor substance. II.
Structure determination. J Antibiot (Tokyo) 1989, 42, (11), 1562-6.
23. Hale, K. J.; Dimopoulos, P.; Cheung, M. L.; Frigerio, M.; Steed, J. W.; Levett, P. C.,
A biosynthetic proposal for ring formation in the antitumor agent halichomycin.
Asymmetric synthesis of the AB-carbon backbone of halichomycin. Org Lett 2002,
4, (6), 897-900.
24. Bae, M. A.; Kang, H. S.; Rue, S. W.; Seu, J. H.; Kim, Y. H., Enhanced expression of
Fas ligand is associated with aburatubolactam C-induced apoptosis in human Jurkat
T cells. Biochem Biophys Res Commun 1998, 246, (1), 276-81.
25. Schumacher, R. W.; Davidson, B. S.; Montenegro, D. A.; Bernan, V. S.,
Gamma-indomycinone, a new pluramycin metabolite from a deep-sea derived
actinomycete. J Nat Prod 1995, 58, (4), 613-7.
26. Brotz-Oesterhelt, H.; Beyer, D.; Kroll, H. P.; Endermann, R.; Ladel, C.; Schroeder,
W.; Hinzen, B.; Raddatz, S.; Paulsen, H.; Henninger, K.; Bandow, J. E.; Sahl, H. G.;
Labischinski, H. Dysregulation of bacterial proteolytic machinery by a new class of
antibiotics. Nat Med 2005, 11, (10), 1082-7.
27. Marinone, C.; Martinetti, A.; Mestriner, M.; Seregni, E.; Geuna, M.; Ferrari, L.;
Strola, G.; Bonardi, L.; Fea, E.; Bombardieri, E., p53 evaluation in gastric mucosa of
patients with chronic Helicobacter pylori infection. Anticancer Res 2001, 21, (2A),
1115-8.
28. Iwagawa, T.; Kaneko, M.; Okamura, H.; Nakatani, M.; van Soest, R. W. M., New
alkaloids from the papua new guinean sponge agelas nakamurai. J Nat Prod 1998,
61, (10), 1310-2.
29. Shiozawa, H.; Kagasaki, T.; Kinoshita, T.; Haruyama, H.; Domon, H.; Utsui, Y.;
Kodama, K.; Takahashi, S., Thiomarinol, a new hybrid antimicrobial antibiotic
produced by a marine bacterium. Fermentation, isolation, structure, and
antimicrobial activity. J Antibiot (Tokyo) 1993, 46, (12), 1834-42.
30. Gerard, J. M.; Haden, P.; Kelly, M. T.; Andersen, R. J., Loloatins A-D, cyclic
decapeptide antibiotics produced in culture by a tropical marine bacterium. J Nat
Prod 1999, 62, (1), 80-5.
31. Laatsch, H. P., Heinz, Marine bacteria. I. Synthesis of pentabromopseudilin , a
cytotoxic phenylpyrrole from Alteromonas luteoviolaceus. Liebigs Annalen der
Chemie 1989, 9, 863-881.
32. Yoshikawa, K.; Takadera, T.; Adachi, K.; Nishijima, M.; Sano, H., Korormicin, a
novel antibiotic specifically active against marine gram-negative bacteria, produced
by a marine bacterium. J Antibiot (Tokyo) 1997, 50, (11), 949-53.
33. Jayatilake, G. S.; Thornton, M. P.; Leonard, A. C.; Grimwade, J. E.; Baker, B. J.,
Metabolites from an Antarctic sponge-associated bacterium, Pseudomonas
aeruginosa. J Nat Prod 1996, 59, (3), 293-6.
34. Sato, K.; Okazaki, T.; Maeda, K.; Okami, Y., New antibiotics, aplasmomycins B and
C. J Antibiot (Tokyo) 1978, 31, (6), 632-5.
35. Oclarit, J. M.; Okada, H.; Ohta, S.; Kaminura, K.; Yamaoka, Y.; Iizuka, T.;
Miyashiro, S.; Ikegami, S., Anti-bacillus substance in the marine sponge, Hyatella
species, produced by an associated Vibrio species bacterium. Microbios 1994, 78,
(314), 7-16.
36. Gerard, J.; Lloyd, R.; Barsby, T.; Haden, P.; Kelly, M. T.; Andersen, R. J.,
Massetolides A-H, antimycobacterial cyclic depsipeptides produced by two
pseudomonads isolated from marine habitats. J Nat Prod 1997, 60, (3), 223-9.
37. Mikhailov, V. V.; Kuznetsova, T. A.; Eliakov, G. B. [Bioactive compounds from
marine actinomycetes] Bioorg Khim 1995, 21, (1), 3-8.
38. Imamura, N.; Nishijima, M.; Adachi, K.; Sano, H., Novel antimycin antibiotics,
urauchimycins A and B, produced by marine actinomycete. J Antibiot (Tokyo) 1993,
46, (2), 241-6.
39. Okami, Y.; Hotta, K.; Yoshida, M.; Ikeda, D.; Kondo, S.; Umezawa, H., New
aminoglycoside antibiotics, istamycins A and B. J Antibiot (Tokyo) 1979, 32, (9),
964-6.
40. Graziani, E. I.; Ritacco, F. V.; Bernan, V. S.; Telliez, J. B., Phaeochromycins A-E,
anti-inflammatory polyketides isolated from the soil actinomycete Streptomyces
phaeochromogenes LL-P018. J Nat Prod 2005, 68, (8), 1262-5.
41. Imamura, N.; Adachi, K.; Sano, H., Magnesidin A, a component of marine antibiotic
magnesidin, produced by Vibrio gazogenes ATCC29988. J Antibiot (Tokyo) 1994,
47, (2), 257-61.
42. Tan, L.; Ma, D., Total synthesis of salinamide A: a potent anti-inflammatory bicyclic
depsipeptide. Angew Chem Int Ed Engl 2008, 47, (19), 3614-7.
43. Brinkhoff, T. B., Gabriela; Heidorn, Thorsten; Liang, Lanfang; Schlingloff, Andrea;
Simon, Meinhard., Antibiotic production by a Roseobacter clade-affiliated species
from the German Wadden Sea and its antagonistic effects on indigenous isolates.
Appl and Envir Micro 2004, 70, (4), 2560-2565.
44. Debitus, C. G., Graziano; Mancini, Ines; Waikedre, Jean; Guemas, Jean-Pierre;
Nicolas, Jean Louis; Pietra, Francesco. , Quinolones from a bacterium and tyrosine
metabolites from its host sponge, Suberea creba from the Coral Sea. Journal of
Marine Biotechnology 1998, 6, (3), 136-141.
45. Yang, W. D., Larry; Rosazza, John P. N., Aeruginol [ 2 -( 2 '- hydroxyphenyl )- 4 -
hydroxymethylthiazole ], a new secondary metabolite from Pseudomonas
aeruginosa. Journal of Natural Products 1993, 56, (11), 1993-4.
46. Rubtn O. Ferndndez, R. A. P., High-performance liquid chromatographic analysis of
Pseudomonas aeruginosa phenazines. Journal of Chromatography A 1997, 99-104.
47. R, L. T. M., Secondary metabolites of the fluorescent pseudomonads.
Microbiological reviews. Microbiological reviews 1979, 43, (3), 422-42.
48. Youard, Z. A. M., Gaetan L. A; Majcherczyk, Paul A; Schalk, Isabelle J; Reimmann,
Cornelia., Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical
antipode of the Pseudomonas aeruginosa siderophore pyochelin. Journal of
Biological Chemistry 2007, 282, (49), 35546-35553.
49. Upson, H. T., The molecular rearrangement of Amino phenyl alkyl carbonic acid
ester, III. [machine translation]. American Chemical Journal 1904, 32, 13-43.
50. Itoh, N.; Morinaga, N.; Nomura, A., A variety of catalases and bromoperoxidases in
genus Pseudomonas and their characterization. Biochim Biophys Acta 1992, 1122,
(2), 189-95.
51. Gamard, P.; Sauriol, F.; Benhamou, N.; Belanger, R. R.; Paulitz, T. C., Novel
butyrolactones with antifungal activity produced by Pseudomonas aureofaciens
strain 63-28. J Antibiot (Tokyo) 1997, 50, (9), 742-9.
52. Reimmann, C.; Patel, H. M.; Serino, L.; Barone, M.; Walsh, C. T.; Haas, D.,
Essential PchG-dependent reduction in pyochelin biosynthesis of Pseudomonas
aeruginosa. J Bacteriol 2001, 183, (3), 813-20.
53. Takeda, R. N., Itaru, Pseudomonas pigments. VIII. Production of pyoluteorin by
fermentation with Pseudomonas aeruginosa T 359. Hakko Kogaku Zasshi 1959, 38,
9-19.
54. Jayatilake, G. S. T., M. P.; Leonard, A. C.; Grimwade, J. E.; Baker, B. J. ,
Metabolites from an Antractic sponge-associated bacterium, Pseudomonas
aeruginosa. J. Nat. Prod.
55. Maskey, R. P.; Asolkar, R. N.; Kapaun, E.; Wagner-Dobler, I.; Laatsch, H.,
Phytotoxic arylethylamides from limnic bacteria using a screening with microalgae.
J Antibiot (Tokyo) 2002, 55, (7), 643-9.
56. Soong, C. L.; Ogawa, J.; Shimizu, S., A novel amidase (half-amidase) for half-amide
hydrolysis involved in the bacterial metabolism of cyclic imides. Appl Environ
Microbiol 2000, 66, (5), 1947-52.
57. Kitamura, S.; Hashizume, K.; Iida, T.; Miyashita, E.; Shirahata, K.; Kase, H.,
Studies on lipoxygenase inhibitors. II. KF8940
(2-n-heptyl-4-hydroxyquinoline-N-oxide), a potent and selective inhibitor of
5-lipoxygenase, produced by Pseudomonas methanica. J Antibiot (Tokyo) 1986, 39,
(8), 1160-6.



------------------------------------------------------------------------ 第 14 筆 ---------------------------------------------------------------------
系統識別號 U0007-2207200816375300
論文名稱(中文) 建立預測抗結核藥物治療期間肝損傷之評分系統暨評估基因型危險因子之重要性
論文名稱(英文) Development of Risk Scales for Predicting Liver Injury during Antituberculosis Therapy and Evaluation the Importance of Genetic Risk Factors
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 96
學期 2
出版年 97
研究生(中文) 張淑惠
學號 M301095024
學位類別 碩士
語文別 中文
口試日期 2008-07-02
論文頁數 97頁
口試委員 指導教授-陳香吟
委員-黃文鴻
委員-邱弘毅
關鍵字(中) 抗結核藥物
肝損傷
評分系統
關鍵字(英) Antituberculosis drugs
Liver injury
Scoring system
學科別分類
中文摘要 結核病 (Tuberculosis,TB) 在世界各地都是導致死亡率的主要原因之ㄧ,在台灣也是傳染病致死原因的第一位。目前結核病的治療需要合併使用多種藥物且至少需治療六個月以上的時間,而抗結核藥物治療期間最常發生的不良反應即是肝毒性。肝毒性除了會導致病人服藥配合度不高,也間接導致抗結核藥物的抗藥性問題。至目前為止用來預測抗結核藥治療期間肝毒性的危險因子仍尚未有定論,且缺乏能實際應用在臨床上之相關建議。
本研究分為兩大部份,第一部份分析抗結核藥物治療期間肝損傷的流行病學上常見之危險因子,例如:年齡、性別、營養狀況、合併疾病、生活習慣、第一線抗結核藥物使用品項及劑量、併用藥物個數及肝功能檢測基準值;而第二部份則加入NAT2 (N-acetyltransferase 2)、OATP1B1(Human organic anion-transporting polypeptides 1B1)及UGT1A1 (UDP-Glucuronosyl Transferase1A1)等基因型,經logistic regression 校正分析,根據其影響程度分別設計成兩個量表;利用Hosmer and Lemeshow test檢視其配適度,透過AUC of ROC curve檢視量表的鑑別力。
全部研究對象(n=594)的流行病學之危險因子分析及校正後,具有肝臟疾病、rifampin劑量≧12 mg/kg,AST、ALT基準值大於兩倍正常值上限和ALP基準值大於三倍正常值上限為顯著的危險因子,此量表AUC of ROC curve為0.694,在最佳切點3分時,sensitivity和specificity分別為64.2%和67.4%;而包含基因型研究對象的部份(n=97)校正後女性、AST基準值高於正常值、帶有基因型NAT2*7、OATP1B1*1a/*1a和OATP1B1*1a/*15為顯著的危險因子,其量表之AUC of ROC curve為0.862,最適當切點為6分,其sensitivity和specificity分別為81.3%和80.2%。
透過這兩個量表之比較,評估基因型危險因子在預測抗結核藥物治療期間肝傷的重要性,顯示出僅使用一般流行病學之危險因子預測肝毒性時,縱使增加人數依舊無法提高預測的準確性,反之基因型危險因子能大幅增加量表的鑑別力,顯示基因型在預測抗結核藥物治療期間發生肝損傷中扮演很重要的角色。
英文摘要 Tuberculosis (TB), one of the major causes of mortality throughout the world, was the greatest infectious cause of death in Taiwan. The standard therapy of TB requird multiple medications, and patients should be treated for at least 6 months. Hepatotoxicity occured duing anti-TB therapy decreased patients’ adherence and increased the drug resistance. The risk factors in predicting hepatotoxicity were still not clear, and lack of recommendations in clinical practice.
The study was composed of two sections. The traditional risk factors such as age, gender, nutritional status, concomitant diseases, social history, the usage and dosage of first line anti-TB drugs, and baseline liver function were analyzed in section one. Section two, the genotypes of NAT2, OATP1B1 and UGT1A1 were added. The risk factors were adjusted and weighted by logistic regression, and developing two scales. One of the two scales was only traditional risk factors included, and the other was added by genetic risk factors. The goodness of fit was examed by Hosmer and Lemeshow test. The discriminatory power of scale was examed by AUC of ROC curve.
Liver disease, dosage of rifampin≧12 mg/kg, baseline AST and ALT ≧2x ULN (upper limit of normal) and ALP ≧3x ULN were the risk factors in section 1 (n=594). The AUC of ROC curve was 0.694, the sensitivity was 64.2% and specificity was 67.4%. In section 2(n=97), female, AST abnormal, with genotype of NAT2*7, OATP1B1*1a/*1a and OATP1B1*1a/*15 were the significant risk factors. The AUC of ROC curve was 0.862, the sensitivity was 81.3% and specificity was 80.2%.
By comparing the two scales, the genetic risk scale showed better discriminative power in predicting liver injury during anti-TB therapy. Removing the genetic risk factors through the genetic risk scale, the AUC of ROC curve was 0.728 in 97 study population while it was 0.649 in 594. It showed the limitation of traditional risk factors, even increased the study population, it still can’t predict hepatotoxicity precisely. The genetic risk factors play important roles in predicting liver injury during anti-TB therapy.
論文目次 致謝 II
中文摘要 III
英文摘要 IV
目次 V
表目錄 VIII
圖目錄 X
第1章 序論 1
第2章 文獻探討 2
2.1 結核病的流行病學、治療及防治計畫 2
2.1.1 全球結核病流行現狀 2
2.1.2 台灣結核病流行現狀及趨勢 4
2.1.3 結核病的治療及防治計劃 7
2.2 第一線抗結核藥物與肝毒性之關聯 13
2.2.1 Isoniazid 與肝毒性之關聯 13
2.2.2 Rifampin與肝毒性之關聯 16
2.2.3 Pyrazinamide與肝毒性之關聯 17
2.3 抗結核藥物肝毒性之危險因子 18
2.4 第一線抗結核藥物之肝毒性相關基因 20
2.4.1 乙型乙醯轉移酶基因(Arylamine N-Acetyltransferase 2,NAT2) 20
2.4.2 人類有機陰離子運輸器1B1 基因(Human Organic Anion Transporting Polypeptide-1B1, OATP1B1) 23
2.4.3 尿苷雙磷酸葡萄糖醛酸基轉移酶1A1 (UDP-Glucuronosyl Transferase 1A1,UGT1A1) 26
第3章 研究目的 29
第4章 研究方法 30
4.1 研究設計 30
4.2 研究對象 31
4.2.1 本研究之納入對象 31
4.2.2 本研究之排除標準 31
4.3 資料收集 32
4.3.1 資料收集的內容 32
4.3.2 收案日期的定義 35
4.4 肝損傷之定義 36
4.5 統計方法 38
第5章 研究結果 39
5.1 第一部份-全部研究對象之不包含基因型危險因子分析 39
5.1.1 全部研究對象之基本資料分析 39
5.1.2 全部研究對象之抗結核藥物的組合及劑量 39
5.1.3 全部研究對象檢驗基準值分析 41
5.1.4 全部研究對象之肝毒性類型分析 42
5.1.5 全部研究對象-不包含基因型危險因子對肝損傷之分析 43
5.1.6 全部研究對象校正後之危險因子 47
5.1.7 全部研究對象不包含基因型之評分系統建立與評估 48
5.2 第二部份-包含基因型之研究對象分析 52
5.2.1 包含基因型之研究對象基本資料分析 52
5.2.2 包含基因型研究對象之抗結核藥物的組合及劑量 53
5.2.3 包含基因型之研究對象檢測基準值分析 53
5.2.4 研究對象基因型分析 54
5.2.5 研究對象之肝毒性類型分析 58
5.2.6 肝損傷之危險因子分析 58
5.2.7 校正後之危險因子 63
第6章 討論 66
6.1 肝毒性發生率的分析 66
6.2 基因型分佈分析 67
6.2.1 NAT2基因型分析 67
6.2.2 OATP1B1基因型分析 68
6.2.3 UGT1A1基因型與對偶基因頻率分布比較 69
6.3 抗結核藥物治療期間肝損傷之危險因子分析 70
6.3.1 全部研究對象之危險因子討論 70
6.3.2 包含基因型研究對象之危險因子討論 71
6.4 加入基因型危險因子之量表比較 74
6.5 肝損傷發生之時間點評估 78
6.6 研究限制及未來方向 80
第7章 結論 81
參 考 文 獻 82

表目錄
表2.1.1 2006年結核病發生率前五位國家之統計資料 3
表 2.1.2 台灣常用之第一線、第二線抗結核藥物 8
表2.1.3 ATS/CDC/IDSA建議之療程及用藥組合 9
表 2.1.4 台灣行政院衛生署對各類結核病人之分類定義6 10
表 2.1.5 台灣行政院衛生署對各類結核病人的治療建議6 11
表2.3.1 抗結核藥物肝毒性之發生率及危險因子 19
表2.4.1 各種族之NAT2基因型分佈 21
表2.4.2 NAT2基因型及乙醯化速率和ISONIAZID誘發肝毒性之危險性 22
表2.4.3 OATPS之染色體位置、分布器官及受質 24
表2.4.4 OATP1B1在不同地區人種之ALLELE FREQUENCY分布比較 25
表2.4.5 UGT1A家族在人體的分佈位置與代謝受質 27
表4.3.1本研究病患資料收集的時間點定義 35
表4.4.1國際醫學組織學會(THE COUNCIL FOR INTERNATIONAL ORGANIZATION OF MEDICAL SCIENCE, CIOMS)之肝毒性定義 36
表4.4.2 台北市立萬芳醫院肝功能相關生化檢測參考正常值 37
表5.1.1 全部研究對象(594位)之基本資料 40
表5.1.2 全部研究對象之抗結核藥物的組合及劑量 41
表5.1.3 全部研究對象之相關檢測平均基準值 42
表5.1.4 全部研究對象之肝毒性類型分析 42
表5.1.5 全部研究對象肝損傷之危險因子分析-單因子變項分析 44
表5.1.6 全部研究對象之第一線抗結核藥物劑量和併用組合 45
表5.1.7 全部研究對象之肝功能指數基準值分析 46
表5.1.8 全部研究對象校正後之危險因子 47
表5.1.9 全部研究對象不包含基因型危險因子建立預測肝損傷之量表 48
表5.1.10 全部研究對象之簡化後量表 48
表5.1.11 全部研究對象基本資料應用在量表之分布情形 49
表5.2.1 包含基因型之研究對象(97位)基本資料分析 52
表5.2.2 包含基因型研究對象之抗結核藥物組合及劑量 53
表5.2.3 包含基因型之研究對象其相關檢測平均基準值 54
表5.2.4 NAT2基因型及乙醯化代謝程度和對偶基因頻率分析 55
表5.2.5 OATP1B1基因型分佈和對偶基因頻率分析 56
表5.2.6 UGT1A1 基因型和和對偶基因頻率分析 57
表5.2.7 第二部份研究對象之肝毒性類型分析 58
表5.2.8 包含基因型研究對象之肝損傷危險因子分析 59
表5.2.9 肝損傷和對照組之NAT2基因型分析 60
表5.2.10 肝損傷和對照組之OATP1B1基因型分析 61
表5.2.11 肝損傷和對照組之UGT1A1基因型分析 62
表5.2.12 包含基因型研究對象之校正後危險因子 63
表5.2.13 包含基因型研究對象之量表配分比例 64
表5.2.14 包含基因型研究對象基本資料應用在量表之分布情形 64
表6.1.1 肝毒性及肝損傷發生率比較表 66
表6.2.1 本研究第二部份之研究對象其NAT2基因型分佈和比較 67
表6.2.2 OATP1B1基因型與呂文仁研究比較表 68
表6.2.3 OATP1B1對偶基因頻率 (ALLELE FREQUENCY)與過去研究比較表 68
表6.2.4 UGT1A1對偶基因頻率(ALLELE FREQUENCY)比較表 69
表6.3.1 肝臟疾病及病毒性肝炎與抗結核藥治療期間肝毒性之分析研究 70
表6.3.2肝功能指數檢測基準值與抗結核藥物治療期間肝毒性之相關研究 71
表6.3.3 性別與抗結核藥物治療期間肝毒性之相關研究 72
表6.3.4 NAT2基因型或乙醯化代謝型對肝毒性的危險因子 73
表6.4.1 含基因型研究對象去除基因變項之量表 75
表6.4.2 去除基因變項之分佈情形 75
表 6.4.3 僅包含基因變項分析 76
表 6.4.4 僅基因變項總分分佈 76
表6.5.1 肝損傷發生時間點分佈情形 78

圖目錄
圖 2.1.1 2006年全球結核病發生率分布圖 2
圖2.1.2 1996-2006台灣地區結核病每十萬人發生率 4
圖2.1.3 2006年台灣地區結核病每十萬人發生率-依年齡分 5
圖2.1.4 1974~2006台灣地區結核病死亡趨勢 6
圖2.1.5 2006年台灣地區結核病每十萬人死亡率-依年齡分 6
圖2.2.1 抗結核藥物肝毒性之監測與處理 14
圖2.2.2 ISONIAZID代謝途徑 15
圖2.4.1 膽紅素的代謝途徑 28
圖5.1.1 全部研究對象肝損傷組及對照駔其不含基因之量表總分分佈圖 50
圖5.1.2 全部研究對象所建立之量表其ROC CURVE圖形 51
圖5.2.1 包含基因型量表之肝損傷組及對照組之總分分佈圖 65
圖5.2.2 包含基因型研究對象建立之量表其ROC CURVE圖形 65
圖6.4.1 全部研究對象不含基因型及含基因型研究對象之ROC CURVE比較圖 74
圖6.4.2 量表預測程度(ROC CURVE)之比較 77
圖6.5.1 肝損傷發生時間點之圖形 79
圖6.5.2 高危險群及低危險群其肝損傷發生時間點之圖形 79


參考文獻 1. WHO. WHO Report 2008 - Global tuberculosis control - surveillance, planning, financing; 2008.
2. ATS, CDC, IDS. Treatment of tuberculosis. Morbidity & Mortality Weekly Report. Jun 20 2003;Recommendations & Reports. 52(RR-11):1-77.
3. WHO. The Stop TB Strategy; 2006.
4. 行政院衛生署. 民國95年傳染病統計暨監視年報; 2007.
5. 行政院衛生署. 民國九十五年衛生統計系列 ( 一 ) 死因統計上、下卷. http://www.doh.gov.tw/statistic/index.htm. Accessed 04/15, 2008.
6. 行政院衛生署疾病管制局. 結核病診治指引第二版. 台北: 行政院衛生署疾病管制局; 2006.
7. 行政院衛生署. 95年版公共衛生年報. 2007/01/17; http://www.doh.gov.tw/ufile/doc/95%e5%b9%b4%e5%85%ac%e5%85%b1%e8%a1%9b%e7%94%9f%e5%b9%b4%e5%a0%b1.pdf, 2008/05/13.
8. 行政院衛生署. 結核病十年減半全民動員計畫. 2006.07:http://www.cdc.gov.tw/public/Data/7102420434671.doc.
9. Tostmann A, Boeree MJ, Aarnoutse RE, de Lange WC, van der Ven AJ, Dekhuijzen R. Antituberculosis drug-induced hepatotoxicity: concise up-to-date review. J Gastroenterol Hepatol. Feb 2008;23(2):192-202.
10. Sharifzadeh M, Rasoulinejad M, Valipour F, Nouraie M, Vaziri S. Evaluation of patient-related factors associated with causality, preventability, predictability and severity of hepatotoxicity during antituberculosis [correction of antituberclosis] treatment. Pharmacological Research. Apr 2005;51(4):353-358.
11. Shakya R, Rao BS, Shrestha B. Incidence of hepatotoxicity due to antitubercular medicines and assessment of risk factors. Annals of Pharmacotherapy. Jun 2004;38(6):1074-1079.
12. Saukkonen JJ, Cohn DL, Jasmer RM, et al. An Official ATS Statement: Hepatotoxicity of Antituberculosis Therapy. Am J Respir Crit Care Med. Oct 15 2006;174(8):935-952.
13. Zimmerman HJ. Hepatic Injury from the Treatment of Infectious and Parasitic Disease. Hepatotoxicity:The Adverse Effects of Drugs and Other Chemicals on the Liver. second ed: Lippincott Williams & Wilkins 1999:589-638.
14. Tafazoli S, Mashregi M, O'Brien PJ. Role of hydrazine in isoniazid-induced hepatotoxicity in a hepatocyte inflammation model. Toxicol Appl Pharmacol. May 15 2008;229(1):94-101.
15. Mitchell JR, Thorgeirsson UP, Black M, et al. Increased incidence of isoniazid hepatitis in rapid acetylators: possible relation to hydranize metabolites. Clin Pharmacol Ther. Jul 1975;18(1):70-79.
16. Sodhi CP, Rana SV, Mehta SK, et al. Study of oxidative stress in isoniazid-induced hepatic injury in young rats with and without protein-energy malnutrition. J Biochem Toxicol. 1996;11(3):139-146.
17. Attri S, Rana SV, Vaiphie K, et al. Protective effect of N-acetylcysteine in isoniazid induced hepatic injury in growing rats. Indian J Exp Biol. May 2001;39(5):436-440.
18. Meyer UA. Pharmacogenetics - five decades of therapeutic lessons from genetic diversity. Nat Rev Genet. Sep 2004;5(9):669-676.
19. Ait Moussa L, Khassouani CE, Hue B, Jana M, Begaud B, Soulaymani R. Determination of the acetylator phenotype in Moroccan tuberculosis patients using isoniazid as metabolic probe. Int J Clin Pharmacol Ther. Dec 2002;40(12):548-553.
20. Campbell SD, de Morais SM, Xu JJ. Inhibition of human organic anion transporting polypeptide OATP 1B1 as a mechanism of drug-induced hyperbilirubinemia. Chem Biol Interact. Nov 20 2004;150(2):179-187.
21. Vavricka SR, Van Montfoort J, Ha HR, Meier PJ, Fattinger K. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology. Jul 2002;36(1):164-172.
22. Byrne JA, Strautnieks SS, Mieli-Vergani G, Higgins CF, Linton KJ, Thompson RJ. The human bile salt export pump: characterization of substrate specificity and identification of inhibitors. Gastroenterology. Nov 2002;123(5):1649-1658.
23. Cui Y, Konig J, Leier I, Buchholz U, Keppler D. Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J Biol Chem. Mar 30 2001;276(13):9626-9630.
24. Yew WW, Leung CC. Antituberculosis drugs and hepatotoxicity. Respirology. Nov 2006;11(6):699-707.
25. Priest DH, Vossel LF, Jr., Sherfy EA, Hoy DP, Haley CA. Use of intermittent rifampin and pyrazinamide therapy for latent tuberculosis infection in a targeted tuberculin testing program. Clinical Infectious Diseases. Dec 15 2004;39(12):1764-1771.
26. Thompson NP, Caplin ME, Hamilton MI, et al. Anti-tuberculosis medication and the liver: dangers and recommendations in management. European Respiratory Journal. Aug 1995;8(8):1384-1388.
27. Park BK, Kitteringham NR, Maggs JL, Pirmohamed M, Williams DP. The role of metabolic activation in drug-induced hepatotoxicity. Annual Review of Pharmacology & Toxicology. 2005;45:177-202.
28. Tostmann A, Boeree MJ, Peters WH, et al. Isoniazid and its toxic metabolite hydrazine induce in vitro pyrazinamide toxicity. Int J Antimicrob Agents. Jun 2008;31(6):577-580.
29. 蕭斐元. 預測抗結核藥物治療期間肝毒性之評分系統的建立. 台北: 藥學研究所, 台北醫學大學; 2003.
30. 羅敏. 結核病人使用抗結核藥物所致肝毒性之回溯性分析研究. 台北: 藥學研究所, 台灣大學; 1999.
31. Fernandez-Villar A, Sopena B, Fernandez-Villar J, et al. The influence of risk factors on the severity of anti-tuberculosis drug-induced hepatotoxicity. Int J Tuberc Lung Dis. Dec 2004;8(12):1499-1505.
32. Huang YS, Chern HD, Su WJ, et al. Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology. Apr 2003;37(4):924-930.
33. Huang YS, Chern HD, Su WJ, et al. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology. Apr 2002;35(4):883-889.
34. 陳映蓉. 抗結核藥物致肝毒性之前瞻性分析研究. 台北: 藥學研究所, 台灣大學; 2002.
35. Sharma SK, Balamurugan A, Saha PK, Pandey RM, Mehra NK. Evaluation of clinical and immunogenetic risk factors for the development of hepatotoxicity during antituberculosis treatment. American Journal of Respiratory & Critical Care Medicine. Oct 1 2002;166(7):916-919.
36. Tost JR, Vidal R, Cayla J, et al. Severe hepatotoxicity due to anti-tuberculosis drugs in Spain. International Journal of Tuberculosis & Lung Disease. May 2005;9(5):534-540.
37. Pande JN, Singh SP, Khilnani GC, Khilnani S, Tandon RK. Risk factors for hepatotoxicity from antituberculosis drugs: a case-control study. Thorax. Feb 1996;51(2):132-136.
38. Dossing M, Wilcke JT, Askgaard DS, Nybo B. Liver injury during antituberculosis treatment: an 11-year study. Tubercle & Lung Disease. Aug 1996;77(4):335-340.
39. Ormerod LP, Horsfield N. Frequency and type of reactions to antituberculosis drugs: observations in routine treatment. Tubercle & Lung Disease. Feb 1996;77(1):37-42.
40. Yee D, Valiquette C, Pelletier M, Parisien I, Rocher I, Menzies D. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. American Journal of Respiratory & Critical Care Medicine. Jun 1 2003;167(11):1472-1477.
41. van Hest R, Baars H, Kik S, et al. Hepatotoxicity of rifampin-pyrazinamide and isoniazid preventive therapy and tuberculosis treatment. Clinical Infectious Diseases. Aug 15 2004;39(4):488-496.
42. Teleman MD, Chee CBE, Earnest A, Wang YT. Hepatotoxicity of tuberculosis chemotherapy under general programme conditions in Singapore. International Journal of Tuberculosis & Lung Disease. Aug 2002;6(8):699-705.
43. Pukenyte E, Lescure FX, Rey D, et al. Incidence of and risk factors for severe liver toxicity in HIV-infected patients on anti-tuberculosis treatment. Int J Tuberc Lung Dis. Jan 2007;11(1):78-84.
44. Schaberg T, Rebhan K, Lode H. Risk factors for side-effects of isoniazid, rifampin and pyrazinamide in patients hospitalized for pulmonary tuberculosis. European Respiratory Journal. Oct 1996;9(10):2026-2030.
45. Breen RAM, Miller RF, Gorsuch T, et al. Adverse events and treatment interruption in tuberculosis patients with and without HIV co-infection. Thorax. Sep 2006;61(9):791-794.
46. Ungo JR, Jones D, Ashkin D, et al. Antituberculosis drug-induced hepatotoxicity. The role of hepatitis C virus and the human immunodeficiency virus. American Journal of Respiratory & Critical Care Medicine. Jun 1998;157(6 Pt 1):1871-1876.
47. Arylamine N-Acetyltransferase (NAT) Nomenclature. http://louisville.edu/medschool/pharmacology/NAT.html. Accessed 02 May, 2008.
48. Bell DA, Taylor JA, Butler MA, et al. Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African-Americans. Carcinogenesis. Aug 1993;14(8):1689-1692.
49. Agundez JA, Olivera M, Martinez C, Ladero JM, Benitez J. Identification and prevalence study of 17 allelic variants of the human NAT2 gene in a white population. Pharmacogenetics. Oct 1996;6(5):423-428.
50. Lin HJ, Han CY, Lin BK, Hardy S. Ethnic distribution of slow acetylator mutations in the polymorphic N-acetyltransferase (NAT2) gene. Pharmacogenetics. Jun 1994;4(3):125-134.
51. Kukongviriyapan V, Prawan A, Tassaneyakul W, Aiemsa-Ard J, Warasiha B. Arylamine N-acetyltransferase-2 genotypes in the Thai population. Br J Clin Pharmacol. Mar 2003;55(3):278-281.
52. Possuelo LG, Castelan JA, de Brito TC, et al. Association of slow N-acetyltransferase 2 profile and anti-TB drug-induced hepatotoxicity in patients from Southern Brazil. European Journal of Clinical Pharmacology. Apr 18 2008.
53. Ohno M, Yamaguchi I, Yamamoto I, et al. Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. Int J Tuberc Lung Dis. Mar 2000;4(3):256-261.
54. Higuchi N, Tahara N, Yanagihara K, et al. NAT2 6A, a haplotype of the N-acetyltransferase 2 gene, is an important biomarker for risk of anti-tuberculosis drug-induced hepatotoxicity in Japanese patients with tuberculosis. World J Gastroenterol. Dec 7 2007;13(45):6003-6008.
55. Cho HJ, Koh WJ, Ryu YJ, et al. Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug-induced hepatotoxicity in Korean patients with pulmonary tuberculosis. Tuberculosis (Edinb). Nov 2007;87(6):551-556.
56. Bozok Cetintas V, Erer OF, Kosova B, et al. Determining the relation between N-acetyltransferase-2 acetylator phenotype and antituberculosis drug induced hepatitis by molecular biologic tests. Tuberk Toraks. Jan 2008;56(1):81-86.
57. Tirona RG, Leake BF, Wolkoff AW, Kim RB. Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation. J Pharmacol Exp Ther. Jan 2003;304(1):223-228.
58. Pasanen MK, Neuvonen PJ, Niemi M. Global analysis of genetic variation in SLCO1B1. Pharmacogenomics. Jan 2008;9(1):19-33.
59. Nozawa T, Minami H, Sugiura S, Tsuji A, Tamai I. Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide polymorphisms. Drug Metab Dispos. Mar 2005;33(3):434-439.
60. Ieiri I, Suzuki H, Kimura M, et al. Influence of common variants in the pharmacokinetic genes (OATP-C, UGT1A1, and MRP2) on serum bilirubin levels in healthy subjects. Hepatol Res. Oct 2004;30(2):91-95.
61. Huang CS, Huang MJ, Lin MS, Yang SS, Teng HC, Tang KS. Genetic factors related to unconjugated hyperbilirubinemia amongst adults. Pharmacogenet Genomics. Jan 2005;15(1):43-50.
62. Mackenzie PI, Walter Bock K, Burchell B, et al. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics. Oct 2005;15(10):677-685.
63. Chowbay B, Zhou S, Lee EJ. An interethnic comparison of polymorphisms of the genes encoding drug-metabolizing enzymes and drug transporters: experience in Singapore. Drug Metab Rev. 2005;37(2):327-378.
64. UGT1A1 Allele Nomenclature. http://www.pharmacogenomics.pha.ulaval.ca/webdav/site/pharmacogenomics/shared/Nomenclature/UGT1A/UGT1A1.htm. Accessed 05/12, 2008.
65. Nagar S, Remmel RP. Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. Oncogene. Mar 13 2006;25(11):1659-1672.
66. Rene HL, Kenneth ET, William FT, Philip DH, Eichelbaum M. UDP-Glucuronosyltransferases. Metabolic Drug Interactions: Lippincott Williams&Wilkins; 2000:161-173.
67. Guillemette C, Ritter JK, Auyeung DJ, Kessler FK, Housman DE. Structural heterogeneity at the UDP-glucuronosyltransferase 1 locus: functional consequences of three novel missense mutations in the human UGT1A7 gene. Pharmacogenetics. Oct 2000;10(7):629-644.
68. Douglas J. Clarke NM, Gemma Monaghan. Genetic defects of the UDP-glucuronosyltransferase-1 (UGT1) gene that cause familial non-haemolytic unconjugated hyperbilirubinaemias. Clinica Chimica Acta. 1997;266:63-74.
69. 張瑞家. 尿苷雙磷酸葡萄糖醛酸基轉移酶1A1(UGT1A1)基因型與抗結核藥物治療期間肝損傷之關聯研究. 台北: 藥學研究所, 台北醫學大學; 2007.
70. Ellis E, Wagner M, Lammert F, et al. Successful treatment of severe unconjugated hyperbilirubinemia via induction of UGT1A1 by rifampicin. Journal of Hepatology. Jan 2006;44(1):243-245.
71. Administration USFaD. Invader UGT1A1 molecular assay 510(k) summary. http://www.fda.gov/cdrh/pdf5/K051824.pdf. Accessed 5/5, 2007.
72. Administration USFaD. Camptosar® label. http://www.fda.gov/cder/foi/label/2005/020571s024,027,028lbl.pdf. Accessed 5/5, 2007.
73. Fountain FFMD, Tolley EP, Chrisman CRP, Self THP. Isoniazid Hepatotoxicity Associated With Treatment of Latent Tuberculosis Infection*: A 7-Year Evaluation From a Public Health Tuberculosis Clinic. Chest. 2005;128(1):116-123.
74. Gordin FM, Cohn DL, Matts JP, et al. Hepatotoxicity of rifampin and pyrazinamide in the treatment of latent tuberculosis infection in HIV-infected persons: is it different than in HIV-uninfected persons? Clinical Infectious Diseases. Aug 15 2004;39(4):561-565.
75. LoBue PA, Moser KS. Use of isoniazid for latent tuberculosis infection in a public health clinic. American Journal of Respiratory & Critical Care Medicine. Aug 15 2003;168(4):443-447.
76. Lee AM, Mennone JZ, Jones RC, Paul WS. Risk factors for hepatotoxicity associated with rifampin and pyrazinamide for the treatment of latent tuberculosis infection: experience from three public health tuberculosis clinics. International Journal of Tuberculosis & Lung Disease. Nov 2002;6(11):995-1000.
77. Fernandez-Villar A, Sopena B, Vazquez R, et al. Isoniazid hepatotoxicity among drug users: the role of hepatitis C. Clinical Infectious Diseases. Feb 1 2003;36(3):293-298.
78. Liu HE, Hsiao PY, Lee CC, Lee JA, Chen HY. NAT2*7 allele is a potential risk factor for adult brain tumors in Taiwanese population. Cancer Epidemiol Biomarkers Prev. Mar 2008;17(3):661-665.
79. Vuilleumier N, Rossier MF, Chiappe A, et al. CYP2E1 genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis. European Journal of Clinical Pharmacology. Jun 2006;62(6):423-429.
80. Roy B, Chowdhury A, Kundu S, et al. Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. J Gastroenterol Hepatol. Sep 2001;16(9):1033-1037.
81. 陳香郿. 人類有機陰離子運輸器OATP1B1基因型與抗結核藥物治療期間肝損傷之關聯研究. 台北: 藥學研究所, 台北醫學大學; 2007.
82. Sullivan LM, Massaro JM, D'Agostino RB, Sr. Presentation of multivariate data for clinical use: The Framingham Study risk score functions. Stat Med. May 30 2004;23(10):1631-1660.
83. Maddrey WCMD. Drug-Induced Hepatotoxicity: 2005. Journal of Clinical Gastroenterology State-of-the-Art Lectures Yale University Digestive Diseases Section: 50th ANNIVERSARY. April 2005;39(4):S83-S89.
84. Kaplowitz N. Idiosyncratic drug hepatotoxicity. Nature Reviews. Jun 2005;Drug Discovery. 4(6):489-499.
85. Jefferson JWMD. Drug-Induced Hepatotoxicity. International Drug Therapy Newsletter. 2005;40(4):25-30.
86. Lee WM. Drug-induced hepatotoxicity. New England Journal of Medicine. Oct 26 1995;333(17):1118-1127.
87. 高郁雯. 預測抗結核藥物治療期間肝毒性之評分系統的驗證 台北: 藥學研究所, 台北醫學大學; 2007.
88. 呂文仁. 人類有機陰離子運輸器(OATP-C)基因多型性及功能之探討. 台南: 基礎醫學研究所, 成功大學; 2005.
89. Huang CS, Luo GA, Huang ML, Yu SC, Yang SS. Variations of the bilirubin uridine-diphosphoglucuronosyl transferase 1A1 gene in healthy Taiwanese. Pharmacogenetics. Aug 2000;10(6):539-544.
90. Ghosh S. HEPATOTOXICITY ASSOCIATED WITH RIFAMPIN AND PYRAZINAMIDE THERAPY OF LATENT TUBERCULOSIS INFECTION: A META-ANALYSIS. Value in Health. May/June 2006;9(3):A153.
91. Devoto FM, Gonzalez C, Iannantuono R, Serra HA, Gonzalez CD, Saenz C. Risk factors for hepatotoxicity induced by antituberculosis drugs. Acta Physiologica, Pharmacologica et Therapeutica Latinoamericana. 1997;47(4):197-202.

------------------------------------------------------------------------ 第 15 筆 ---------------------------------------------------------------------
系統識別號 U0007-2501200812384600
論文名稱(中文) 精神分裂症病患併用喹硫平之肝功能及血中濃度監測分析
論文名稱(英文) Liver Function Tests and Therapeutic Drug Monitoring in Schizophrenic Patients on Quetiapine Combination Therapy
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 96
學期 1
出版年 97
研究生(中文) 王悅琪
學號 M301094018
學位類別 碩士
語文別 中文
口試日期 2008-01-10
論文頁數 62頁
口試委員 委員-林慧玲
委員-劉興政
委員-盧孟良
委員-邱士娟
指導教授-吳姿樺
關鍵字(中) 精神分裂症
療劑監測

硫平
水飛薊
肝功能
藥物交互作用
關鍵字(英) schizophrenia
therapeutic drug monitoring
quetiapine
silymarin
liver function
drug-drug interactions
學科別分類
中文摘要 過去研究指出服用喹硫平(quetiapine;QTP)患者可能發生無症狀肝功能異常現象,並可造成糖尿病的發生。而經比較原始血糖正常或異常之精神分裂症病患族群服用QTP後,兩族群之生化指數變化不同;且同時服用水飛薊(silymarin;SB)與口服降血糖藥物的糖尿病患之血糖控制情形較佳;然尚未有研究報告監測臺灣地區服用QTP之精神疾病患者肝功能及分析QTP血中濃度。故本研究欲了解QTP對肝功能的影響,並分析併用SB一週後對生化代謝指數與QTP血中濃度之影響。研究設計:本臨床試驗為經臺北醫學大學人體試驗委員會核可,於臺北市某私立康復之家依照核可內文執行,並獲得病患簽署之同意書;收錄條件須為經醫師診斷之精神分裂症病患。給藥設計如下:試驗開始的一週期間逐漸調升劑量至QTP 300 mg/day,並維持該劑量一週(第15日)後,再併用SB (70 mg/day) 7日(第22日)。分別於試驗第1、15、22日檢測血液生化值,並於試驗第15、22日抽血進行QTP療劑監測(therapeutic drug monitoring)(服藥後第0至8小時)。共收錄受試者13人,平均年齡為46.6 ± 10.8歲,體重為66.6 ± 9.5公斤;經剔除部份同時服用clozapine之病患後,此受試群(10人)平均年齡、體重為48.9 ± 11.3歲、65.9 ± 9.4公斤;結果顯示:此受試群服用QTP兩週後,飯後胰島素值下降、空腹胰島素值上升、quantitative insulin sensitivity check index (QUICKI)下降、aspartate aminotransferase (AST)或alanine aminotransferase (ALT)上升超過10%者共10人;使用SB一週後,空腹胰島素值、QUICKI數值分別較未併用前之basal值下降、上升,且AST或ALT上升超過10%者剩3人。不論是否有剔除同時服用clozapine之病患,併用SB前後QTP療劑監測與臨床藥物動態學(pharmacokinetics)數值並無顯著差異。再依第1日血糖數值,再將病患區分為原始血糖異常(≧100 mg/dL)或正常二族群;經比較後,原始血糖正常之精神分裂患者在第15日呈現AST或ALT上升超過10%者共4人,但無受試者在第22日AST或ALT上升超過10%。原始血糖異常者之QTP平均最高血中濃度值(Cmax)較原始血糖正常者低(p=0.04),併用SB後則兩組之Cmax無顯著差異。又原始血糖異常者總膽固醇值比未併用SB前高(p=0.04),但未達臨床異常標準;而原始血糖正常者QTP分布體積值比未併用SB以前低(p=0.03),兩者皆達統計上顯著差異。從上述結果推論:(1)併用SB可減少服用QTP後觀察到肝功能異常病患之人數,尤其對原始血糖正常之精神分裂患者較為明顯;(2)血糖正常患者短期併用SB (70 mg/day)與QTP兩藥物無需調整QTP劑量;血糖異常者則建議進行療劑監測,作為QTP劑量調整之參考。
英文摘要 It was reported that quetiapine (QTP)-treated patients presented asymptomatic liver dysfunction and new-onset diabetes mellitus. It was also shown that QTP treatment may change metabolic parameters of schizophrenic patients with or without hyperglycemia differently. Blood glucose controls of oral antidiabetics may be improved while diabetic patients co-medicated with silymarin (SB). The purpose of this study was to monitor the liver function changes and therapeutic drug concentrations after QTP treatments, and after QTP co-medicated with SB treatments in Taiwanese schizophrenic patients. This clinical trial was approved by Taipei Medical University Institutional Review Board and each patient’s informed consent was obtained. This study was conducted in a private long-term care facility in Taipei, Taiwan, and patients diagnosed with schizophrenia were recruited. Study design: QTP dosage was titrated up to 300 mg/day within one week. Patients were maintained on this dose until the end of the study. SB (70 mg/day) was added on from day 15 to day 22. Blood samples were collected from patients at day 1, 15, and 22 to test metabolic parameters and liver function. Samples of day 15 and 22 were further analyzed for QTP therapeutic drug monitoring (TDM) at 0~8 hours postdose. There were thirteen patients recruited, and their average age and body weight were 46.6 ± 10.8 years old and 66.6 ± 9.5 kg, respectively. After three patients co-treated with clozapine were excluded, patients’ (n=10) average age and body weight were 48.9 ± 11.3 years old and 65.9 ± 9.4 kg, respectively. Results: After 2 weeks of QTP treatment (day 15), the patients’ average postprandial insulin levels (PPI) decreased significantly (p=0.03) while number of quantitative insulin sensitivity check index (QUICKI) decreased and fasting insulin concentration increased. There were ten patients whose aspartate aminotransferase (AST) or alanine aminotransferase (ALT) increased more than 10% at day 15. Fasting insulin concentration and QUICKI of samples collected at day 22 decreased or increased, respectively, when compared to those collected at day 15. There were only three patients whose AST or ALT increased more than 10% at day 22. There were no significant differences in QTP TDM and pharmacokinetic parameters following QTP treatments with or without SB whether patients using clozapine or not. Furthermore, according to their day-1 fasting plasma glucose (FPG), patients were subgrouped into non-hyperglycemic group or hyperglycemics (FPG≧100 mg/dL). In non-hyperglycemic schizophrenic group, there were four patients whose AST or ALT increased more than 10% at day 15, but there was no one had increased AST or ALT more than 10% at day 22. Average peak QTP concentration (Cmax) of hyperglycemic patients were lower than the non-hyperglycemic patients (p=0.04). However, when patients co-treated QTP and SB, the average Cmax became similar between two groups. Moreover, at day 22, total cholesterol levels were statistical significantly higher (p=0.04), but still within normal ranges, than that of samples collected on day 15 in hyperglycemic patients. Mean volume of distribution of the non-hyperglycemic patients was significantly lower (p=0.03) at day 22 than that of samples collected on day 15. The results suggest that: (1) Number of schizophrenic patients with liver function abnormality observed after QTP treatment may be reduced when SB was co-administered for one week, especially in non-hyperglycemic patients. (2) There was no need to adjust QTP therapeutic dosage in non-hyperglycemic schizophrenic patients when the duration of their combination treatment of QTP (300 mg/day) with SB (70 mg/day) was no longer than one week. But TDM for QTP is suggested in schizophrenic patients with hyperglycemia.
論文目次 目次 I
中文摘要 III
英文摘要 IV
第一章 緒論 1
第一節 研究背景 2
第二節 研究目的 3
第二章 文獻探討 4
第一節 喹硫平介紹 5
第二節 水飛薊介紹 7
第三章 研究材料與方法 10
第一節 材料來源與研究對象條件 11
第二節 試驗設計與進行 11
第三節 血液之前處理 12
第四節 QTP血中濃度之分析方法 12
第五節 標準檢量線之製作 12
第六節、分析方法之確效試驗 13
第七節 統計分析 13
第四章 結果 15
第五章 討論 21
第六章 結論 26
第七章 圖表與附錄說明 28
Table 1. Demographic and Basal Clinical Characteristics of All Patients……………………….29
Table 2. The Effects of QTP and QTP-SB Treatments in All Patients…………………………..30
Table 3. Liver Function Tests Changes in All patients…………………..………………………31
Table 4. The Effects of QTP and QTP-SB Treatments in All Patients…………………………..32
Table 5. The Effects of QTP and QTP-SB Treatments in All Patients…………………………..33
Table 6. Demographic and Basal Clinical Characteristics of Patients not Using Clozapine…….34
Table 7. The Effects of QTP and QTP-SB Treatments in Patients not Using Clozapine………..35
Table 8. Liver Function Tests Change in Patients not Using Clozapine……..…………………..36
Table 9. The Effects of QTP and QTP-SB Treatments in Patients not Using Clozapine………..37
Table 10. The Effects of QTP and QTP-SB Treatments in Patients not Using Clozapine………38
Table 11. Comparison of Demographic and Basal Clinical Characteristics: Subgroups………...39
Table 12. The Effects of QTP and QTP-SB Treatments in HG Group…………………………..40
Table 13. The Effects of QTP and QTP-SB Treatments in Non-HG Group……………………..41
Table 14. Liver Function Tests Enzyme Levels Change in Patients not Using Clozapine:
    Comparisons Within HG or Non-HGgroup...................................................................42
Table 15. Comparisons of QTP Effects Between HG and Non-HG Group……………………...43
Table 16. Comparisons of SB Effects Between HG and Non-HG Group………………………..45
Table 17. The Effects of QTP and QTP-SB Treatments on PK Parameters: Comparisons Within
    HG or Non-HG group………………………………………………………………….47
Table 18. The Influence of QTP or QTP+SB on Two Groups of Patients With Different Basal
    FPG…………………………………….........................................................................48
Table 19. Differential Changes of QTP or QTP+SB on Two Groups of Patients With Different
    Basal FPG.......................................................................................................................49
圖一、研究設計與研究流程……………………………………………………………………50
圖二、精神分裂症病患服用QTP(300 mg/day)兩週後及併用SB(70 mg/day)一週後時間
   與平均血中濃度曲線比較圖……………………………………………………………51
圖三、研究病患分群流程圖……………………………………………………………………52
圖四、分群方法一收錄之精神分裂症病患服用QTP(300 mg/day)兩週後及併用SB(70
   mg/day)一週後時間與平均血中濃度曲線比較圖……………………………………53
圖五、分群方法二收錄之精神分裂症病患服用QTP(300 mg/day)兩週後及併用SB(70
   mg/day)一週後時間與平均血中濃度曲線比較圖……………………………………54
附錄表、確效試驗操作結果…………………………………………………………………….55
參考文獻 56



參考文獻 1. The World health report: 2001: Mental health: new understanding, new hope. In World Health Report. World Health Organization, 2001.
2. Rossler W, Salize HJ, van Os J, Riecher-Rossler A: Size of burden of schizophrenia and psychotic disorders. Eur Neuropsychopharmacol 2005;15:399-409.
3. 行政院衛生署統計室: 民國95年全民健康保險醫療統計年報. In.
4. Basu A, Meltzer HY: Differential trends in prevalence of diabetes and unrelated general medical illness for schizophrenia patients before and after the atypical antipsychotic era. Schizophr Res 2006;86:99-109.
5. Chang C, Lu F, Yang YC, Wu JS, Wu TJ, Chen MS, Chuang LM, Tai TY: Epidemiologic study of type 2 diabetes in Taiwan. Diabetes Res Clin Pract 2000;50 Suppl 2:S49-59.
6. 行政院衛生署統計室: 民國95年死因統計上冊統計表. In, 2006.
7. Hung CF, Wu CK, Lin PY: Diabetes mellitus in patients with schizophrenia in Taiwan. Prog Neuropsychopharmacol Biol Psychiatry 2005;29:523-527.
8. Nasrallah HA, Meyer JM, Goff DC, McEvoy JP, Davis SM, Stroup TS, Lieberman JA: Low rates of treatment for hypertension, dyslipidemia and diabetes in schizophrenia: data from the CATIE schizophrenia trial sample at baseline. Schizophr Res 2006;86:15-22.
9. Vanina Y, Podolskaya A, Sedky K, Shahab H, Siddiqui A, Munshi F, Lippmann S: Body weight changes associated with psychopharmacology. Psychiatr Serv 2002;53:842-847.
10. Kinon BJ, Kaiser CJ, Ahmed S, Rotelli MD, Kollack-Walker S: Association between early and rapid weight gain and change in weight over one year of olanzapine therapy in patients with schizophrenia and related disorders. J Clin Psychopharmacol 2005;25:255-258.
11. Holtmann M, Kopf D, Mayer M, Bechtinger E, Schmidt MH: Risperidone-associated steatohepatitis and excessive weight-gain. Pharmacopsychiatry 2003;36:206-207.
12. Jin H, Meyer JM, Jeste DV: Atypical antipsychotics and glucose dysregulation: a systematic review. Schizophr Res 2004;71:195-212.
13. Citrome LL, Jaffe AB: Relationship of atypical antipsychotics with development of diabetes mellitus. Ann Pharmacother 2003;37:1849-1857.
14. Wang CJ, Zhang ZJ, Sun J, Zhang XB, Mou XD, Zhang XR, Shang XF, Zhang TQ: Serum free Fatty acids and glucose metabolism, insulin resistance in schizophrenia with chronic antipsychotics. Biol Psychiatry 2006;60:1309-1313.
15. Wright TM, Vandenberg AM: Risperidone- and quetiapine-induced cholestasis. Ann Pharmacother 2007;41:1518-1523.
16. Krebs S, Dormann H, Muth-Selbach U, Hahn EG, Brune K, Schneider HT: Risperidone-induced cholestatic hepatitis. Eur J Gastroenterol Hepatol 2001;13:67-69.
17. Pae CU, Lim HK, Kim TS, Kim JJ, Lee CU, Lee SJ, Lee C, Paik IH: Naturalistic observation on the hepatic enzyme changes in patients treated with either risperidone or olanzapine alone. Int Clin Psychopharmacol 2005;20:173-176.
18. El Hajj I, Sharara AI, Rockey DC: Subfulminant liver failure associated with quetiapine. Eur J Gastroenterol Hepatol 2004;16:1415-1418.
19. Rettenbacher MA, Baumgartner S, Eder-Ischia U, Edlinger M, Graziadei I, Hofer A, Huber R, Hummer M, Kemmler G, Weiss E, Fleischhacker WW: Association between antipsychotic-induced elevation of liver enzymes and weight gain: a prospective study. J Clin Psychopharmacol 2006;26:500-503.
20. Atasoy N, Erdogan A, Yalug I, Ozturk U, Konuk N, Atik L, Ustundag Y: A review of liver function tests during treatment with atypical antipsychotic drugs: a chart review study. Prog Neuropsychopharmacol Biol Psychiatry 2007;31:1255-1260.
21. Pradhan SC, Girish C: Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. Indian J Med Res 2006;124:491-504.
22. Huseini HF, Larijani B, Heshmat R, Fakhrzadeh H, Radjabipour B, Toliat T, Raza M: The efficacy of Silybum marianum (L.) Gaertn. (silymarin) in the treatment of type II diabetes: a randomized, double-blind, placebo-controlled, clinical trial. Phytother Res 2006;20:1036-1039.
23. Velussi M, Cernigoi AM, De Monte A, Dapas F, Caffau C, Zilli M: Long-term (12 months) treatment with an anti-oxidant drug (silymarin) is effective on hyperinsulinemia, exogenous insulin need and malondialdehyde levels in cirrhotic diabetic patients. J Hepatol 1997;26:871-879.
24. 黃淑慧: 水飛薊對喹硫平造成之代謝變異之影響. In 藥學系. 臺北市, 臺北醫學大學, 2006.
25. 黃千瑜: 水飛薊對高血糖症之影響. In 藥學系. 臺北市, 臺北醫學大學, 2005.
26. Spina E, de Leon J: Metabolic drug interactions with newer antipsychotics: a comparative review. Basic Clin Pharmacol Toxicol 2007;100:4-22.
27. DeVane CL, Nemeroff CB: Clinical pharmacokinetics of quetiapine: an atypical antipsychotic. Clin Pharmacokinet 2001;40:509-522.
28. Raggi MA, Mandrioli R, Sabbioni C, Pucci V: Atypical antipsychotics: pharmacokinetics, therapeutic drug monitoring and pharmacological interactions. Curr Med Chem 2004;11:279-296.
29. Cheer SM, Wagstaff AJ: Quetiapine. A review of its use in the management of schizophrenia. CNS Drugs 2004;18:173-199.
30. Mukaddes NM, Abali O: Quetiapine treatment of children and adolescents with Tourette's disorder. J Child Adolesc Psychopharmacol 2003;13:295-299.
31. Jaskiw GE, Thyrum PT, Fuller MA, Arvanitis LA, Yeh C: Pharmacokinetics of quetiapine in elderly patients with selected psychotic disorders. Clin Pharmacokinet 2004;43:1025-1035.
32. Baumann P, Hiemke C, Ulrich S, Eckermann G, Gaertner I, Gerlach M, Kuss HJ, Laux G, Muller-Oerlinghausen B, Rao ML, Riederer P, Zernig G: The AGNP-TDM expert group consensus guidelines: therapeutic drug monitoring in psychiatry. Pharmacopsychiatry 2004;37:243-265.
33. Castberg I, Skogvoll E, Spigset O: Quetiapine and drug interactions: evidence from a routine therapeutic drug monitoring service. J Clin Psychiatry 2007;68:1540-1545.
34. Thyrum PT, Wong YW, Yeh C: Single-dose pharmacokinetics of quetiapine in subjects with renal or hepatic impairment. Prog Neuropsychopharmacol Biol Psychiatry 2000;24:521-533.
35. Grimm SW, Richtand NM, Winter HR, Stams KR, Reele SB: Effects of cytochrome P450 3A modulators ketoconazole and carbamazepine on quetiapine pharmacokinetics. Br J Clin Pharmacol 2006;61:58-69.
36. Aichhorn W, Marksteiner J, Walch T, Zernig G, Saria A, Kemmler G: Influence of age, gender, body weight and valproate comedication on quetiapine plasma concentrations. Int Clin Psychopharmacol 2006;21:81-85.
37. Rogers T, de Leon J, Atcher D: Possible interaction between warfarin and quetiapine. J Clin Psychopharmacol 1999;19:382-383.
38. Correll CU, Frederickson AM, Kane JM, Manu P: Does antipsychotic polypharmacy increase the risk for metabolic syndrome? Schizophr Res 2007;89:91-100.
39. de Leon J, Susce MT, Johnson M, Hardin M, Pointer L, Ruano G, Windemuth A, Diaz FJ: A clinical study of the association of antipsychotics with hyperlipidemia. Schizophr Res 2007;92:95-102.
40. Kim SF, Huang AS, Snowman AM, Teuscher C, Snyder SH: From the Cover: Antipsychotic drug-induced weight gain mediated by histamine H1 receptor-linked activation of hypothalamic AMP-kinase. Proc Natl Acad Sci U S A 2007;104:3456-3459.
41. Pettit J: Alternative medicine: Milk thistle. Clinician Reviews 2000;10:72-74.
42. Zuber R, Modriansky M, Dvorak Z, Rohovsky P, Ulrichova J, Simanek V, Anzenbacher P: Effect of silybin and its congeners on human liver microsomal cytochrome P450 activities. Phytother Res 2002;16:632-638.
43. Pepping J: Milk thistle: Silybum marianum. Am J Health Syst Pharm 1999;56:1195-1197.
44. Manna SK, Mukhopadhyay A, Van NT, Aggarwal BB: Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis. J Immunol 1999;163:6800-6809.
45. Jacobs BP, Dennehy C, Ramirez G, Sapp J, Lawrence VA: Milk thistle for the treatment of liver disease: a systematic review and meta-analysis. Am J Med 2002;113:506-515.
46. Wellington K, Jarvis B: Silymarin: a review of its clinical properties in the management of hepatic disorders. BioDrugs 2001;15:465-489.
47. Gazak R, Walterova D, Kren V: Silybin and silymarin--new and emerging applications in medicine. Curr Med Chem 2007;14:315-338.
48. Kosina P, Maurel P, Ulrichova J, Dvorak Z: Effect of silybin and its glycosides on the expression of cytochromes P450 1A2 and 3A4 in primary cultures of human hepatocytes. J Biochem Mol Toxicol 2005;19:149-153.
49. Piscitelli SC, Formentini E, Burstein AH, Alfaro R, Jagannatha S, Falloon J: Effect of milk thistle on the pharmacokinetics of indinavir in healthy volunteers. Pharmacotherapy 2002;22:551-556.
50. Lirussi F, Beccarello A, Zanette G, De Monte A, Donadon V, Velussi M, Crepaldi G: Silybin-beta-cyclodextrin in the treatment of patients with diabetes mellitus and alcoholic liver disease. Efficacy study of a new preparation of an anti-oxidant agent. Diabetes Nutr Metab 2002;15:222-231.
51. 全民健康保險藥品給付規定. In 中央健康保險局 (ed), 2005.
52. Yang CH, Tsai SJ, Hwang JP: The efficacy and safety of quetiapine for treatment of geriatric psychosis. J Psychopharmacol 2005;19:661-666.
53. Yanovski JA, Yanovski SZ: Recent advances in basic obesity research. Jama 1999;282:1504-1506.
54. Wirshing DA, Wirshing WC, Kysar L, Berisford MA, Goldstein D, Pashdag J, Mintz J, Marder SR: Novel antipsychotics: comparison of weight gain liabilities. J Clin Psychiatry 1999;60:358-363.
55. Sobolova L, Skottova N, Vecera R, Urbanek K: Effect of silymarin and its polyphenolic fraction on cholesterol absorption in rats. Pharmacol Res 2006;53:104-112.
56. Orolin J, Vecera R, Jung D, Meyer UA, Skottova N, Anzenbacher P: Hypolipidemic effects of silymarin are not mediated by the peroxisome proliferator-activated receptor alpha. Xenobiotica 2007;37:725-735.
57. Lucena MI, Andrade RJ, de la Cruz JP, Rodriguez-Mendizabal M, Blanco E, Sanchez de la Cuesta F: Effects of silymarin MZ-80 on oxidative stress in patients with alcoholic cirrhosis. Results of a randomized, double-blind, placebo-controlled clinical study. Int J Clin Pharmacol Ther 2002;40:2-8.
58. Mauri MC, Volonteri LS, Colasanti A, Fiorentini A, De Gaspari IF, Bareggi SR: Clinical pharmacokinetics of atypical antipsychotics: a critical review of the relationship between plasma concentrations and clinical response. Clin Pharmacokinet 2007;46:359-388.
59. Koller EA, Weber J, Doraiswamy PM, Schneider BS: A survey of reports of quetiapine-associated hyperglycemia and diabetes mellitus. J Clin Psychiatry 2004;65:857-863.
60. McEvoy JP, Meyer JM, Goff DC, Nasrallah HA, Davis SM, Sullivan L, Meltzer HY, Hsiao J, Scott Stroup T, Lieberman JA: Prevalence of the metabolic syndrome in patients with schizophrenia: baseline results from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial and comparison with national estimates from NHANES III. Schizophr Res 2005;80:19-32.

------------------------------------------------------------------------ 第 16 筆 ---------------------------------------------------------------------
系統識別號 U0007-2507200819131000
論文名稱(中文) 人參及人參皂苷Rg1合併去氫羥化腎上腺皮素在純系小鼠之馬兜鈴酸腎炎模型之藥效評估
論文名稱(英文) Effect of ginseng, ginsenoside Rg1 and prednisolone on aristolochic acid induced nephropathy in inbred mice
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 96
學期 2
出版年 97
研究生(中文) 鄭郁凡
學號 M301095019
學位類別 碩士
語文別 中文
口試日期 2008-06-20
論文頁數 108頁
口試委員 指導教授-陳世銘
委員-方嘉佑
委員-許秀蘊
關鍵字(中) 馬兜鈴酸腎病變
人參
人參皂苷
Rg1
去氫羥化腎上腺皮質素
乙型轉型生長因子
基質金屬蛋白分解酶
肝細胞生長因子
關鍵字(英) Aristolochic acid nephropathy (AAN)
ginseng
ginsenoside Rg
prednisolone
TGF-β (transforming growth factor-β)
MMP-9 (matrix metalloproteinase-9)
HGF (Hepatocyte Growth Factor)
學科別分類
中文摘要 馬兜鈴酸 (aristolochic acid, AA) 在中草藥引起的腎病變中扮演重要的角色。本研究為藉由投予AA引起馬兜鈴酸腎病變 (aristolochic acid nephropathy, AAN) 後評估人參濃縮劑 (ginseng extrat, GE) 及其成分人參皂苷Rg1 (ginsenoside, GS) ,並分別與去氫羥化腎上腺皮質素 (Prednisolone, P) 合併對AAN的改善效果。純系小鼠C3H/He (6 week-old male) 給予3.0 μg/mL AA作為飲用水連續56天,之後治療組連續14天經口分別投予GE 250 mg/kg、GS 5 mg/kg、prednisolone 2 mg/kg 及prednisolone合併GE或GS;對照組在前56天同樣予以AA作為飲用水,在投予治療藥物期間則給予等量蒸餾水;Normal組則是在整個實驗過程皆給予蒸餾水。藉由測定尿蛋白,尿中N-acetyl-beta-D-glucosaminidase (NAG) 與血中blood urea nitrogen (BUN) 及creatinine,以評估小鼠腎功能;腎組織使用PAS染色觀察病理組織改變,並進行免疫螢光染色 (TGF-β,MMP-9,HGF),以辨識損傷部位之特異性抗原。實驗結果顯示,以GE,P,GE+P及GS+P對尿蛋白、NAG、BUN及SCr值皆能有效降低;組織學觀察各組腎組織損傷的情形皆有緩解現象;免疫螢光染色觀察發現TGF-β沈積情形降低,MMP-9及HGF的沈積增加。根據上述結果得知以合併治療組在各實驗中皆有較佳療效,推測應是GE及GS結構類似prednisolone具有抗發炎效果,可以減少基質堆積並延緩纖維化過程以降低腎臟損傷程度,且與prednisolone合併使用可有加成療效。
英文摘要 Aristolochic acid (AA) has been demonstrated to play an important
role in aristolochic acid nephropathy (AAN). The purpose of this study was to evaluate the therapeutic effect of ginseng extract (GE) or its active component ginsenoside Rg1 (GS), combined with prednisolone on AAN.
AA was dissolved in distilled water as drinking water to C3H/HE mice (6 week-old male) for 56 days. The treatment groups in phase one were administered with GE 250mg/kg, prednisolone 2mg/kg, and both GE and prednisolone orally for 14 days. In phase two, under the same process, GE was replaced by GS. The control group was administered with distilled water and the normal group was only administered with distilled water throughout the experiment. Urine protein, urine N-acetyl-beta-D-glucosaminidase (NAG), blood urea nitrogen (BUN) and serum creatinine were determined to evaluate renal function. Renal tissues were served to histological examination (PAS stain and immunofluorescence). The antibodies, including TGF-β (transforming growth factor-β), MMP-9 (matrix metalloproteinase-9), HGF (hepatocyte growth factor), were chosen to recognize the specific antigens in injury sites.Compared with the control group, urine protein, NAG, BUN and serum creatinine were decreased at different level in all treatment groups. In the histological examination, we observed the alleviation in all treatment groups. The fluorescence dots of TGF-β were significantly decreased and MMP-9, HGF were significantly increased in experimental groups. Based on our result, both GE and GS combined with prednisolone has the superior effect among the concomitance groups. Our findings demonstrated that GE and GS are structure analogs of prednisolone and they have anti-inflammatory properties to slow down the fibrosis process and repair the renal injury.
論文目次 目 錄
目 錄 I
圖 目 錄 VI
表 目 錄 VIII
縮 寫 表 i
中 文 摘 要 ii
Abstract iv
第一章 緒言 1
第二章 文獻回顧 2
第一節 馬兜鈴酸腎病變的由來 2
第二節 馬兜鈴酸之基本特性 3
2.1 用途 3
2.2 含馬兜鈴酸的生藥及使用現況 3
2.3 結構與特性 4
2.4 馬兜鈴酸的代謝 5
2.5 馬兜鈴酸的致癌機轉 7
第三節 馬兜鈴酸腎病變 (Aristolochic acid nephropathy, AAN) 11
3.1 臨床表徵 11
3.2 病理特徵 12
3.3 鑑別診斷 12
3.4 致病機轉 15
3.5 藥物治療 16
第四節 馬兜鈴酸腎病變的實驗模型 18
4.1 馬兜鈴酸的急性腎毒性 18
4.2 馬兜鈴酸的慢性腎毒性 19
第五節 腎小管間質性纖維化 22
5.1 TGF-β 27
5.2 MMPs 30
5.3 Hepatocyte growth factor (HGF) 33
第六節 人參及其藥效研究 37
第七節 人參皂苷 (Ginsenoside Rg1) 及其藥效研究 40
7.1 人參皂苷之結構特性 40
7.2 人參皂苷Rg1的藥效學研究 44
第八節 去氫羥化腎上腺皮質素 46
第三章 研究目的 50
第四章 材料與方法 51
第一節 人參濃縮劑與合併藥物在AAN之藥效評估 51
1.1實驗動物 51
1.2實驗藥物 51
1.3實驗設計 51
1.4尿液收集 53
1.5動物犧牲法、血液及組織切片製作 53
1.6尿蛋白、NAG含量測定 54
1.7血清中BUN及Creatinine的含量測定 54
1.8 Periodoic Acid Schiff’s (PAS) stain組織染色 54
1.9組織損傷程度的量化 55
1.10免疫螢光染色 (Immunofluorescence) 56
1.11統計方法 56
第二節 Ginsenoside Rg1與合併藥物在AAN之藥效評估 57
2.1實驗動物 57
2.2實驗藥物 57
2.3實驗設計 57
2.4尿液收集 59
2.5動物犧牲法、血液及組織切片製作 59
2.6尿蛋白、NAG含量測定 59
2.7血清中BUN及Creatinine的含量測定 59
2.8 PAS組織染色 59
2.9組織損傷程度的量化 59
2.10免疫螢光染色 59
2.11統計方法 59
第五章 結果 60
第一節 人參濃縮劑與合併藥物對慢性AAN的藥效評估 60
1.1尿蛋白、NAG含量分析 60
1.2血清中BUN分析 64
1.3血清中Creatinine分析 64
1.4組織病理PAS染色 66
1.5組織損傷量化分析 66
1.6免疫螢光染色及量化分析 69
第二節Ginsenoside Rg1與合併藥物對慢性AAN的藥效評估 72
2.1尿蛋白、NAG含量分析 72
2.2血清中BUN分析 75
2.3血清中Creatinine分析 75
2.4組織病理PAS染色 77
2.5組織損傷量化分析 77
2.6免疫螢光染色及量化分析 80
第六章 討論 84
第一節 人參濃縮劑及人參皂苷Rg1在AAN之藥效評估 84
第二節 去氫羥化腎上腺皮質素在AAN之藥效評估 89
第三節 人參濃縮劑及人參皂苷Rg1合併去氫羥化腎上腺皮質素在AAN之藥效評估 92
第七章 結論 94
參考文獻 96




















參考文獻 1. Vanherweghem JL, Depierreux M, Tielemans C, Abramowicz D,
Dratwa M,Jadoul M, Richard C, Vandervelde D, Verbeelen D, Vanhaelen-Fastre R.Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet. Feb 13 1993;341(8842):387-391.
2. Arlt VM, Stiborova M, Schmeiser HH. Aristolochic acid as a probable human cancer hazard in herbal remedies: a review. Mutagenesis. July 2002;17(4):265-277.
3. Cosyns JP, Jadoul M, Squifflet JP, De Plaen JF, Ferluga D. Chinese herbs nephropathy: a clue to Balkan endemic nephropathy? Kidney International. Jun 1994;45(6):1680-1688.
4. Vanhaelen M, Vanhaelen-Fastre R, But P, Vanherweghem JL. Identification of aristolochic acid in Chinese herbs. Lancet. Jan 15 1994;343(8890):174.
5. Schmeiser HH, Bieler CA, Wiessler M, Cosyns, JP. Detection of DNA adducts formed by aristolochic acid in renal tissue from patients with Chinese herbs nephropathy. Cancer Research. May 1 1996;56(9):2025-2028.
6. Cosyns JP. When is "aristolochic acid nephropathy" more accurate than "Chinese herbs nephropathy"? Kidney International. Mar 2002;61(3):1178.
7. Nortier JL, Vanherweghem J-L. For patients taking herbal therapy--lessons from aristolochic acid nephropathy. Nephrology Dialysis Transplantation. Jun 2007;22(6):1512-1517.
8. Cosyns JP. Aristolochic acid and 'Chinese herbs nephropathy': a review of the evidence to date. Drug Safety. 2003;26(1):33-48.
9. Balachandran P, Wei F, Lin RC, Khan IA, Pasco DS. Structure activity relationships of aristolochic acid analogues: toxicity in cultured renal epithelial cells. Kidney International. May 2005;67(5):1797-1805.
10. De Broe ME. On a nephrotoxic and carcinogenic slimming regimen.[comment]. American Journal of Kidney Diseases. Jun 1999;33(6):1171-1173.
11. Mengs U. On the histopathogenesis of rat forestomach carcinoma caused by aristolochic acid. Archives of Toxicology. Mar 1983;52(3):209-220.
12. FDA. Letter to Industry - FDA Concerned About Botanical Products, Including Dietary Supplements, Containing Aristolochic Acid. http://www.cfsan.fda.gov/~dms/ds-botl1.html, 2008.
13. WHO. Pharmaceuticals: restrictions in use and availability. http://whqlibdoc.who.int/hq/2003/EDM_QSM_2003.5.pdf, 2008.
14. 中醫藥委員會. 含馬兜鈴酸中(藥)劑處理專區. http://www.ccmp.gov.tw/public/public.asp?selno=561&relno=561&level=C.
15. Krumbiegel G, Hallensleben J, Mennicke WH, Rittmann N, Roth HJ. Studies on the metabolism of aristolochic acids I and II. Xenobiotica. Aug 1987;17(8):981-991.
16. Cosyns JP, Jadoul M, Squifflet JP, Wese FX, van Ypersele de Strihou C. Urothelial lesions in Chinese-herb nephropathy.[see comment]. American Journal of Kidney Diseases. Jun 1999;33(6):1011-1017.
17. Nortier JL, Martinez MC, Schmeiser HH, Arlt VM, Bieler CA, Petein M, Depierreux MF, De Pauw L, Abramowicz D, Vereerstraeten P, Vanherweghem JL Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi)[see comment]. New England Journal of Medicine. Jun 8 2000;342(23):1686-1692.
18. Mei N, Arlt VM, Phillips DH, Heflich RH, Chen T, Mei N, Arlt VM, Phillips DH, Heflich RH, Chen T. DNA adduct formation and mutation induction by aristolochic acid in rat kidney and liver. Mutation Research. Dec 1 2006;602(1-2):83-91.
19. van Ypersele de Strihou C, Vanherweghem JL. The tragic paradigm of Chinese herbs nephropathy. Nephrology Dialysis Transplantation. 1995;10(2):157-160.
20. Reginster F, Jadoul M, van Ypersele de Strihou C, Reginster F, Jadoul M, van Ypersele de Strihou C. Chinese herbs nephropathy presentation, natural history and fate after transplantation. Nephrology Dialysis Transplantation. Jan 1997;12(1):81-86.
21. Kabanda A, Jadoul M, Lauwerys R, Bernard A, van Ypersele de Strihou C. Low molecular weight proteinuria in Chinese herbs nephropathy. Kidney International. Nov 1995;48(5):1571-1576.
22. Van Ypersele De Strihou C, Jadoul M. Progression rate of Chinese herb nephropathy: impact of Aristolochia fangchi ingested dose.[comment]. Nephrology Dialysis Transplantation. Oct 2002;17(10):1852; author reply 1852.
23. Chen SM, Fan MY, Tseng CC, Ho Y, Hsu KY. Pharmacokinetics and nephrotoxicity of aristolochic acid in rabbits. Toxicon. Aug 2007;50(2):180-188.
24. Depierreux M, Van Damme B, Vanden Houte K, Vanherweghem JL. Pathologic aspects of a newly described nephropathy related to the prolonged use of Chinese herbs. Am J Kidney Dis. Aug 1994;24(2):172-180.
25. Thurlow W. Analgesic nephropathy. N Engl J Med. Jul 2 1998;339(1):50.
26. Stefanovi V, Stefanovi V. Balkan endemic nephropathy: a need for novel aetiological approaches. Qjm. Jul 1998;91(7):457-463.
27. Grollman AP, Shibutani S, Moriya M, Miller F, Wu L, Moll U, Suzuki N, Fernandes A, Rosenquist T, Medverec Z, Jakovina K, Brdar B, Slade N, Turesky RJ, Goodenough AK, Rieger R, Vukelic M, Jelakovic B. Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proceedings of the National Academy of Sciences of the United States of America. Jul 17 2007;104(29):12129-12134.
28. Stefanović V. Analgesic nephropathy, Balkan endemic nephropathy and Chinese herbs nephropathy: Separate tubulointerstitial kidney diseases associated with urothelial malignancy. Facta Universitatis Series: Medicine and Biology. 2002;9(1):1-6.
29. Cosyns JP, Dehoux JP, Guiot Y, Goebbels RM, Robert A, Bernard AM. Chronic aristolochic acid toxicity in rabbits: a model of Chinese herbs nephropathy?[see comment]. Kidney International. Jun 2001;59(6):2164-2173.
30. Vanherweghem JL, Abramowicz D, Tielemans C, Depierreux M. Effects of steroids on the progression of renal failure in chronic interstitial renal fibrosis: a pilot study in Chinese herbs nephropathy. American Journal of Kidney Diseases. Feb 1996;27(2):209-215.
31. Li Y, Liu Z, Guo X, Shu J, Chen Z,Li L, Li Y, Liu Z, Guo X, Shu J, Chen Z, Li L. Aristolochic acid I-induced DNA damage and cell cycle arrest in renal tubular epithelial cells in vitro. Archives of Toxicology. Aug 2006;80(8):524-532.
32. Hsin YH, Cheng CH, Tzen JT, Wu MJ, Shu KH, Chen HC. Effect of aristolochic acid on intracellular calcium concentration and its links with apoptosis in renal tubular cells. Apoptosis. Dec 2006;11(12):2167-2177.
33. Yang L, LI X, Wang H. Possible mechanisms explaining the tendency towards interstitial fibrosis in aristolochic acid-induced acute tubular necrosis. Nephrology Dialysis Transplantation. 2007;22(2):445-456.
34. Debelle FD, Nortier JL, Husson CP, De Prez EG,Vienne AR, Rombaut K, Salmon IJ, Deschodt-Lanckman MM, Vanherweghem JL. The renin-angiotensin system blockade does not prevent renal interstitial fibrosis induced by aristolochic acids. Kidney International. Nov 2004;66(5):1815-1825.
35. Zhu S, Liu J, Chen L, Li Y, Yao J, Jin C, Wang Z, Wang L, Wu P, Luo Q, Zhou J, Zhu S, Liu J, Chen L, Li Y, Yao J, Jin C, Wang Z, Wang L, Wu P, Luo Q, Zhou J. Chemopreventive effect of five drugs on renal interstitial fibrosis induced by an aristolochic acid-containing Chinese herb in rats. American Journal of Nephrology. Jan-Feb 2005;25(1):23-29.
36. Zhang C, Chen YP, Dong HR, Qiu CB. The therapeutic effects of bosentan and valsartan on renal interstitial fibrosis of chronic aristolochic acid nephropathy. Zhonghua Yi Xue Za Zhi. Sep 28 2005;85(37):2601-2606.
37. Wang H-l, Zhang J-y, Huang J. Effects of glycyrrihizic acid and prednisone on pathological and ultrastructural changes of kidney in rats with chronic aristolochic acid nephropathy. Chinese Journal of Integrated Traditional & Western Medicine. Jan 2007;27(1):45-49.
38. Jackson L, Kofman S, Weiss A, Brodovsky H. Aristolochic acid (NSC-50413): phase I clinical study. Cancer Chemother Rep. Nov 1964;42:35-37.
39. Mengs U. Acute toxicity of aristolochic acid in rodents. Arch Toxicol. Feb 1987;59(5):328-331.
40. Mengs U, Stotzem CD. Renal toxicity of aristolochic acid in rats as an example of nephrotoxicity testing in routine toxicology. Arch Toxicol. 1993;67(5):307-311.
41. Sato N, Takahashi D, Chen SM, Tsuchiya R, Mukoyama T., Yamagata S, Ogawa M, Yoshida M, Kondo S, Satoh N, Ueda S. Acute nephrotoxicity of aristolochic acids in mice. J Pharm Pharmacol. Feb 2004;56(2):221-229.
42. Nouwen EF ZM, Savin M. Induction of apoptosis in the rat kidney by aristolochic acid I. ASN Annual Meeting. 1995; 1002.
43. Zheng F, Zhang X, Huang Q. Establishment of model of aristolochic acid-induced chronic renal interstitial fibrosis in rats. Chung-Hua i Hsueh Tsa Chih [Chinese Medical Journal]. Sep 25 2001;81(18):1095-1100.
44. Debelle FD, Nortier JL, De Prez EG, Garbar CH, Vienne AR,Salmon IJ, Deschodt-Lanckman MM, Vanherweghem JL. Aristolochic acids induce chronic renal failure with interstitial fibrosis in salt-depleted rats. Journal of the American Society of Nephrology. Feb 2002;13(2):431-436.
45. Okada H, Strutz F, Danoff TM, Neilson EG. Possible pathogenesis of renal fibrosis. Kidney Int Suppl. May 1996;54:S37-38.
46. Becker GJ, Hewitson TD. The interstitium in renal disease. J Intern Med. Aug 1997;242(2):93-97.
47. Eddy AA. Molecular basis of renal fibrosis. Pediatr Nephrol. Dec 2000;15(3-4):290-301.
48. Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney International. Jan 2006;69(2):213-217.
49. Li X, Wang H. Aristolochic acid nephropathy: what we know and what we have to do. Nephrology (Carlton). Jun 2004;9(3):109-111.
50. Neilson EG, Jimenez SA, Phillips SM. Cell-mediated immunity in interstitial nephritis. III. T lymphocyte-mediated fibroblast proliferation and collagen synthesis: an immune mechanism for renal fibrogenesis. J Immunol. Oct 1980;125(4):1708-1714.
51. Markovic-Lipkovski J, Muller CA, Risler T, Bohle A, Muller GA. Association of glomerular and interstitial mononuclear leukocytes with different forms of glomerulonephritis. Nephrology Dialysis Transplantation. 1990;5(1):10-17.
52. Jones CL, Buch S, Post M, McCulloch L, Liu E, Eddy AA. Renal extracellular matrix accumulation in acute puromycin aminonucleoside nephrosis in rats. Am J Pathol. Dec 1992;141(6):1381-1396.
53. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med. May 4 2000;342(18):1350-1358.
54. Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med. Nov 10 1994;331(19):1286-1292.
55. Wang SN, Lapage J, Hirschberg R. Glomerular ultrafiltration and apical tubular action of IGF-I, TGF-beta, and HGF in nephrotic syndrome. Kidney International. Oct 1999;56(4):1247-1251.
56. Wang W, Koka V, Lan HY. Transforming growth factor-beta and Smad signalling in kidney diseases. Nephrology (Carlton). Feb 2005;10(1):48-56.
57. Border WA, Noble NA. TGF-beta in kidney fibrosis: a target for gene therapy. Kidney International. May 1997;51(5):1388-1396.
58. Branton MH, Kopp JB. TGF-beta and fibrosis. Microbes Infect. Dec 1999;1(15):1349-1365.
59. Dong J, Liu J. Association between transforming growth factor- betal gene polymophisms and chronic renal disease. International Journal of Urology and Nephorolgy. 2007;1(27):133-136.
60. Haas CS, Gleason B, Lin S, Tramonti G, Kanwar YS. Matrix metalloproteinases in renal development. Connect Tissue Res. 2004;45(2):73-85.
61. Parks WC, Wilson CL, Lopez-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol. Aug 2004;4(8):617-629.
62. Branton MH, Kopp JB, Branton MH, Kopp JB. TGF-beta and fibrosis. Microbes & Infection. Dec 1999;1(15):1349-1365.
63. Matsumoto K, Nakamura T, Matsumoto K, Nakamura T. Emerging multipotent aspects of hepatocyte growth factor. Journal of Biochemistry. Apr 1996;119(4):591-600.
64. Liu Y, Liu Y. Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action. American Journal of Physiology - Renal Physiology. Jul 2004;287(1):F7-16.
65. Matsumoto K, Nakamura T, Matsumoto K, Nakamura T. Hepatocyte growth factor (HGF) as a tissue organizer for organogenesis and regeneration. Biochemical & Biophysical Research Communications. Oct 29 1997;239(3):639-644.
66. Liu Y, Liu Y. Hepatocyte growth factor and the kidney. Current Opinion in Nephrology & Hypertension. Jan 2002;11(1):23-30.
67. Matsumoto K, Nakamura T, Matsumoto K, Nakamura T. Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney International. Jun 2001;59(6):2023-2038.
68. Liu Y, Yang J, Liu Y, Yang J. Hepatocyte growth factor: new arsenal in the fights against renal fibrosis?[comment]. Kidney International. Jul 2006;70(2):238-240.
69. Chang YS, Seo EK, Gyllenhaal C, Block KI, Chang YS, Seo EK, Gyllenhaal C, Block KI. Panax ginseng: a role in cancer therapy? Integrative Cancer Therapies. Mar 2003;2(1):13-33.
70. Yun TK. Panax ginseng--a non-organ-specific cancer preventive? Lancet Oncology. Jan 2001;2(1):49-55.
71. Gillis CN, Gillis CN. Panax ginseng pharmacology: a nitric oxide link? Biochemical Pharmacology. Jul 1 1997;54(1):1-8.
72. 賴榮祥:原色生藥學;創譯出版社 2000:4-13.
73. Nam MH, Kim SI, Liu JR, Yang DC, Lim YP, Kwon KH, Yoo JS, Park YM, Nam MH, Kim SIl, Liu JR, Yang DC, Lim YP, Kwon KH, Yoo JS, Park YM. Proteomic analysis of Korean ginseng (Panax ginseng C.A. Meyer). Journal of Chromatography B: Analytical Technologies in the Biomedical & Life Sciences. Feb 5 2005;815(1-2):147-155.
74. Xie JT, McHendale S, Yuan CS, Xie J-T, McHendale S, Yuan C-S. Ginseng and diabetes. American Journal of Chinese Medicine. 2005;33(3):397-404.
75. Baek SH, Piao XL, Lee U, Kim HY, Park JH, Baek SH, Piao XL, Lee UJ, Kim HY,Park JH. Reduction of Cisplatin-induced nephrotoxicity by ginsenosides isolated from processed ginseng in cultured renal tubular cells. Biological & Pharmaceutical Bulletin. Oct 2006;29(10):2051-2055.
76. Kiefer D, Pantuso T, Kiefer D, Pantuso T. Panax ginseng.[see comment]. American Family Physician. Oct 15 2003;68(8):1539-1542.
77. Kitts D, Hu C, Kitts D, Hu C. Efficacy and safety of ginseng. Public Health Nutrition. Dec 2000;3(4A):473-485.
78. Ong YC, Yong EL. Panax (ginseng)--panacea or placebo? Molecular and cellular basis of its pharmacological activity. Annals of the Academy of Medicine, Singapore. Jan 2000;29(1):42-46.
79. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol. Dec 1 1999;58(11):1685-1693.
80. Glenn MB, Lexell J, Glenn MB, Lexell J. Ginseng. Journal of Head Trauma Rehabilitation. Mar-Apr 2003;18(2):196-200.
81. Han SW, Kim H. Ginsenosides stimulate endogenous production of nitric oxide in rat kidney. International Journal of Biochemistry & Cell Biology. May 1996;28(5):573-580.
82. Kim SH, Park KS, Kim SH, Park KS. Effects of Panax ginseng extract on lipid metabolism in humans. Pharmacological Research. Nov 2003;48(5):511-513.
83. Chan TW, But PP, Cheng SW, Kwok IM, Lau FW, Xu HX, Chan TW, But PP, Cheng SW, Kwok IM, Lau FW, Xu HX. Differentiation and authentication of Panax ginseng, Panax quinquefolius, and ginseng products by using HPLC/MS.[erratum appears in Anal Chem 2000 May 15;72(10):2329]. Analytical Chemistry. Mar 15 2000;72(6):1281-1287.
84. Shin HR, Kim JY, Yun TK, Morgan G, Vainio H. The cancer-preventive potential of Panax ginseng: a review of human and experimental evidence. Cancer Causes Control. Jul 2000;11(6):565-576.
85. Gong YS, Chen J, Zhang QZ, Zhang JT, Gong YS, Chen J, Zhang QZ, Zhang JT. Effect of 17beta-oestradiol and ginsenoside on osteoporosis in ovariectomised rats. Journal of Asian Natural Products Research. Oct-Nov 2006;8(7):649-656.
86. Kimura Y, Okuda H, Arichi S, Kimura Y, Okuda H, Arichi S. Effects of various ginseng saponins on 5-hydroxytryptamine release and aggregation in human platelets. Journal of Pharmacy & Pharmacology. Dec 1988;40(12):838-843.
87. Wu CF, Bi XL, Yang JY, Zhan JY, Dong YX, Wang JH, Wang JM, Zhang R, Li X, Wu CF, Bi XL, Yang JY, Zhan JY, Dong YX, Wang JH, Wang JM, Zhang R, Li X. Differential effects of ginsenosides on NO and TNF-alpha production by LPS-activated N9 microglia. International Immunopharmacology. Mar 2007;7(3):313-320.
88. Lee YJ, Chung E, Lee KY, Lee YH, Huh B, Lee SK. Ginsenoside-Rg1, one of the major active molecules from Panax ginseng, is a functional ligand of glucocorticoid receptor. Molecular & Cellular Endocrinology. Oct 20 1997;133(2):135-140.
89. Leung KW, Cheng YK, Mak NK, Chan KK, Fan TP, Wong RN. Signaling pathway of ginsenoside-Rg1 leading to nitric oxide production in endothelial cells. FEBS Letters. May 29 2006;580(13):3211-3216.
90. Leung KW, Yung KK, Mak NK, Chang YS, Fan TP, Wong RN. Neuroprotective effects of ginsenoside-Rg1 in primary nigral neurons against rotenone toxicity. Neuropharmacology. Mar 2007;52(3):827-835.
91. Mook-Jung I, Hong HS, Boo JH, Lee KH, Yun SH, Cheong MY, Joo I, Huh K, Jung MW. Ginsenoside Rb1 and Rg1 improve spatial learning and increase hippocampal synaptophysin level in mice. Journal of Neuroscience Research. Mar 15 2001;63(6):509-515.
92. Radad K, Gille G, Moldzio R, Saito H, Rausch WD. Ginsenosides Rb1 and Rg1 effects on mesencephalic dopaminergic cells stressed with glutamate. Brain Research. Sep 17 2004;1021(1):41-53.
93. Cheng Y, Shen LH, Zhang JT. Anti-amnestic and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta Pharmacol Sin. Feb 2005;26(2):143-149.
94. Chen XC, Zhou YC, Chen Y, Zhu YG, Fang F, Chen LM. Ginsenoside Rg1 reduces MPTP-induced substantia nigra neuron loss by suppressing oxidative stress. Acta Pharmacologica Sinica. Jan 2005;26(1):56-62.
95. Chen XC, Fang F, Zhu YG, Chen LM, Zhou YC, Chen Y. Protective effect of ginsenoside Rg1 on MPP+-induced apoptosis in SHSY5Y cells. J Neural Transm. Aug 2003;110(8):835-845.
96. Chen XC, Zhu YG, Zhu LA, Huang C, Chen Y, Chen LM, Fang F, Zhou YC, Zhao CH. Ginsenoside Rg1 attenuates dopamine-induced apoptosis in PC12 cells by suppressing oxidative stress. Eur J Pharmacol. Jul 18 2003;473(1):1-7.
97. Zhang HS, Wang SQ, Zhang H-S, Wang S-Q. Ginsenoside Rg1 inhibits tumor necrosis factor-alpha (TNF-alpha)-induced human arterial smooth muscle cells (HASMCs) proliferation. Journal of Cellular Biochemistry. Aug 15 2006;98(6):1471-1481.
98. Principles of Endocrinology. McGraw-Hill's ACCESS Medicine; 2008. Accessed 2008.
99. Howland RD, Mycek MJ. Lippincott's Illustrated Reviews: Pharmacology. 3rd ed: Lippincott Williams & Wilkins, Baltimore; 2006.
100. Micromedex® Healthcare Series. Thomson Healthcare's 2008. Updated Last Updated Date. Accessed 2008.
101. Structure-function relationships of synthetic glucocorticoids. UpToDate®, Inc; 2008. Accessed 2008.
102. Prednisolone: Drug information. UpToDate®, Inc; 2008. Accessed 2008.
103. Pharmacologic use of glucocorticoids. UpToDate®, Inc; 2008. Accessed 2008.
104. Martinez MC, Nortier J, Vereerstraeten P, Vanherweghem JL. Progression rate of Chinese herb nephropathy: impact of Aristolochia fangchi ingested dose. Nephrology Dialysis Transplantation. Mar 2002;17(3):408-412.
105. Kim YW, Song DK, Kim WH, Wie MB, Kim YH, Kee SH, Cho MK. Long-term oral administration of ginseng extract decreases serum gamma-globulin and IgG1 isotype in mice. Journal of Ethnopharmacology. Sep 1997;58(1):55-58.
106. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. May 7 1976;72:248-254.
107. Leaback DH, Walker PG. Studies on glucosaminidase. 4. The fluorimetric assay of N-acetyl-beta-glucosaminidase. Biochemical Journal. Jan 1961;78:151-156.
108. Linko-Lopponen S. Fluorometric measurement of urinary N-acetyl-beta-D-glucosaminidase and its correlation to uremia. Clinica Chimica Acta. Oct 31 1986;160(2):123-127.
109. 楊文淇. 馬兜鈴酸腎症在純系小鼠的確立與柴胡在此腎炎模型的藥效評估. 台北市: 藥學系碩士班 , 台北醫學大學; 2005.
110. 葉欣怡. 人參及人參皂苷於純系小鼠之馬兜鈴酸腎炎模型的藥效評估. 台北市: 藥學系碩士班 , 台北醫學大學; 2007.
111. Yokozawa T, Zhou JJ, Hattori M, Inaba S, Okada T, Oura H. Effects of ginseng in nephrectomized rats. Biol Pharm Bull. Nov 1994;17(11):1485-1489.
112. Hattori T, Fujitsuka N, Kurogi A, Shindo S. Effect of Onpi-to (TJ-8117) on TGF-beta 1 in rats with 5/6 nephrectomized chronic renal failure. Nippon Jinzo Gakkai Shi. Nov 1996;38(11):475-483.
113. Hattori T, Suzuki Y, Ito M, Suzuki Y. Studies on antinephritic effects of plant components in rats (2): Effects of ginsenosides on original-type anti-GBM nephritis in rats and its mechanisms. Nippon Yakurigaku Zasshi - Folia Pharmacologica Japonica. Feb 1991;97(2):127-134.
114. Hattori T, Nagamatsu T, Ito M, Suzuki Y. Studies on antinephritic effect of TJ-8014, a new Japanese herbal medicine, and its mechanisms (1): Effects on original-type anti-GBM nephritis in rats and platelet aggregation. Japanese Journal of Pharmacology. Aug 1989;50(4):477-485.
115. Nakai S, Kawakita T, Himeno K, Nomoto K. Combined treatments with Ninjin-youei-to (Ren-shen-yang-rong-tang) plus a suboptimal dose of prednisolone on autoimmune nephritis in MRL/lpr mice. Int J Immunopharmacol. Jun 1998;20(6):275-284.
116. Yang L, Li XM, Wang HY. A comparative study of manchurian Dutchmanspipe and antibiotics induced acute tubular necrosis in renal cellular biological features. Chinese Journal of Integrated Traditional & Western Medicine. May 2003;23(5):329-334.
117. Li B, Li XM, Zhang CY, Wang X, Cai SQ. Cellular mechanism of renal proximal tubular epithelial cell injury induced by aristolochic acid I and aristololactam I. Beijing Da Xue Xue Bao. Feb 2004;36(1):36-40.
118. Okada H, Watanabe Y, Inoue T, Kobayashi T, Kanno Y, Shiota G, Nakamura T, Sugaya T, Fukamizu A, Suzuki H. Transgene-derived hepatocyte growth factor attenuates reactive renal fibrosis in aristolochic acid nephrotoxicity. Nephrology Dialysis Transplantation. Dec 2003;18(12):2515-2523.
119. Yang J, Liu Y. Blockage of tubular epithelial to myofibroblast transition by hepatocyte growth factor prevents renal interstitial fibrosis. Journal of the American Society of Nephrology. Jan 2002;13(1):96-107.
120. Liu Y, Rajur K, Tolbert E, Dworkin LD. Endogenous hepatocyte growth factor ameliorates chronic renal injury by activating matrix degradation pathways. Kidney International. Nov 2000;58(5):2028-2043.
121. Klahr S, Morrissey JJ. The role of vasoactive compounds, growth factors and cytokines in the progression of renal disease. Kidney Int Suppl. Apr 2000;75:S7-14.
122. Cho JY, Yoo ES, Baik KU, Park MH, Han BH. In vitro inhibitory effect of protopanaxadiol ginsenosides on tumor necrosis factor (TNF)-alpha production and its modulation by known TNF-alpha antagonists. Planta Medica. Apr 2001;67(3):213-218.
123. Park EK, Shin YW, Lee HU, Kim SS, Lee YC, Lee BY, Kim DH. Inhibitory effect of ginsenoside Rb1 and compound K on NO and prostaglandin E2 biosyntheses of RAW264.7 cells induced by lipopolysaccharide. Biological & Pharmaceutical Bulletin. Apr 2005;28(4):652-656.
124. Shin YW, Bae EA, Kim SS, Lee YC, Kim DH. Effect of ginsenoside Rb1 and compound K in chronic oxazolone-induced mouse dermatitis. International Immunopharmacology. Jul 2005;5(7-8):1183-1191.
125. Park EK, Choo MK, Han MJ, Kim DH. Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities. Int Arch Allergy Immunol. Feb 2004;133(2):113-120.
126. Nozaki Y, Yamagata T, Yoo BS, Sugiyama M, Ikoma S, Kinoshita K, Funauchi M, Kamamaru A. The beneficial effects of treatment with all-trans-retinoic acid plus corticosteroid on autoimmune nephritis in NZB/WF mice. Clin Exp Immunol. Jan 2005;139(1):74-83.
127. Wang HL, Zhang JY, Huang J. Effects of glycyrrihizic acid and prednisone on pathological and ultrastructural changes of kidney in rats with chronic aristolochic acid nephropathy. Chinese Journal of Integrated Traditional & Western Medicine. Jan 2007;27(1):45-49.
128. Ono T, Liu N, Makino T, Nogaki F, Muso E, Honda G, Kita T. Suppressive mechanisms of Sairei-to on mesangial matrix expansion in rat mesangioproliferative glomerulonephritis. Nephron Exp Nephrol. 2005;100(3):e132-142.
129. Sakurai H, Shigemori N, Hisada Y, Ishizuka T, Kawashima K, Sugita T. Suppression of NF-kappa B and AP-1 activation by glucocorticoids in experimental glomerulonephritis in rats: molecular mechanisms of anti-nephritic action. Biochim Biophys Acta. Dec 31 1997;1362(2-3):252-262.
130. Matsuo H, Tamura M, Kabashima N, Serino R, Tokunaga M, Shibata T, Matsumoto M, Aijima M, Oikawa S, Anai H, Nakashima Y. Prednisolone inhibits hyperosmolarity-induced expression of MCP-1 via NF-kappaB in peritoneal mesothelial cells. Kidney International. Feb 2006;69(4):736-746.
131. Lombardi L, Forte N, Paradisi F. Effect of pretreatment with prednisolone on the phagocytic activity of mouse peritoneal macrophages in vitro. Experientia. Nov 15 1978;34(11):1503-1504.
132. Liu Y, Cousin JM, Hughes J, Van Damme J, Seckl JR, Haslett C, Dransfield I, Savill J, Rossi AG. Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J Immunol. Mar 15 1999;162(6):3639-3646.
133. Piemonti L, Monti P, Allavena P, Sironi M, Soldini L, Leone BE, Socci C, Di CV. Glucocorticoids affect human dendritic cell differentiation and maturation. J Immunol. Jun 1 1999;162(11):6473-6481.
134. Copeland JW, Beaumont BW, Merrilees MJ, Pilmore HL. Epithelial-to-mesenchymal transition of human proximal tubular epithelial cells: effects of rapamycin, mycophenolate, cyclosporin, azathioprine, and methylprednisolone. Transplantation. Mar 27 2007;83(6):809-814.
135. Kuroda M, Sasamura H, Shimizu-Hirota R, Mifune M, Nakaya H, Kobayashi E, Hayashi M, Saruta T. Glucocorticoid regulation of proteoglycan synthesis in mesangial cells. Kidney International. Sep 2002;62(3):780-789.
136. Yoshimura E, Fujii M, Koide S, Murase M, Asano S, Toba T, Yoshikawa H, Kushimoto H, Katsumata H, Murakami K, Hasegawa M, Tomita M, Hasegawa H, Shikano M, Kawashima S. A case of Chinese herbs nephropathy in which the progression of renal dysfunction was slowed by steroid therapy. Nippon Jinzo Gakkai Shi. Feb 2000;42(2):66-72.
137. Hiai S, Yokoyama H, Oura H, Yano S. Stimulation of pituitary-adrenocortical system by ginseng saponin. Endocrinologia Japonica. Dec 1979;26(6):661-665.


------------------------------------------------------------------------ 第 17 筆 ---------------------------------------------------------------------
系統識別號 U0007-2907200813540600
論文名稱(中文) 臺灣火刺木成分於人類黑色素細胞之活性探討
論文名稱(英文) The related activities of the constituents from Pyracantha koidzumii in human epidermal melanocytes
校院名稱 臺北醫學大學
系所名稱(中) 生藥學研究所
系所名稱(英) Graduate Institute of Pharmacognosy
學年度 96
學期 2
出版年 97
研究生(中文) 劉宴伶
學號 M303095001
學位類別 碩士
語文別 中文
口試日期 2008-07-08
論文頁數 144頁
口試委員 指導教授-李美賢
委員-郭悅雄
委員-徐鳳麟
關鍵字(中) 臺灣火刺木
臺灣特有種
人類黑色素細胞
酪氨酸酵素
關鍵字(英) Pyracantha koidzumii
endemic species in Taiwan
human epidermal melanocytes
tyrosinas
學科別分類
中文摘要 臺灣火刺木(Pyracantha koidzumii (Hayata) Rehder)薔薇科火刺木屬(Pyracantha)常綠灌木,為臺灣特有種,產於東部低海拔河床地區。本實驗室以人類黑色素細胞之酪氨酸酵素抑制活性進行二十六種臺灣特有種篩選,結果顯示臺灣火刺木果實95% 乙醇萃取物之細胞毒性低(100 μg/mL細胞存活率> 80%)且具細胞內酪氨酸酵素抑制活性(IC50=54.8 μg/mL),故本研究乃採集大量臺灣火刺木之果實,以 95% 乙醇萃取,進行成分分離及其活性探討。經管柱層析分離純化得到十三個化合物,由物理和光譜相關數據解析後,發現其中兩個為新化合物,dibenzofuran結構的3,6-dihydroxy-2,4-dimethoxy-dibenzofuran (9) 和 biphenyl 結構的 3,4-dihydroxy-5-methoxybiphenyl-2′-O-β-D-gluco- pyranoside (13),以及11 個已知化合物,分別為 flavonoids 結構quercetin (1), rutin (2), hyperoside (3), isoquecitrin (4) 和 helicioside B (5);diphenyl ketone glycosides 結構garcimangosone D (6) 和 pyrafortunoside B (7);dibenzofuran結構9-hydroxyeriobofuran (8), fortuneanoside L (10), 2,4-dimethoxy-3,6,9-trihydroxy-dibenzofuranyl-6-O- β-D-glucopyranoside (11) 和biphenyl 結構2-hydroxyaucuparin (12),以上十三個化合物均首次由臺灣火刺木中分離所得。此十三個化合物進行人類黑色素細胞活性篩選試驗,於細胞存活率測試中,發現十二種化合物1~7, 9~13之細胞存活率 > 80 %,進一步對細胞內酪氨酸酵素活性測試,結果顯示新化合物3,4-dihydroxy-5-methoxybiphenyl-2′-O-β-D- glucopyranoside (13) 於100 μM濃度下,對酪氨酸酵素抑制活性最佳,進而以酵素活性染色法(Zymography)探討化合物13 對於酪氨酸酵素氧化活性,結果顯示隨劑量增加,其酵素抑制作用增加;在西方墨點法分析中,結果顯示酪氨酸酵素及TRP 2蛋白表現亦隨化合物13劑量增加,酵素蛋白抑制作用增加。於酪氨酸酵素動力學實驗中,對照組的Km為339.91 μM,Vmax為1.22×10-2 ΔA/min,化合物13於100 μM處理時,Km為261.60 μM,Vmax為8.27×10-3 ΔA/min,屬於非競爭型的混合型抑制劑。綜合本實驗結果,臺灣火刺木分離出十三化合物,其中新化合物3,4-dihydroxy-5-methoxybiphenyl-2′-O-β-D-glucopyranoside (13) 對於抑制人類黑色素細胞內酪胺酸酵素最具潛力,其於人類黑色素細胞中之活性機制將更進一步探討。
論文目次 目錄
目錄 I
圖目錄 IV
表目錄 VIII
縮寫表 IX
縮寫表(續) X
中文摘要 XI
英文摘要 XIII
第一章 緒論 1
一、臺灣火刺木與其它同屬植物研究介紹 1
(一)臺灣火刺木基本介紹 1
(二)火刺木屬植物相關介紹 2
(三)火刺木屬植物活性研究回顧 5
(四)火刺木屬植物之化學成份研究 6
二、人類黑色素細胞及其相關介紹 16
(一)人類黑色素細胞(Melanocytes) 16
(二)黑色素(Melanin) 17
(三)酪氨酸酵素(Tyosinase) 17
(四)黑色素之生化合成(Melanogensis) 18
(五)傳統美白保養品作用機轉 19
三、酪氨 酸酵素動力學機制之研究 21
(一)酵素活性中心性質 21
(二)酵素之抑制劑與其反應型態 21
(三)酪氨酸酵素抑制劑之作用機制 25
四、研究動機 26
第二章 實驗材料與方法 27
一、火刺木之萃取與分離部份 27
(一)一般試藥及溶媒 27
(二)色層分析法材料 27
(三)儀器 28
(四)臺灣火刺木萃取及分離流程 29
(五)水解及單醣的組成分析 32
(六)各成分之物理數據 33
二、 臺灣火刺木之活性實驗部份 42
(一)一般藥品與試劑 42
(二)細胞株及細胞培養液 43
(三)實驗抗體 43
(四)活性儀器設備 43
(五)分析軟體 43
(六)人類黑色素細胞培養 44
(七)人類黑色素細胞存活率試驗 44
(八)蛋白定量法 45
(九)人類黑色素細胞內酪氨酸酵素活性試驗 46
(十)酪氨酸酵素氧化活性染色法 46
(十一)西方墨點法 47
(十二)酪氨酸酵素酵素動力學實驗 48
第三章 結果與討論 49
一、臺灣火刺木之化合物及其結構鑑定 49
(一)Quercetin (1) 之結構解析 49
(二)Rutin (2) 之結構解析 52
(三)Hyperoside (3) 之結構解析 55
(四)Isoquecetrin (4) 之結構解析 58
(五)Helicioside B (5) 之結構解析 61
(六)Garcimangosone D (6) 之結構解析 64
(七)Pyrafortunoside B (7) 之結構解析 67
(八)9-hydroxyeriobofuran (8) 之結構解析 71
(九)3, 6-dihydroxy-2,4-dimethoxy-dibenzofuran (9)之結構解析 74
(十)Fortuneanosides L (10) 之結構解析 77
(十一)2,4-dimethoxy-3,6,9-trihydroxy-dibenzofuranyl-6-O-β-D-glucopyranoside (11) 之結構解析 80
(十二)2-hydroxyaucuparin (12) 之結構解析 83
(十三)3,4-dihydroxy-5-methoxybiphenyl-2′-O-β-D-glucopyranoside (13) 之結構解析 86
二、臺灣火刺木成分之活性探討 89
(一)人類黑色素細胞內存活率試驗 89
(二)人類黑色素細胞內酪氨酸酵素活性試驗 90
(三)人類黑色素細胞內酪氨酸酵素之活性染色試驗 92
(四)人類黑色素細胞內酪氨酸酵素之西方墨點法試驗 93
(五)人類黑色素細胞內酪氨酸酵素抑制動力學實驗 94
第四章 結論 95
第五章 參考文獻 100
參考文獻 1. 呂福原, 歐辰雄, 呂金誠. 台灣樹木解說 (一). 行政院農業委員會 1991.
2. JC L. Rosaceae in Flora of Taiwan, third ed. Editorial Committee of the Flora of Taiwan, Taipei, Taiwan 1996.
3. Kokubun T, Harborne JB, Eagles J, Waterman PG. Dibenzofuran phytoalexins from the sapwood of Cotoneaster acutifolius and five related species. Phytochemistry FIELD Full Journal Title:Phytochemistry 1995;38(1):57-60.
4. Kokubun T, et al. Dibenzofuran phytoalexins from the sapwood tissue of Photinia, Pyracantha and Crataegus species. [erratum to document cited in CA123:165120]. Phytochemistry FIELD Full Journal Title:Phytochemistry 1995;40(5):1581.
5. Kartesz JK. Natural Resources Conservations Service: PLANTS Profile. United States Department of Agriculture: Plants Database 1992.
6. Eona M. M. Aitken, Rudolf Kamelin, Kai Larsen, et al. Rosaceae in Flora of China. Flora of China 2003;vol.9:108-111.
7. Kokubun T, Harborne JB, Eagles J, Waterman PG. Dibenzofuran phytoalexins from the sapwood tissue of Photinia, Pyracantha and Crataegus species. Phytochemistry FIELD Full Journal Title:Phytochemistry 1995;39(5):1033-7.
8. Kokubun T, Harborne JB. Phytoalexin induction in the sapwood of plants of the maloideae (rosaceae): biphenyls or dibenzofurans. Phytochemistry FIELD Full Journal Title:Phytochemistry 1995;40(6):1649-54.
9. Falodun A, Usifoh CO, Nworgu ZAM. Phytochemical and active column fractions of Pyrenacantha staudtii leaf extracts on isolated rat uterus. Pak J Pharm Sci 2005;18(4):31-5.
10. Otsuka H, Fujioka S, Komiya T, Goto M, Hiramatsu Y, Fujimura H. Studies on anti-inflammatory agents. V. A new anti-inflammatory constituent of Pyracantha crenulata roem. Chem Pharm Bull (Tokyo) 1981;29(11):3099-104.
11. Kowalewski Z, Mrugasiewicz K. Flavonoid heterosides in Crataegus phenophyrum. Planta Med 1971;19(4):311-7.
12. Abbott BJ, Hartwell JL, Leiter J, Perdue RE, Jr., Schepartz SA. Screening data from Cancer Chemotherapy National Service Center screening laboratories. XXXVII. Plant extracts. Cancer Res. 1966;26B(11):1302-453.
13. Dai Y, Zhou G-x, Kurihara H, Ye W-c, Yao X-s. Biphenyl Glycosides from the Fruit of Pyracantha fortuneana. J. Nat. Prod. 2006;69(7):1022-1024.
14. Mei X, Wan G, Zhou Z, Chang J, Wu H. Effects of pyracantha fortuneana extract on blood coagulation. Zhong Yao Cai 2001;24(12):874-6.
15. Yao X, Li Y, Dai Y, inventors; (Jinan University, Peop. Rep. China). assignee. Dibenzofuran glycoside derivatives capable of inhibiting tyrosinase. Application: CN patent 1003-937 101139377. 2008 20071019.
16. Zechmeister L, Pinckard JH. Some poly-cis-lycopenes occurring in the fruit of Pyracantha. J. Am. Chem. Soc. 1947;69:1930-5.
17. Zechmeister L, Schroeder WA. Fruit of Pyracantha angustifolia: A practical source of pro-gamma -carotene and prolycopene. J. Biol. Chem. 1942;144:315-20.
18. Fico G, Bilia AR, Morelli I, Tome F. Flavonoid distribution in Pyracantha coccinea plants at different growth phases. Biochem. Syst. Ecol. 2000;28(7):673-678.
19. Challice JS. Phenolic compounds of the subfamily Pomoideae. Chemotaxonomic survey. Phytochemistry 1973;12(5):1095-101.
20. Bilia AR, Catalano S, Pistelli L, Morelli I. Flavonoids from Pyracantha coccinea roots. Phytochemistry 1993;33(6):1449-52.
21. Bilia AR, Flamini G, Pistelli L, Morelli I. New constituents from Pyracantha coccinea leaves. J. Nat. Prod. 1992;55(12):1741-7.
22. Dai Y, Zhou G-X, Kurihara H, Ye W-C, Yao X-S. Fortuneanosides G-L, dibenzofuran glycosides from the fruit of Pyracantha fortuneana. Chem. Pharm. Bull. 2008;56(4):439-442.
23. Dai Y, He X-J, Zhou G-X, Kurihara H, Ye W-C, Yao X-S. Acylphloroglucinol glycosides from the fruits of Pyracantha fortuneana. J. Asian Nat. Prod. Res. 2008;10(2):111-117.
24. Bilia AR, Morelli I, Marsili A. Two glucosides from Pyracantha coccinea roots: a new lignan and a new chalcone. Tetrahedron 1994;50(17):5181-8.
25. Suzuki S, Satoh JY, Hagitani A, Hirose M. Petrol soluble constituents of the seeds of Pyracantha angustifolia. Phytochemistry 1973;12(5):1193.
26. Li Y-j, Tian P, Yao B-h. Study on extraction of arginine from Pyracantha. Anjisuan He Shengwu Ziyuan 2007;29(1):47-50.
27. Junqueira LC. 基礎組織學. 合記圖書出版社 2000.
28. Juneira LC, Carneiro. J. 組織學. 合記圖書出版社 1990.
29. Quevedo WC, Jr. The control of color in mammals. Am Zool 1969;9(2):531-40.
30. Lerner AB, Fitzpatrick TB. Biochemistry of melanin formation. Physiol Rev 1950;30(1):91-126.
31. del Marmol V, Beermann F. Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett 1996;381(3):165-8.
32. Schallreuter KU. Advances in melanocyte basic science research. Dermatol Clin 2007;25(3):283-91.
33. Prota G. Recent advances in the chemistry of melanogenesis in mammals. J Invest Dermatol 1980;75(1):122-7.
34. Pawelek JM, Korner AM. The biosynthesis of mammalian melanin. Am Sci 1982;70(2):136-45.
35. Pomerantz SH, Ances IG. Tyrosinase activity in human skin. Influence of race and age in newborns. J Clin Invest 1975;55(5):1127-31.
36. Land EJ, Ramsden CA, Riley PA. Tyrosinase autoactivation and the chemistry of ortho-quinone amines. Acc Chem Res 2003;36(5):300-8.
37. Olivares C, Solano F, Garcia-Borron JC. Conformation-dependent post-translational glycosylation of tyrosinase. Requirement of a specific interaction involving the CuB metal binding site. J Biol Chem 2003;278(18):15735-43.
38. Iozumi K, Hoganson GE, Pennella R, Everett MA, Fuller BB. Role of tyrosinase as the determinant of pigmentation in cultured human melanocytes. J Invest Dermatol 1993;100(6):806-11.
39. Jimbow K, Quevedo WC, Jr., Fitzpatrick TB, Szabo G. Some aspects of melanin biology: 1950-1975. J Invest Dermatol 1976;67(1):72-89.
40. Lerner AB, Fitzpatrick TB, et al. Mammalian tyrosinase; preparation and properties. J Biol Chem 1949;178(1):185-95.
41. Korner A, Pawelek J. Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin. Science 1982;217(4565):1163-5.
42. Wang N, Hebert DN. Tyrosinase maturation through the mammalian secretory pathway: bringing color to life. Pigment Cell Res 2006;19(1):3-18.
43. Mishima Y, Hatta S, Ohyama Y, Inazu M. Induction of melanogenesis suppression: cellular pharmacology and mode of differential action. Pigment Cell Res 1988;1(6):367-74.
44. Maeda K, Fukuda M. Arbutin: mechanism of its depigmenting action in human melanocyte culture. J Pharmacol Exp Ther 1996;276(2):765-9.
45. Tachibana M, Takeda K, Nobukuni Y, et al. Ectopic expression of MITF, a gene for Waardenburg syndrome type 2, converts fibroblasts to cells with melanocyte characteristics. Nat Genet 1996;14(1):50-4.
46. Funasaka Y, Chakraborty AK, Komoto M, Ohashi A, Ichihashi M. The depigmenting effect of alpha-tocopheryl ferulate on human melanoma cells. Br J Dermatol 1999;141(1):20-9.
47. Kumano Y, Sakamoto T, Egawa M, Iwai I, Tanaka M, Yamamoto I. In vitro and in vivo prolonged biological activities of novel vitamin C derivative, 2-O-alpha -D-glucopyranosyl-L-ascorbic acid (AA-2G), in cosmetic fields. J. Nutr. Sci. Vitaminol. 1998;44(3):345-359.
48. Gilchrest BA. A review of skin ageing and its medical therapy. Br J Dermatol 1996;135(6):867-75.
49. Briden E, Jacobsen E, Johnson C. Combining superficial glycolic acid (alpha-hydroxy acid) peels with microdermabrasion to maximize treatment results and patient satisfaction. Cutis 2007;79(1 Suppl Combining):13-6.
50. Nestor Mark S. Combination therapy in clinical and cosmetic dermatology: the marriage of device and drug. J Drugs Dermatol 2004;3(5 Suppl):S4-11.
51. Schallreuter KU, Kothari S, Chavan B, Spencer JD. Regulation of melanogenesis-controversies and new concepts. Exp. Dermatol. 2008;17(5):395-404.
52. Kadekaro Ana L, Kavanagh R, Kanto H, et al. alpha-Melanocortin and endothelin-1 activate antiapoptotic pathways and reduce DNA damage in human melanocytes. Cancer Res 2005;65(10):4292-9.
53. WEBB MDEC. ENZYMES. 1990;THIRD EDITION.
54. Palumbo A, d'Ischia M, Misuraca G, Prota G. Skin depigmentation by hydroquinone: a chemical and biochemical insight. Pigment Cell Res 1992;Suppl 2:299-303.
55. Jara JR, Solano F, Garcia-Borron JC, Aroca P, Lozano JA. Regulation of mammalian melanogenesis. II: The role of metal cations. Biochim Biophys Acta 1990;1035(3):276-85.
56. Sanchez-Ferrer A, Rodriguez-Lopez JN, Garcia-Canovas F, Garcia-Carmona F. Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1995;1247(1):1-11.
57. Jiang C-B, Chang M-J, Wen C-L, Lin Y-P, Hsu F-L, Lee M-H. Natural products of cosmetics: analysis of extracts of plants endemic to Taiwan for the presence of tyrosinase-inhibitory, melanin-reducing, and free radical scavenging activities. Yaowu Shipin Fenxi 2006;14(4):346-352.
58. Mou S, Li Z. Progress in carbohydrate analysis by anion exchange separation-pulsed amperometric detection. Sepu 1995;13(5):320-4.
59. Jagan Mohan Rao L, Yada H, Ono H, Yoshida M. Acylated and non-acylated flavonol monoglycosides from the Indian minor spice Nagkesar (Mammea longifolia). J Agric Food Chem 2002;50(11):3143-6.
60. Kazuma K, Noda N, Suzuki M. Malonylated flavonol glycosides from the petals of Clitoria ternatea. Phytochemistry 2003;62(2):229-37.
61. Lu Y, Foo LY. Identification and quantification of major polyphenols in apple pomace. Food Chem. FIELD Full Journal Title:Food Chemistry 1997;59(2):187-194.
62. Morimura K, Gatayama A, Tsukimata R, et al. 5-O-glucosyldihydroflavones from the leaves of Helicia cochinchinensis. Phytochemistry 2006;67(24):2681-5.
63. Huang YL, Chen CC, Chen YJ, Huang RL, Shieh BJ. Three xanthones and a benzophenone from Garcinia mangostana. J Nat Prod 2001;64(7):903-6.
64. Dai Y, He XJ, Zhou GX, Kurihara H, Ye WC, Yao XS. Acylphloroglucinol glycosides from the fruits of Pyracantha fortuneana. J Asian Nat Prod Res 2008;10(1-2):111-7.
65. Dai Y, Zhou GX, Kurihara H, Ye WC, Yao XS. Fortuneanosides G-L, dibenzofuran glycosides from the fruit of Pyracantha fortuneana. Chem Pharm Bull (Tokyo) 2008;56(4):439-42.
66. Kokubun T, Harborne JB, Eagles J, Waterman PG. Antifungal biphenyl compounds are the phytoalexins of the sapwood of Sorbus aucuparia. Phytochemistry FIELD Full Journal Title:Phytochemistry 1995;40(1):57-9.
67. Van den Berg M, Birnbaum L, Bosveld AT, et al. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect 1998;106(12):775-92.
68. Donsky H. Beauty is skin deep. Rodale Press 1985.

------------------------------------------------------------------------ 第 18 筆 ---------------------------------------------------------------------
系統識別號 U0007-3007200822285100
論文名稱(中文) 茶樹精油應用於痤瘡治療之功效與安全性評估
論文名稱(英文) Safety and efficacy evaluation of tea tree oil for acne
校院名稱 臺北醫學大學
系所名稱(中) 生藥學研究所
系所名稱(英) Graduate Institute of Pharmacognosy
學年度 96
學期 2
出版年 97
研究生(中文) 陳立偉
學號 M303095007
學位類別 碩士
語文別 中文
口試日期 2008-07-22
論文頁數 91頁
口試委員 指導教授-王靜瓊
委員-李連滋
委員-鄭幼文
關鍵字(中) 澳洲茶樹精油
毒性
功效
實證醫學
關鍵字(英) Melaleuca alternifolia
tea tree oil
toxicity
efficacy
evidence-based medicine
學科別分類
中文摘要 精油普遍用於化妝品及保養品,其中又以茶樹精油為廣泛用於芳香療法的精油之一。其源自於澳洲茶樹具有抑制微生物、消炎作用,但是在高濃度時會引起皮膚刺激作用,因此本研究將探討茶樹精油的安全、有效劑量及主要成分中導致皮膚刺激反應之相關性。以實證醫學方式搜尋茶樹精油之臨床試驗文獻不多,且Jadad評值偏低,因此將進行後續基礎實驗。
首先取蒸餾萃取茶樹精油 (天然精油),及市售品以氣相層析質譜儀檢測其主要成分,其品質均符合ISO 4730之成分規範。繼而進行抑制金黃色葡萄球菌活性及皮膚局部使用之安全性探討。12個標準品、天然精油及市售品檢測抑制金黃色葡萄球菌活性。結果顯示:以terpinolene (MIC 6.25%, MBC 100%)、α-terpinene (MIC 6.25%, MBC 25%)及α-terpineol (MIC 10%, MBC 40%)之抗菌效果最佳。再以主要抗菌之成分調配人工配方精油,抗菌作用提高,且較天然精油強,但仍不及某廠商市售品之效果。
皮膚接觸毒性檢測,是利用neomycin建立皮膚刺激反應標準。天然茶樹精油及主要毒性成分1,8-cineole 與活性成分terpinen-4-ol檢測結果顯示:天然茶樹精油2%以上即產生顯著之皮膚刺激毒性,而1,8-cineole及terpinen-4-ol則無顯著毒性。另外,連續28天塗抹2%茶樹精油於Wistar大鼠皮膚,觀察血清中GOT、GPT、BUN及creatinine之變化,相對於溶媒組,其無顯著影響肝腎功能。
綜合實證醫學及基礎研究對於茶樹精油應用於痤瘡治療之功效與安全性之探討結果:茶樹精油確實能有效抑制金黃色葡萄球菌,並有抗發炎之機轉,而達成治療痤瘡之效果;且若低濃度塗抹局部皮膚使用而非口服,亦不會對身體造成毒性。
英文摘要 Tea tree oil (TTO) is one of the essential oils that are popularly used in cosmetics and mending agents. TTO, the essential oil of Melaleuca alternifolia, is used in aromatherapy and has been investigated as antimicrobial and anti-inflammatory agents. However, TTOs can cause skin irritation at high concentrations. In this study, we explored the safety and efficient dosage of TTO and investigated the mechanism of TTO-induced skin irritation between with its components. The clinical trial literatures with randomized and double blinding design were very rare and Jadad score very low. Therefore, we executed following animal experimental research.
Tea tree oils were extracted by hydrodistillation and five brands commercial TTOs were purchased in Taiwan market. All compositions fit with International Standard 4730 guideline for TTO. In the followings, we established anti-Staphylococcal activity and safety evaluation for skin irritations of TTOs in rats. The antibacterial effects of 12 kinds of TTO’s components, extracted and commercial TTOs were measured by agar well diffusion method. Terpinolene (MIC 6.25%, MBC 100%), α-terpinene (MIC 6.25%, MBC 25%), and α-terpineol (MIC 10%, MBC 40%) were the major components in TTOs and exhibited most potent antibacterial activity. According to the above results, we designed the formulated TTOs. Formulated TTOs were more effect than extracted TTO but not as well as commercial one.
Allergic contact dermatitis model was established by neomycin irritations. The extracted TTO showed significant skin irritation at more than 2%/site, 1,8-cineole and terpinen-4-ol no significant dermal toxicity. Continued smear 2%/site TTO on Wistar rats skin for 28 days, GOT, GPT, BUN and creatinine of rats in serum did not significantly changed. We suggested TTO did not damage in the function of liver and kidney under 2%/site smear on skin for 28 days.
According to efficacy and safety literature review of evidence-based medicine and experimental research of TTO for acne treatment, TTOs were ability for Staphylococcus aureus inhibition and anti-inflammatory activity. Topical used with low dose of TTOs rather than oral administration will not cause harm to health.
論文目次 目錄……………………………………………………………… i
附圖目錄………………………………………………………… iv
附表目錄………………………………………………………… v
縮寫表…………………………………………………………… vi
中文摘要………………………………………………………… 1
英文摘要………………………………………………………… 2
第一章緒論………………………………………………… 4
第一節研究背景…………………………………………… 4
第二節痤瘡之病因………………………………………… 10
第三節澳洲茶樹簡介……………………………………… 14
第四節澳洲茶樹精油……………………………………… 15
第五節研究目的…………………………………………… 17
本實驗之流程圖…………………………………… 19
第二章茶樹精油之品質管制……………………………… 20
第一節前言………………………………………………… 20
第二節實驗部分…………………………………………… 20
一、材料及設備………………………………………… 20
二、茶樹精油之製備…………………………………… 21
1. 水蒸氣蒸餾………………………………………… 21
2. 精油含量測定………………………………………… 21
三、茶樹精油之氣相層析質譜儀圖譜與指標成分之定
量…………………………………………………… 22
1. 利用GC-MS分析茶樹精油及其標準品…………… 22
2. 氣相層析質譜儀之條件…………………………… 22
3. 檢品配製…………………………………………… 23
第三節氣相層析質譜儀指紋圖譜分析指標成分結果…… 25
一、澳洲茶樹各部位之精油萃取結果與產率………… 25
二、茶樹精油之成分分析結果………………………… 25
第四節討論………………………………………………… 30
第三章茶樹精油之抗痤瘡療效評估……………………… 33
第一節前言………………………………………………… 33
第二節茶樹精油作用之實證醫學探討…………………… 34
一、茶樹精油用於痤瘡治療之系統評價……………… 34
1. 文獻來源…………………………………………… 34
2. 文獻之納入標準…………………………………… 34
3. 納入文獻之質量評值方法………………………… 35
二、茶樹精油作用之實證醫學探討結果……………… 35
ii
1. 茶樹精油用於痤瘡治療之系統評價結果………… 35
2. 茶樹精油用於痤瘡治療之基礎研究文獻回顧…… 36
(1) 茶樹精油之抗細菌活性…………………………… 36
(2) 茶樹精油之抗真菌活性…………………………… 38
(3) 茶樹精油之抗病毒活性…………………………… 38
(4) 茶樹精油之抗原蟲活性…………………………… 38
(5) 茶樹精油之抗發炎反應…………………………… 38
(6) 結論………………………………………………… 39
第三節實驗部份…………………………………………… 42
一、實驗材料…………………………………………… 42
1. 試驗菌株…………………………………………… 42
2. 試藥………………………………………………… 42
3. 人工配方茶樹精油…………………………………… 42
4. 儀器設備…………………………………………… 42
二、實驗方法…………………………………………… 42
1. 培養液及培養基之製備…………………………… 42
2. 瓊脂井化擴散法(agar well diffusion method)…… 43
三、茶樹精油抑制金黃色葡萄球菌活性結果………… 44
1. 茶樹精油之主成分抑制金黃色葡萄球菌活性…… 44
2. 市售品及萃取茶樹精油抑制金黃色葡萄球菌活性45
3. 茶樹精油各主要成分比例調整後對金黃色葡萄球菌
之活性……………………………………………… 47
四、討論………………………………………………… 47
第四章茶樹精油之安全性評估…………………………… 49
第一節前言………………………………………………… 49
第二節茶樹精油安全性之實證醫學探討………………… 50
一、茶樹精油安全性之系統評價……………………… 50
1. 文獻來源…………………………………………… 50
2. 文獻之納入標準…………………………………… 50
3. 納入文獻之質量評值方法………………………… 50
二、茶樹精油安全性之實證醫學探討結果…………… 50
1. 茶樹精油安全性之系統評價結果………………… 50
2. 茶樹精油不良反應之文獻回顧…………………… 53
第三節實驗部份…………………………………………… 58
一、單一劑量皮膚毒性試驗…………………………… 58
1. 實驗材料…………………………………………… 59
1.1 實驗動物…………………………………………… 59
1.2 試藥………………………………………………… 59
iii
1.3 實驗儀器…………………………………………… 59
2. 實驗方法…………………………………………… 59
3. 單一劑量皮膚毒性試驗結果……………………… 61
3.1 單一劑量皮膚毒性試驗正對照組Neomycin 評估量
表之建立…………………………………………… 61
3.2 Terpinen-4-ol與1,8-cineole之單一劑量皮膚急性毒
性試驗結果………………………………………… 62
3.3 茶樹精油單一劑量皮膚毒性試驗結果…………… 63
3.4 市售茶樹精油之單一劑量皮膚急性毒性試驗結果63
二、塗抹茶樹精油28 天之肝腎毒性評估……………… 65
1. 試驗材料…………………………………………… 66
1.1 實驗動物…………………………………………… 66
1.2 試藥………………………………………………… 66
1.3 實驗儀器…………………………………………… 66
2. 實驗方法…………………………………………… 66
3. 塗抹茶樹精油28 天之肝腎毒性評估結果………… 66
三、討論………………………………………………… 70
第五章結論………………………………………………… 71
第六章參考文獻…………………………………………… 72
iv
附圖目錄
圖一、痤瘡致病之規則系統…………………………… 10
圖二、不同類型痤瘡之治療方式……………………… 13
圖三、澳洲茶樹之外觀(A)樹型與(B)葉枝……………… 15
圖四、水蒸氣蒸餾萃取裝置……………………………… 21
圖五、茶樹精油含量測定之裝置………………………… 22
圖六、樣品TTO-A之GC-MS指紋圖譜………………… 27
圖七、樣品TTO-B之GC-MS指紋圖譜………………… 27
圖八、樣品TTO-C 之GC-MS 指紋圖譜………………… 28
圖九、樣品TTO-D 之GC-MS 指紋圖譜………………… 28
圖十、樣品TTO-E 之GC-MS 指紋圖譜………………… 29
圖十一、樣品TTO-F 之GC-MS 指紋圖譜………………… 29
圖十二、植物二次代謝物生合成主要途徑………………… 31
圖十三、瓊脂井化擴散法及精油於平板培養基之抑菌圈外
觀…………………………………………………… 44
圖十四、蒸餾萃取茶樹精油及市售品之金黃色葡萄球菌抑
制…… ……… …… …… ……… …… …… …… 46
圖十五、1,8-Cineole (eucalyptol)在大鼠及人體內之代謝52
圖十六、單一劑量皮膚毒性試驗操作圖…… …… …… 60
圖十七、Neomycin單一劑量皮膚毒性試驗評估…………… 61
圖十八、長期塗抹TTO-A之後大鼠血清血清肝腎功能生化
數值……………………………………………… 68
v
附表目錄
表一、植物萃取物與抗痘相關之科學論文……………… 6
表二、常用於抗痘化菻~之植物萃取物的毒性研究及其
使用濃度或劑量………………………………… 8
表三、茶樹精油之組成………………………………… 16
表四、茶樹精油成分之性質…………………………… 17
表五、十二種購得茶樹精油成分標準品之名稱及其
GC-MS滯留時間………………………………… 24
表六、市售五種茶樹精油之品牌及樣品代號…………… 24
表七、蒸餾萃取與市售之茶樹精油成分含量分析…… 26
表八、茶樹精油及組成之Rideal-Walker coefficient…… 34
表九、Jadad Score Calculation…………………………… 35
表十、茶樹精油用於痤瘡治療之文獻摘要及Jadad評分36
表十一、茶樹精油之抗細菌活性………………………… 40
表十二、茶樹精油之抗真菌活性………………………… 41
表十三、蒸餾萃取及人工配方茶樹精油之組成…………… 43
表十四、茶樹精油主成分之金黃色葡萄球菌抑菌圈直徑比
及MIC、MBC……………………………………… 45
表十五、茶樹精油與人工配方精油DF1, DF2 之抑菌圈直徑
比…………………………………………………… 46
表十六、茶樹精油之不良反應相關文獻回顧……………… 51
表十七、精油植物主成分及潛在之接觸性過敏原……… 54
表十八、茶樹精油成分造成之毒性………………………… 56
表十九、皮膚紅腫評分表(Draize-FHSA scoring System)… 58
表二十、Neomycin單一劑量皮膚刺激試驗紅腫比較……… 61
表二十一、Neomycin紅腫程度評分比較表………………… 62
表二十二、Terpinen-4-ol與1,8-cineole之單一劑量皮膚急性毒
性試驗…………………………………………… 62
表二十三、茶樹精油單一劑量皮膚刺激試驗紅腫比較……… 64
表二十四、茶樹精油之皮膚毒性利用Draize-FHSA scoring
Sys t em分析…………………………………… 64
表二十五、市售品茶樹精油之單一劑量皮膚急性毒性試驗評
分表……………………………………………… 64
表二十六、雌性Wistar大鼠血中肝腎功能之生化檢驗參考值67
參考文獻 1. Collier CN, Harper JC, Cafardi JA, et al. The prevalence of acne in adults 20 years and older. J Am Acad Dermatol 2008;58:56-9.
2. 蔡旻倩, 賴志昇, 王振宇, et al. Acne Prevalence in Elementary School Students-A Comparative Epidemiological Study between Kaohsiung County and Magong Township. 中華皮膚科醫學雜誌 2006;24:9-14.
3. Warner GT, Plosker GL. Clindamycin/benzoyl peroxide gel: a review of its use in the management of acne. Am J Clin Dermatol 2002;3:349-60.
4. National Center for Biotechnology Information. 2007. (Accessed October 16, 2007, at www.ncbi.nlm.nih.gov.)
5. Hughes-Formella BJ, Filbry A, Gassmueller J, Rippke F. Anti-inflammatory efficacy of topical preparations with 10% hamamelis distillate in a UV erythema test. Skin Pharmacol Appl Skin Physiol 2002;15:125-32.
6. Duwiejua M, Zeitlin IJ, Waterman PG, Gray AI. Anti-inflammatory activity of Polygonum bistorta, Guaiacum officinale and Hamamelis virginiana in rats. J Pharm Pharmacol 1994;46:286-90.
7. Iauk L, Lo Bue AM, Milazzo I, Rapisarda A, Blandino G. Antibacterial activity of medicinal plant extracts against periodontopathic bacteria. Phytother Res 2003;17:599-604.
8. Gloor M, Reichling J, Wasik B, Holzgang HE. Antiseptic effect of a topical dermatological formulation that contains Hamamelis distillate and urea. Forsch Komplementarmed Klass Naturheilkd 2002;9:153-9.
9. Deters A, Dauer A, Schnetz E, Fartasch M, Hensel A. High molecular compounds (polysaccharides and proanthocyanidins) from Hamamelis virginiana bark: influence on human skin keratinocyte proliferation and differentiation and influence on irritated skin. Phytochemistry 2001;58:949-58.
10. Prabjone R, Thong-Ngam D, Wisedopas N, Chatsuwan T, Patumraj S. Anti-inflammatory effects of Aloe vera on leukocyte-endothelium interaction in the gastric microcirculation of Helicobacter pylori-infected rats. Clin Hemorheol Microcirc 2006;35:359-66.
11. Vazquez B, Avila G, Segura D, Escalante B. Antiinflammatory activity of extracts from Aloe vera gel. J Ethnopharmacol 1996;55:69-75.
12. Jain A, Basal E. Inhibition of Propionibacterium acnes-induced mediators of inflammation by Indian herbs. Phytomedicine 2003;10:34-8.
13. Ramadan M, Goeters S, Watzer B, et al. Chamazulene carboxylic acid and matricin: a natural profen and its natural prodrug, identified through similarity to synthetic drug substances. J Nat Prod 2006;69:1041-5.
14. Stamatis G, Kyriazopoulos P, Golegou S, Basayiannis A, Skaltsas S, Skaltsa H. In vitro anti-Helicobacter pylori activity of Greek herbal medicines. J Ethnopharmacol 2003;88:175-9.
15. Rauha JP, Remes S, Heinonen M, et al. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int J Food Microbiol 2000;56:3-12.
16. Moon Y, Lee M, Yang H. Involvement of early growth response gene 1 in the modulation of microsomal prostaglandin E synthase 1 by epigallocatechin gallate in A549 human pulmonary epithelial cells. Biochem Pharmacol 2007;73:125-35.
17. Nag Chaudhuri AK, Karmakar S, Roy D, Pal S, Pal M, Sen T. Anti-inflammatory activity of Indian black tea (Sikkim variety). Pharmacol Res 2005;51:169-75.
18. Lee JH, Shim JS, Lee JS, et al. Inhibition of pathogenic bacterial adhesion by acidic polysaccharide from green tea (Camellia sinensis). J Agric Food Chem 2006;54:8717-23.
19. Bandyopadhyay D, Chatterjee TK, Dasgupta A, Lourduraja J, Dastidar SG. In vitro and in vivo antimicrobial action of tea: the commonest beverage of Asia. Biol Pharm Bull 2005;28:2125-7.
20. Chung JH, Han JH, Hwang EJ, et al. Dual mechanisms of green tea extract (EGCG)-induced cell survival in human epidermal keratinocytes. FASEB J 2003;17:1913-5.
21. Surh YJ, Chun KS, Cha HH, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res 2001;480-481:243-68.
22. Atsumi T, Tonosaki K. Smelling lavender and rosemary increases free radical scavenging activity and decreases cortisol level in saliva. Psychiatry Res 2007;150:89-96.
23. Sosa S, Altinier G, Politi M, Braca A, Morelli I, Della Loggia R. Extracts and constituents of Lavandula multifida with topical anti-inflammatory activity. Phytomedicine 2005;12:271-7.
24. Darshan S, Doreswamy R. Patented antiinflammatory plant drug development from traditional medicine. Phytother Res 2004;18:343-57.
25. Hajhashemi V, Ghannadi A, Sharif B. Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. J Ethnopharmacol 2003;89:67-71.
26. D'Auria FD, Tecca M, Strippoli V, Salvatore G, Battinelli L, Mazzanti G. Antifungal activity of Lavandula angustifolia essential oil against Candida albicans yeast and mycelial form. Med Mycol 2005;43:391-6.
27. Edwards-Jones V, Buck R, Shawcross SG, Dawson MM, Dunn K. The effect of essential oils on methicillin-resistant Staphylococcus aureus using a dressing model. Burns 2004;30:772-7.
28. Rota C, Carraminana JJ, Burillo J, Herrera A. In vitro antimicrobial activity of essential oils from aromatic plants against selected foodborne pathogens. J Food Prot 2004;67:1252-6.
29. Schempp CM, Schopf E, Simon JC. [Plant-induced toxic and allergic dermatitis (phytodermatitis)]. Hautarzt 2002;53:93-7.
30. Kong B, Wang J, Xiong YL. Antimicrobial activity of several herb and spice extracts in culture medium and in vacuum-packaged pork. J Food Prot 2007;70:641-7.
31. Prabuseenivasan S, Jayakumar M, Ignacimuthu S. In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med 2006;6:39.
32. al-Sereiti MR, Abu-Amer KM, Sen P. Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J Exp Biol 1999;37:124-30.
33. Schelz Z, Molnar J, Hohmann J. Antimicrobial and antiplasmid activities of essential oils. Fitoterapia 2006;77:279-85.
34. Golab M, Skwarlo-Sonta K. Mechanisms involved in the anti-inflammatory action of inhaled tea tree oil in mice. Exp Biol Med (Maywood) 2007;232:420-6.
35. Caldefie-Chezet F, Fusillier C, Jarde T, et al. Potential anti-inflammatory effects of Melaleuca alternifolia essential oil on human peripheral blood leukocytes. Phytother Res 2006;20:364-70.
36. Carson CF, Hammer KA, Riley TV. Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev 2006;19:50-62.
37. Gupta AK, Nicol K, Batra R. Role of antifungal agents in the treatment of seborrheic dermatitis. Am J Clin Dermatol 2004;5:417-22.
38. Caldefie-Chezet F, Guerry M, Chalchat JC, Fusillier C, Vasson MP, Guillot J. Anti-inflammatory effects of Melaleuca alternifolia essential oil on human polymorphonuclear neutrophils and monocytes. Free Radic Res 2004;38:805-11.
39. Koh KJ, Pearce AL, Marshman G, Finlay-Jones JJ, Hart PH. Tea tree oil reduces histamine-induced skin inflammation. Br J Dermatol 2002;147:1212-7.
40. Hart PH, Brand C, Carson CF, Riley TV, Prager RH, Finlay-Jones JJ. Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflamm Res 2000;49:619-26.
41. Wilkinson JM, Cavanagh HM. Antibacterial activity of essential oils from Australian native plants. Phytother Res 2005;19:643-6.
42. Furuhashi I, Iwata S, Shibata S, Sato T, Inoue H. Inhibition by licochalcone A, a novel flavonoid isolated from liquorice root, of IL-1beta-induced PGE2 production in human skin fibroblasts. J Pharm Pharmacol 2005;57:1661-6.
43. Choi EM. The licorice root derived isoflavan glabridin increases the function of osteoblastic MC3T3-E1 cells. Biochem Pharmacol 2005;70:363-8.
44. Nam C, Kim S, Sim Y, Chang I. Anti-acne effects of Oriental herb extracts: a novel screening method to select anti-acne agents. Skin Pharmacol Appl Skin Physiol 2003;16:84-90.
45. Fukai T, Marumo A, Kaitou K, Kanda T, Terada S, Nomura T. Antimicrobial activity of licorice flavonoids against methicillin-resistant Staphylococcus aureus. Fitoterapia 2002;73:536-9.
46. Fukai T, Marumo A, Kaitou K, Kanda T, Terada S, Nomura T. Anti-Helicobacter pylori flavonoids from licorice extract. Life Sci 2002;71:1449-63.
47. Herold A, Cremer L, Calugaru A, et al. Hydroalcoholic plant extracts with anti-inflammatory activity. Roum Arch Microbiol Immunol 2003;62:117-29.
48. Galati EM, Cavallaro A, Ainis T, et al. Anti-inflammatory effect of lemon mucilage: in vivo and in vitro studies. Immunopharmacol Immunotoxicol 2005;27:661-70.
49. Kamatou GP, Viljoen AM, Gono-Bwalya AB, et al. The in vitro pharmacological activities and a chemical investigation of three South African Salvia species. J Ethnopharmacol 2005;102:382-90.
50. Baricevic D, Sosa S, Della Loggia R, et al. Topical anti-inflammatory activity of Salvia officinalis L. leaves: the relevance of ursolic acid. J Ethnopharmacol 2001;75:125-32.
51. Horiuchi K, Shiota S, Kuroda T, Hatano T, Yoshida T, Tsuchiya T. Potentiation of antimicrobial activity of aminoglycosides by carnosol from Salvia officinalis. Biol Pharm Bull 2007;30:287-90.
52. Cervenka L, Peskova I, Foltynova E, Pejchalova M, Brozkova I, Vytrasova J. Inhibitory effects of some spice and herb extracts against Arcobacter butzleri, A. cryaerophilus, and A. skirrowii. Curr Microbiol 2006;53:435-9.
53. Ozcan MM, Sagdic O, Ozkan G. Inhibitory effects of spice essential oils on the growth of Bacillus species. J Med Food 2006;9:418-21.
54. O'Mahony R, Al-Khtheeri H, Weerasekera D, et al. Bactericidal and anti-adhesive properties of culinary and medicinal plants against Helicobacter pylori. World J Gastroenterol 2005;11:7499-507.
55. Marino M, Bersani C, Comi G. Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. Int J Food Microbiol 2001;67:187-95.
56. Hammer KA, Carson CF, Riley TV. Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 1999;86:985-90.
57. Kim AJ, Park S. Mulberry extract supplements ameliorate the inflammation-related hematological parameters in carrageenan-induced arthritic rats. J Med Food 2006;9:431-5.
58. Ryu JH, Ahn H, Kim JY, Kim YK. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophages. Phytother Res 2003;17:485-9.
59. Fukai T, Kaitou K, Terada S. Antimicrobial activity of 2-arylbenzofurans from Morus species against methicillin-resistant Staphylococcus aureus. Fitoterapia 2005;76:708-11.
60. Hong CH, Hur SK, Oh OJ, Kim SS, Nam KA, Lee SK. Evaluation of natural products on inhibition of inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) in cultured mouse macrophage cells. J Ethnopharmacol 2002;83:153-9.
61. Khayyal MT, El-Ghazaly MA, Abdallah DM, Okpanyi SN, Kelber O, Weiser D. Mechanisms involved in the anti-inflammatory effect of a standardized willow bark extract. Arzneimittelforschung 2005;55:677-87.
62. Fremont L. Biological effects of resveratrol. Life Sci 2000;66:663-73.
63. Li WG, Zhang XY, Wu YJ, Tian X. Anti-inflammatory effect and mechanism of proanthocyanidins from grape seeds. Acta Pharmacol Sin 2001;22:1117-20.
64. Lee SH, Lee SY, Son DJ, et al. Inhibitory effect of 2'-hydroxycinnamaldehyde on nitric oxide production through inhibition of NF-kappa B activation in RAW 264.7 cells. Biochem Pharmacol 2005;69:791-9.
65. Oussalah M, Caillet S, Salmieri S, Saucier L, Lacroix M. Antimicrobial effects of alginate-based films containing essential oils on Listeria monocytogenes and Salmonella typhimurium present in bologna and ham. J Food Prot 2007;70:901-8.
66. Ooi LS, Li Y, Kam SL, Wang H, Wong EY, Ooi VE. Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. Am J Chin Med 2006;34:511-22.
67. Mau J, Chen C, Hsieh P. Antimicrobial effect of extracts from Chinese chive, cinnamon, and corni fructus. J Agric Food Chem 2001;49:183-8.
68. Inouye S, Yamaguchi H, Takizawa T. Screening of the antibacterial effects of a variety of essential oils on respiratory tract pathogens, using a modified dilution assay method. J Infect Chemother 2001;7:251-4.
69. Sato I, Kofujita H, Suzuki T, Kobayashi H, Tsuda S. Antiinflammatory effect of Japanese horse chestnut (Aesculus turbinata) seeds. J Vet Med Sci 2006;68:487-9.
70. Matsuda H, Li Y, Murakami T, Ninomiya K, Yamahara J, Yoshikawa M. Effects of escins Ia, Ib, IIa, and IIb from horse chestnut, the seeds of Aesculus hippocastanum L., on acute inflammation in animals. Biol Pharm Bull 1997;20:1092-5.
71. Atta AH, Alkofahi A. Anti-nociceptive and anti-inflammatory effects of some Jordanian medicinal plant extracts. J Ethnopharmacol 1998;60:117-24.
72. Schempp H, Hippeli S, Weiser D, Kelber O, Elstner EF. Comparison of the inhibition of myeloperoxidase-catalyzed hypochlorite formation in vitro and in whole blood by different plant extracts contained in a phytopharmacon treating functional dyspepsia. Arzneimittelforschung 2004;54:389-95.
73. Betoni JE, Mantovani RP, Barbosa LN, Di Stasi LC, Fernandes Junior A. Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases. Mem Inst Oswaldo Cruz 2006;101:387-90.
74. Yadegarinia D, Gachkar L, Rezaei MB, Taghizadeh M, Astaneh SA, Rasooli I. Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. Phytochemistry 2006;67:1249-55.
75. Aridogan BC, Baydar H, Kaya S, Demirci M, Ozbasar D, Mumcu E. Antimicrobial activity and chemical composition of some essential oils. Arch Pharm Res 2002;25:860-4.
76. Imai H, Osawa K, Yasuda H, Hamashima H, Arai T, Sasatsu M. Inhibition by the essential oils of peppermint and spearmint of the growth of pathogenic bacteria. Microbios 2001;106 Suppl 1:31-9.
77. Vigo E, Cepeda A, Gualillo O, Perez-Fernandez R. In-vitro anti-inflammatory effect of Eucalyptus globulus and Thymus vulgaris: nitric oxide inhibition in J774A.1 murine macrophages. J Pharm Pharmacol 2004;56:257-63.
78. Silva J, Abebe W, Sousa SM, Duarte VG, Machado MI, Matos FJ. Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. J Ethnopharmacol 2003;89:277-83.
79. Brantner AH, Asres K, Chakraborty A, et al. Crown gall -- a plant tumour with biological activities. Phytother Res 2003;17:385-90.
80. Grassmann J, Hippeli S, Dornisch K, Rohnert U, Beuscher N, Elstner EF. Antioxidant properties of essential oils. Possible explanations for their anti-inflammatory effects. Arzneimittelforschung 2000;50:135-9.
81. Takahashi T, Kokubo R, Sakaino M. Antimicrobial activities of eucalyptus leaf extracts and flavonoids from Eucalyptus maculata. Lett Appl Microbiol 2004;39:60-4.
82. Nagata H, Inagaki Y, Yamamoto Y, et al. Inhibitory effects of macrocarpals on the biological activity of Porphyromonas gingivalis and other periodontopathic bacteria. Oral Microbiol Immunol 2006;21:159-63.
83. Salari MH, Amine G, Shirazi MH, Hafezi R, Mohammadypour M. Antibacterial effects of Eucalyptus globulus leaf extract on pathogenic bacteria isolated from specimens of patients with respiratory tract disorders. Clin Microbiol Infect 2006;12:194-6.
84. Takarada K, Kimizuka R, Takahashi N, Honma K, Okuda K, Kato T. A comparison of the antibacterial efficacies of essential oils against oral pathogens. Oral Microbiol Immunol 2004;19:61-4.
85. Al-Saimary IE, Bakr SS, Jaffar T, Al-Saimary AE, Salim H, Al-Muosawi R. Effects of some plant extracts and antibiotics on Pseudomonas aeruginosa isolated from various burn cases. Saudi Med J 2002;23:802-5.
86. Ukiya M, Akihisa T, Yasukawa K, Tokuda H, Suzuki T, Kimura Y. Anti-inflammatory, anti-tumor-promoting, and cytotoxic activities of constituents of marigold (Calendula officinalis) flowers. J Nat Prod 2006;69:1692-6.
87. Herold A, Cremer L, Calugaru A, et al. Antioxidant properties of some hydroalcoholic plant extracts with antiinflammatory activity. Roum Arch Microbiol Immunol 2003;62:217-27.
88. Cordova CA, Siqueira IR, Netto CA, et al. Protective properties of butanolic extract of the Calendula officinalis L. (marigold) against lipid peroxidation of rat liver microsomes and action as free radical scavenger. Redox Rep 2002;7:95-102.
89. Akihisa T, Yasukawa K, Oinuma H, et al. Triterpene alcohols from the flowers of compositae and their anti-inflammatory effects. Phytochemistry 1996;43:1255-60.
90. Gendrolis A, Pavilonis A, Lasinskaite-Cerkasina A, Ivanauskas L. [The antimicrobiological analysis of procalment solution]. Medicina (Kaunas) 2005;41:221-5.
91. Dakir M, El Hanbali F, Mellouki F, et al. Antibacterial diterpenoids from Cedrus atlantica. Nat Prod Res 2005;19:719-22.
92. Shinde UA, Phadke AS, Nair AM, Mungantiwar AA, Dikshit VJ, Saraf MN. Studies on the anti-inflammatory and analgesic activity of Cedrus deodara (Roxb.) Loud. wood oil. J Ethnopharmacol 1999;65:21-7.
93. Chen KH, Weng MS, Lin JK. Tangeretin suppresses IL-1beta-induced cyclooxygenase (COX)-2 expression through inhibition of p38 MAPK, JNK, and AKT activation in human lung carcinoma cells. Biochem Pharmacol 2007;73:215-27.
94. Tseng SH, Lee HH, Chen LG, Wu CH, Wang CC. Effects of three purgative decoctions on inflammatory mediators. J Ethnopharmacol 2006;105:118-24.
95. Chen CH, Sheu MT, Chen TF, et al. Suppression of endotoxin-induced proinflammatory responses by citrus pectin through blocking LPS signaling pathways. Biochem Pharmacol 2006;72:1001-9.
96. Sakata K, Hirose Y, Qiao Z, Tanaka T, Mori H. Inhibition of inducible isoforms of cyclooxygenase and nitric oxide synthase by flavonoid hesperidin in mouse macrophage cell line. Cancer Lett 2003;199:139-45.
97. Lin N, Sato T, Takayama Y, et al. Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochem Pharmacol 2003;65:2065-71.
98. Murakami A, Nakamura Y, Ohto Y, et al. Suppressive effects of citrus fruits on free radical generation and nobiletin, an anti-inflammatory polymethoxyflavonoid. Biofactors 2000;12:187-92.
99. Emim JA, Oliveira AB, Lapa AJ. Pharmacological evaluation of the anti-inflammatory activity of a citrus bioflavonoid, hesperidin, and the isoflavonoids, duartin and claussequinone, in rats and mice. J Pharm Pharmacol 1994;46:118-22.
100. Melendez PA, Capriles VA. Antibacterial properties of tropical plants from Puerto Rico. Phytomedicine 2006;13:272-6.
101. Davis RH, Stewart GJ, Bregman PJ. Aloe vera and the inflamed synovial pouch model. J Am Podiatr Med Assoc 1992;82:140-8.
102. Maiche AG, Grohn P, Maki-Hokkonen H. Effect of chamomile cream and almond ointment on acute radiation skin reaction. Acta Oncol 1991;30:395-6.
103. Subiza J, Subiza JL, Alonso M, et al. Allergic conjunctivitis to chamomile tea. Ann Allergy 1990;65:127-32.
104. Foti C, Nettis E, Panebianco R, Cassano N, Diaferio A, Pia DP. Contact urticaria from Matricaria chamomilla. Contact Dermatitis 2000;42:360-1.
105. Molinari M, Watt KD, Kruszyna T, et al. Acute liver failure induced by green tea extracts: case report and review of the literature. Liver Transpl 2006;12:1892-5.
106. Jeong BC, Kim BS, Kim JI, Kim HH. Effects of green tea on urinary stone formation: an in vivo and in vitro study. J Endourol 2006;20:356-61.
107. Buyukokuroglu ME, Gepdiremen A, Hacimuftuoglu A, Oktay M. The effects of aqueous extract of Lavandula angustifolia flowers in glutamate-induced neurotoxicity of cerebellar granular cell culture of rat pups. J Ethnopharmacol 2003;84:91-4.
108. Santos FA, Rao VS. Mast cell involvement in the rat paw oedema response to 1,8-cineole, the main constituent of eucalyptus and rosemary oils. Eur J Pharmacol 1997;331:253-8.
109. Waliwitiya R, Isman MB, Vernon RS, Riseman A. Insecticidal activity of selected monoterpenoids and rosemary oil to Agriotes obscurus (Coleoptera: Elateridae). J Econ Entomol 2005;98:1560-5.
110. Burkhard PR, Burkhardt K, Haenggeli CA, Landis T. Plant-induced seizures: reappearance of an old problem. J Neurol 1999;246:667-70.
111. Hammer KA, Carson CF, Riley TV, Nielsen JB. A review of the toxicity of Melaleuca alternifolia (tea tree) oil. Food Chem Toxicol 2006;44:616-25.
112. Del Beccaro MA. Melaleuca oil poisoning in a 17-month-old. Vet Hum Toxicol 1995;37:557-8.
113. Jacobs MR, Hornfeldt CS. Melaleuca oil poisoning. J Toxicol Clin Toxicol 1994;32:461-4.
114. Homma M, Ishihara M, Qian W, Kohda Y. [Effects of long term administration of Shakuyaku-kanzo-To and Shosaiko-To on serum potassium levels]. Yakugaku Zasshi 2006;126:973-8.
115. Paolini M, Pozzetti L, Sapone A, Cantelli-Forti G. Effect of licorice and glycyrrhizin on murine liver CYP-dependent monooxygenases. Life Sci 1998;62:571-82.
116. Xu J, Go ML, Lim LY. Modulation of digoxin transport across Caco-2 cell monolayers by citrus fruit juices: lime, lemon, grapefruit, and pummelo. Pharm Res 2003;20:169-76.
117. Rothenborg HW, Menne T, Sjolin KE. Temperature dependent primary irritant dermatitis from lemon perfume. Contact Dermatitis 1977;3:37-48.
118. Lima CF, Fernandes-Ferreira M, Pereira-Wilson C. Drinking of Salvia officinalis tea increases CCl(4)-induced hepatotoxicity in mice. Food Chem Toxicol 2007;45:456-64.
119. Fang SH, Hou YC, Chao PD. Pharmacokinetic and pharmacodynamic interactions of morin and cyclosporin. Toxicol Appl Pharmacol 2005;205:65-70.
120. Abebe W. Herbal medication: potential for adverse interactions with analgesic drugs. J Clin Pharm Ther 2002;27:391-401.
121. Shao ZH, Vanden Hoek TL, Xie J, et al. Grape seed proanthocyanidins induce pro-oxidant toxicity in cardiomyocytes. Cardiovasc Toxicol 2003;3:331-9.
122. Mur P, Feo Brito F, Bartolome B, et al. Simultaneous allergy to vine pollen and grape. J Investig Allergol Clin Immunol 2006;16:271-3.
123. Cohen DM, Bhattacharyya I. Cinnamon-induced oral erythema multiformelike sensitivity reaction. J Am Dent Assoc 2000;131:929-34.
124. Westra WH, McMurray JS, Califano J, Flint PW, Corio RL. Squamous cell carcinoma of the tongue associated with cinnamon gum use: a case report. Head Neck 1998;20:430-3.
125. Shah AH, Al-Shareef AH, Ageel AM, Qureshi S. Toxicity studies in mice of common spices, Cinnamomum zeylanicum bark and Piper longum fruits. Plant Foods Hum Nutr 1998;52:231-9.
126. Behrends M, Beiderlinden M, Peters J. Acute lung injury after peppermint oil injection. Anesth Analg 2005;101:1160-2.
127. Akdogan M, Ozguner M, Kocak A, Oncu M, Cicek E. Effects of peppermint teas on plasma testosterone, follicle-stimulating hormone, and luteinizing hormone levels and testicular tissue in rats. Urology 2004;64:394-8.
128. Nair B. Final report on the safety assessment of Mentha Piperita (Peppermint) Oil, Mentha Piperita (Peppermint) Leaf Extract, Mentha Piperita (Peppermint) Leaf, and Mentha Piperita (Peppermint) Leaf Water. Int J Toxicol 2001;20 Suppl 3:61-73.
129. Liu JH, Chen GH, Yeh HZ, Huang CK, Poon SK. Enteric-coated peppermint-oil capsules in the treatment of irritable bowel syndrome: a prospective, randomized trial. J Gastroenterol 1997;32:765-8.
130. Spindler P, Madsen C. Subchronic toxicity study of peppermint oil in rats. Toxicol Lett 1992;62:215-20.
131. Darben T, Cominos B, Lee CT. Topical eucalyptus oil poisoning. Australas J Dermatol 1998;39:265-7.
132. Day LM, Ozanne-Smith J, Parsons BJ, Dobbin M, Tibballs J. Eucalyptus oil poisoning among young children: mechanisms of access and the potential for prevention. Aust N Z J Public Health 1997;21:297-302.
133. Webb NJ, Pitt WR. Eucalyptus oil poisoning in childhood: 41 cases in south-east Queensland. J Paediatr Child Health 1993;29:368-71.
134. Parry O, Okwuasaba FK, Ejike C. Skeletal muscle relaxant action of an aqueous extract of Portulaca oleracea in the rat. J Ethnopharmacol 1987;19:247-53.
135. Habtemariam S, Harvey AL, Waterman PG. The muscle relaxant properties of Portulaca oleracea are associated with high concentrations of potassium ions. J Ethnopharmacol 1993;40:195-200.
136. Parry O, Marks JA, Okwuasaba FK. The skeletal muscle relaxant action of Portulaca oleracea: role of potassium ions. J Ethnopharmacol 1993;40:187-94.
137. Parry O, Okwuasaba F, Ejike C. Effect of an aqueous extract of Portulaca oleracea leaves on smooth muscle and rat blood pressure. J Ethnopharmacol 1988;22:33-44.
138. Matthieu L, Meuleman L, Van Hecke E, et al. Contact and photocontact allergy to ketoprofen. The Belgian experience. Contact Dermatitis 2004;50:238-41.
139. Nykamp DL, Fackih MN, Compton AL. Possible association of acute lateral-wall myocardial infarction and bitter orange supplement. Ann Pharmacother 2004;38:812-6.
140. Gollnick H, Cunliffe W, Berson D, et al. Management of acne: a report from a Global Alliance to Improve Outcomes in Acne. J Am Acad Dermatol 2003;49:S1-37.
141. Strauss JS, Krowchuk DP, Leyden JJ, et al. Guidelines of care for acne vulgaris management. J Am Acad Dermatol 2007;56:651-63.
142. Melaleuca. 2007. (Accessed July 21, 2007, at http://en.wikipedia.org/wiki/Melaleuca.)
143. 林松洲. 大自然的綠精靈-茶樹精油. 4th ed: 青林國際出版社; 2003.
144. 張定霖, 吳昭祥, 洪進雄. 香草植物圖鑑. 1st ed: 行政院農業委員會種苗改良繁殖場; 2003.
145. Jovanovic M, Mimica-Dukic N, Poljacki M, Boza P. Erythema multiforme due to contact with weeds: a recurrence after patch testing. Contact Dermatitis 2003;48:17-25.
146. Hausen BM, Reichling J, Harkenthal M. Degradation products of monoterpenes are the sensitizing agents in tea tree oil. Am J Contact Dermat 1999;10:68-77.
147. International Organization for Standardization. ISO 4730. Oil of Melaleuca, Terpinen-4-ol type (Tea Tree Oil). 1996. (Accessed at
148. Guenther J, Pio M, Lohrenz FN. High quality drugs at reduced cost for hospital patients. Wis Med J 1968;67:274-5.
149. Altman PM, Einstein R, Goodman AH, Thomas RE. Inotropic activity of digitoxigenin glucoside and related glycosides. Arzneimittelforschung 1988;38:1115-9.
150. Swords G, Hunter G. Composition of Australian tea tree oil (Melaleuca alternifolia). J Agric Food Chem 1978;26:734-7.
151. Brophy JJ, Davis NW, Southwell IA, Stiff IA, Williams IR. Gas chromatographic quality control for oil of Melaleuca terpinen-4-ol type (Australian tea tree). J Agric Food Chem 1989;37:1330-5.
152. Crawford GH, Sciacca JR, James WD. Tea tree oil: cutaneous effects of the extracted oil of Melaleuca alternifolia. Dermatitis 2004;15:59-66.
153. Carson CF, Riley TV, Cookson BD. Efficacy and safety of tea tree oil as a topical antimicrobial agent. J Hosp Infect 1998;40:175-8.
154. Bassett IB, Pannowitz DL, Barnetson RS. A comparative study of tea-tree oil versus benzoylperoxide in the treatment of acne. Med J Aust 1990;153:455-8.
155. Tong MM, Altman PM, Barnetson RS. Tea tree oil in the treatment of tinea pedis. Australas J Dermatol 1992;33:145-9.
156. Belaiche P. Traitement des infections vaginales a Candida albicans par l'huile essentielle de Melalaueca alternifolia. Phytotherapie 1985;153:455–8.
157. Southwell I, Lowe R. Tea tree- the genus Melaleuca. 1 st ed. ed. Amsterdam: Harwood academic publishers; 1999.
158. 行政院衛生署中華藥典編修委員會. 中華藥典. 5th ed ed: 行政院衛生署; 2000.
159. 易光輝, 王曉芬, 李依倩. 精油之化學基礎與實務應用. 1st ed. 台北: 華杏出版股份有限公司; 2008.
160. Torssell KBG. Natural product chemistry. A mechanistic, biosynthetic and ecological approach. 2nd ed. Stockholm: Apotekarsocieteten; 1997.
161. Enshaieh S, Jooya A, Siadat AH, Iraji F. The efficacy of 5% topical tea tree oil gel in mild to moderate acne vulgaris: a randomized, double-blind placebo-controlled study. Indian J Dermatol Venereol Leprol 2007;73:22-5.
162. Penfold AR. The essential oils of Melaleuca linariifolia (Smith) and M. alternifolia (Cheel). J Proc Roy Soc NSW 1925;59:306-25.
163. Carson CF, Hammer KA, Riley TV. Broth micro-dilution method for determining the susceptibility of Escherichia coli and Staphylococcus aureus to the essential oil of Melaleuca alternifolia (tea tree oil). Microbios 1995;82:181-5.
164. Christoph F, Kaulfers PM, Stahl-Biskup E. A comparative study of the in vitro antimicrobial activity of tea tree oils s.l. with special reference to the activity of beta-triketones. Planta Med 2000;66:556-60.
165. Cox SD, Mann CM, Markham JL. Interactions between components of the essential oil of Melaleuca alternifolia. J Appl Microbiol 2001;91:492-7.
166. Hammer KA, Dry L, Johnson M, Michalak EM, Carson CF, Riley TV. Susceptibility of oral bacteria to Melaleuca alternifolia (tea tree) oil in vitro. Oral Microbiol Immunol 2003;18:389-92.
167. Oliva B, Piccirilli E, Ceddia T, Pontieri E, Aureli P, Ferrini AM. Antimycotic activity of Melaleuca alternifolia essential oil and its major components. Lett Appl Microbiol 2003;37:185-7.
168. Raman A, Weir U, Bloomfield SF. Antimicrobial effects of tea-tree oil and its major components on Staphylococcus aureus, Staph. epidermidis and Propionibacterium acnes. Lett Appl Microbiol 1995;21:242-5.
169. Carson CF, Riley TV. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. J Appl Bacteriol 1995;78:264-9.
170. Nelson RR. Selection of resistance to the essential oil of Melaleuca alternifolia in Staphylococcus aureus. J Antimicrob Chemother 2000;45:549-50.
171. Gustafson JE, Cox SD, Liew YC, Wyllie SG, Warmington JR. The bacterial multiple antibiotic resistant (Mar) phenotype leads to increased tolerance to tea tree oil. Pathology 2001;33:211-5.
172. Davis AO, O'Leary JO, Muthaiyan A, et al. Characterization of Staphylococcus aureus mutants expressing reduced susceptibility to common house-cleaners. J Appl Microbiol 2005;98:364-72.
173. Bishop C. Antiviral activity of the essential oil of Melaleuca alternifolia (Maiden & Betche) Cheel (tea tree) against tobacco mosaic virus. J Essent Oil Res 1995; 7::641–4.
174. Schnitzler P, Schon K, Reichling J. Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture. Pharmazie 2001;56:343-7.
175. Minami M, Kita M, Nakaya T, Yamamoto T, Kuriyama H, Imanishi J. The inhibitory effect of essential oils on herpes simplex virus type-1 replication in vitro. Microbiol Immunol 2003;47:681-4.
176. Mikus J, Harkenthal M, Steverding D, Reichling J. In vitro effect of essential oils and isolated mono- and sesquiterpenes on Leishmania major and Trypanosoma brucei. Planta Med 2000;66:366-8.
177. Viollon C, D M, JP C. Activite´s antagonistes, in vitro, de quelques huiles essentielles et de compose´s naturels volatils vis a´ vis de la croissance de Trichomonas vaginalis. Fitoterapia 1996;67:279-81.
178. 林佩儒. 精油於改善青春痘之應用: 嘉南藥理科技大學; 2005.
179. Tisserand R, Balacs T. Essential oil safety- a guide for health care professionals: Churchill livingstone; 1995.
180. Madyastha KM, Chadha A. Metabolism of 1,8-cineole in rat: its effects on liver and lung microsomal cytochrome P-450 systems. Bull Environ Contam Toxicol 1986;37:759-66.
181. Orafidiya LO. The effect of autoxidation of lemongrass oil on its antibacterial activity. Phytotherapy research 1993;7:269-71.


------------------------------------------------------------------------ 第 19 筆 ---------------------------------------------------------------------
系統識別號 U0007-3107200913110100
論文名稱(中文) 缺氧系統在抗癌藥物開發之應用: Silibinin在正常氧及缺氧系統下,對HIF蛋白及血管新生具有不同的調控作用
論文名稱(英文) The application of hypoxia system on anticancer drug development: Different effect of silibinin on HIF protein and angiogenesis in normoxia and hypoxia system
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 97
學期 2
出版年 98
研究生(中文) 陳怡婷
學號 M301096004
學位類別 碩士
語文別 中文
口試日期 2009-06-26
論文頁數 76頁
口試委員 委員-顏茂雄
委員-陳炳常
指導教授-鄭幼文
關鍵字(中) 缺氧
缺氧誘導因子-1α
血管新生
水飛薊素
關鍵字(英) hypoxia
HIF-1α
angiogenesis
silibinin
學科別分類
中文摘要 癌症在現今的社會已成為一項相當普遍的疾病,目前更成為二十六年來國人十大死因之首。而針對各項癌症全世界莫不競相努力研發更有效的抗癌藥物。但長期研究顯示出癌症細胞比一般體細胞具有更強大的環境適應能力及耐受性,所誘導的訊息傳遞系統也與正常細胞有非常多的差異。同時癌症細胞也能將自我的內在環境改變,促進缺氧誘導因子-1α (Hypoxia-inducible factor – 1α)的產生,並引發一連串的訊息使得癌細胞週邊的血管新生(angiogenesis)以提供更多的營養送達。基於這些研究結果再回來探討癌症藥物的開發,發現許多藥物實驗都是在正常氧分壓(normoxia)環境下並外加生長因子來模擬癌細胞血管新生的情形。以至許多研究藥物於體外實驗有很好的效果,進入臨床實驗時卻失敗,而造成時間與金錢上難以估算的損失。
因此本實驗主要在於確立缺氧系統的正確性,以及探討在充氧環境下與缺氧環境下細胞之間是經由何種訊息傳遞。我們選用人類臍帶靜脈內皮細胞(human umbilical vein endothelial cells)作為實驗對象。在離體細胞實驗中,發現缺氧的細胞除了缺氧誘導因子-1α蛋白質增加外,同時也誘使VEGF蛋白質表現有相同的趨勢,顯示缺氧會促使生長因子增加來促進細胞生長。而缺氧誘導因子-1α會經由PI3K/Akt以及Ras/ERK兩個路徑誘導出來,因此在實驗中也發現Akt磷酸化蛋白質會隨時間有逐漸增加的趨勢,而ERK磷酸化蛋白質則在的趨勢。接著我們藉由已知之血管新生抑制劑silibinin來比較癌細胞在正常氧與缺氧系統下的訊息傳遞,發現在兩種不同氧氣分壓與silibinin作用下缺氧誘導因子-1α、VEGF、pAkt、pERK蛋白質的確有不同程度的表現。顯示以往傳統的離體藥物開發模式可能必須要重新審視,將癌細胞於缺氧環境的特性也納入考慮,以期更接近癌細胞的原始表現型態,也可為將來的新藥研發提供一個不同的參考。
英文摘要 Cancer has become an universal disease in the nowaday’s society. It occupied heads of top ten causes of death in Taiwan during the past 26 years. Therefore, cancer research and anti-cancer drugs development are competing to effort more effective over the world.

Research has demonstrated cancer cells have a more powerful environment adaptability and tolerance than normal cells since long ago. And the signaling transduction pathway also have a lot of difference in cancer cells. In addition, cancer cells can change the entraenvironment for itself and promotes the hypoxia inducible factor-1α expression. And initiates series of messages to cause the cell angiogenesis beside on the cancer cells to provide the more nutrition delivery.

Based on these findings to come back to explore the development of cancer drugs, we discovered many anti-cancer drugs developments are conduct the research under the normoxia environment and add the growth factors, ex. VEGF(vascular endothelial growth factor) to demonstrate the condition of cancer cell angiogenesis. Many research medicines have the highly therapeutic effects at in vitro experiment, but fail at in vivo experiment. These results make the loss on the time and money to estimate difficulty.

This experiment is to establish the correctness of the hypoxia system, and figure out the pathways between normoxia and hypoxia. We select the human umbilical vein endothelial cells (HUVECs) to take the experimental subjet. In the in vitro cell test, we find HIF-1α and VEGF protein induction and mRNA expression are increased in HUVECs treated with hypoxia than normoxia. The results Show that hypoxia will lead to increased growth factors to promote cell proliferation. HIF-1α can be produced from the PI3K/Akt pathway and Ras/ERK pathway, and we also find ERK and Akt can phosphorylated and increased dependent with time. The phosphorylation of ERK usual related to cell proliferation response, and the phosphorylation of Akt is known correlated with many cancer diseases. In recent years, studies have also found that iNOS and COX-2 caused by hypoxia in retinal neovascularization are also involved in the role of regulation and control. We use the well known angiogenesis inhibitor silibinin to compare the signal transduction under normoxia and hypoxia in cancer cells, and we find silibinin really has the different performance under two kind of different oxygen densities. The results also showed that for the traditional model of drug development in vitro may have to re-examine, and taking into account the characteristics in the hypoxic environment of cancer cells.

Above the synthesis states and from the experimental result inference , cancer cells not only overexpression HIF-1α in hypoxia, but also promote VEGF expression and phosphorylate pERK and pAkt to progress cells angiogenesis. This hypoxia system is closer to the performance of the original pattern in cancer cells, and can provide a different way to new drugs for the future development.
論文目次 目錄…………………..……………...……………………………………I
中文摘要…………………..……………...………………………………VII
英文摘要…………….….………………...………………………………IX
縮寫(Abbreviation)………………………..……………...……………….XI

第一章 緒論………………………..……………...………………………..1
第一節血管新生(Angiogenesis)與腫瘤發育……………………………...1
1-1. 血管內皮細胞(vascular endothelial cells) ……….......................1
1-2. 血管新生(Angiogenesis)的過程………………..........................2
1-3. 血管新生機制與腫瘤形成……………………………………...3
1-4. 血管內皮生長因子(Vascular Endothelial Growth Factor)……..4
第二節 缺氧系統及與癌症的關係………………………………….…....6
2-1. 缺氧(Hypoxia)與腫瘤形成........................................…………..7
2-1. 缺氧誘導因子-1(Hypoxia inducible factor-1)…...……..………7
2-3. 缺氧誘導因子-1α(HIF-1α)的調控機轉….…….…...............10
第三節 水飛薊素(Silibinin)簡介…….…………….…………………….12
3-1. 水飛薊素(Silibinin)背景…….………………………………...12
3-2. 水飛薊素(Silibinin)的藥理活性......…………………………..13
第四節 研究動機..…………….………………….……………………...15
第二章 實驗材料與方法………………………..……………...…………16
第一節 實驗材料………………………..……………...………………16
1-1. 實驗細胞……………………….……….……………………...16
1-2. 實驗藥品……………………….………..……………………..16
1-3. 抗體(antibody)………….……………….……………………..19
1-4. 酵素、試劑與套組試劑(Kit).………….…………….………..19
1-5. 實驗儀器與耗材.……………………..….…………………….20
第二節 實驗方法………………….…….………………….…..............21
2-1. 人類臍帶靜脈內皮細胞(human umbilical vein endothelial cells)之分離..………………….…….…….…………….…...............21
2-2. 人類臍帶靜脈內皮細胞(human umbilical vein endothelial cells)之繼代培養.………………….……..………………….…........22
2-3. 缺氧系統實驗(hypoxia treatment).............................................23
2-4. 人類臍帶靜脈內皮細胞(HUVEC)存活率測定及增生試驗(MTT assay)...………………….………………………….……23
2-5. 管柱形成試驗(In vitro matrigel tube formation assay) ………24
2-6. 反轉錄聚合酶連鎖反應(Reverse transcription-polymerase Chain Reaction analysis) …………………………….……….25
2-7. 西方墨點法(Western blot analysis)………………….………...27
2-8. 統計分析.………………….………………………….……….30
第三章 實驗結果…………………………….……..……………………..31
第一節探討人類臍帶靜脈內皮細胞於缺氧環境與正常氧分壓環境下誘發HIF-1α蛋白質的表現.……..……………….........................31
第二節探討人類臍帶靜脈內皮細胞於缺氧環境與正常氧分壓環境下誘發VEGF蛋白質的表現.……..…………………………...……32
第三節 探討人類臍帶靜脈內皮細胞於缺氧環境與正常氧分壓環境下誘發磷酸化Erk1/2蛋白質的表現……………………………..32
第四節探討人類臍帶靜脈內皮細胞於缺氧環境與正常氧分壓環境下誘發HIF-1α訊息核醣核酸(mRNA)的表現…………….………33
第五節探討人類臍帶靜脈內皮細胞於缺氧環境與正常氧分壓環境下誘發VEGF訊息核醣核酸(mRNA)的表現……………………...34
第六節 探討人類臍帶靜脈內皮細胞於缺氧環境與正常氧分壓環境下促進管柱生成的表現………………………….……..………...35
第七節 探討Silibinin對人類臍帶靜脈內皮細胞於缺氧環境與正常氧分壓環境下的存活率與增生實驗……………….……..………...36
第八節 探討Silibinin對人類臍帶靜脈內皮細胞於缺氧環境與正常氧分壓環境下抑制HIF-1α蛋白質的表現………………………...37
第九節 探討Silibinin對人類臍帶靜脈內皮細胞於缺氧環境與正常氧分壓環境下抑制VEGF蛋白質的表現……………………..…...39
第十節 探討Silibinin對人類臍帶靜脈內皮細胞於缺氧環境與正常氧分壓環境下抑制磷酸化Akt蛋白質的表現…………….……….40
第十一節 探討Silibinin對人類臍帶靜脈內皮細胞於缺氧環境與正常氧分壓環境下抑制磷酸化Erk1/2蛋白質的表現…………....41
第十二節 探討Silibinin對人類臍帶靜脈內皮細胞於缺氧環境與正常氧分壓環境下抑制HIF-1α訊息核醣核酸(mRNA)的表現………………….……..………………………….………..42
第十三節 探討Silibinin對人類臍帶靜脈內皮細胞於缺氧環境與正常氧分壓環境下抑制VEGF訊息核醣核酸(mRNA)的表現...……………….……..………………………….………..43
第四章 討論…………………………….…………..…………………….44
第一節 探討缺氧環境與正常氧分壓環境下的血管新生研究………..44
第二節 探討藥物Silibinin作用於缺氧環境與正常氧分壓環境下的血管新生研究……………………………....………………………..46
第五章 結論…………………………….………..……………………….49
參考文獻………………………….……….……………………………..…69
參考文獻 1. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nature Medicine 2000; 6: 389-95.
2. Folkman J. What is the role of endothelial cells in angiogenesis? Laboratory Investigation 1984; 51: 601-4.
3. Folkman J. Fighting cancer by attacking its blood supply. Scientific American 1996; 275: 150-4.
4. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353-64.
5. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochemical and Biophysical Research Communications 1989; 161: 851-8.
6. Pepper MS, Ferrara N, Orci L, Montesano R. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochemical and Biophysical Research Communications 1992; 189: 824-31.
7. Klagsbrun M, D'Amore PA. Vascular endothelial growth factor and its receptors. Cytokine and Growth Factor Reviews 1996; 7: 259-70.
8. Lee JC, Chow NH, Wang ST, Huang SM. Prognostic value of vascular endothelial growth factor expression in colorectal cancer patients. European Journal of Cancer 2000; 36: 748-53.
9. Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Research 1995; 55: 3964-8.
10. Takahashi Y, Cleary KR, Mai M, Kitadai Y, Bucana CD, Ellis LM. Significance of vessel count and vascular endothelial growth factor and its receptor (KDR) in intestinal-type gastric cancer. Clinical Cancer Research 1996; 2: 1679-84.
11. Maeda K, Chung YS, Ogawa Y, Takatsuka S, Kang SM, Ogawa M, Sawada T, Sowa M. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer 1996; 77: 858-63.
12. Fujimoto K, Hosotani R, Wada M, Lee JU, Koshiba T, Miyamoto Y, Tsuji S, Nakajima S, Doi R, Imamura M. Expression of two angiogenic factors, vascular endothelial growth factor and platelet-derived endothelial cell growth factor in human pancreatic cancer, and its relationship to angiogenesis. European Journal of Cancer 1998; 34: 1439-47.
13. Ikeda N, Adachi M, Taki T, Huang C, Hashida H, Takabayashi A, Sho M, Nakajima Y, Kanehiro H, Hisanaga M, Nakano H, Miyake M. Prognostic significance of angiogenesis in human pancreatic cancer. British Journal of Cancer 1999; 79: 1553-63.
14. Berns EMJJ, Klijn JGM, Look MP, Grebenchtchikov N, Vossen R, Peters H, Geurts-Moespot A, Portengen H, Van Staveren IL, Meijer-van Gelder ME, Bakker B, Sweep FCGJ, Foekens JA. Combined vascular endothelial growth factor and TP53 status predicts poor response to tamoxifen therapy in estrogen receptor-positive advanced breast cancer. Clinical Cancer Research 2003; 9: 1253-8.
15. Manders P, Beex LVAM, Tjan-Heijnen VCG, Geurts-Moespot J, Van Tienoven TH, Foekens JA, Sweep CGJ. The prognostic value of vascular endothelial growth factor in 574 node-negative breast cancer patients who did not receive adjuvant systemic therapy. British Journal of Cancer 2002; 87: 772-8.
16. George DJ, Halabi S, Shepard TF, Vogelzang NJ, Hayes DF, Small EJ, Kantoff PW. Prognostic significance of plasma vascular endothelial growth factor levels in patients with hormone-refractory prostate cancer treated on Cancer and Leukemia Group B 9480. Clinical Cancer Research 2001; 7: 1932-6.
17. Fontanini G, Lucchi M, Vignati S, Mussi A, Ciardiello F, De Laurentiis M, De Placido S, Basolo F, Angeletti CA, Bevilacqua G. Angiogenesis as a prognostic indicator of survival in non-small-cell lung carcinoma: A prospective study. Journal of the National Cancer Institute 1997; 89: 881-6.
18. Gorski DH, Leal AD, Goydos JS. Differential expression of vascular endothelial growth factor-A isoforms at different stages of melanoma progression. Journal of the American College of Surgeons 2003; 197: 408-18.
19. Neufeld G, Cohen T, Gitay-Goren H, Poltorak Z, Tessler S, Sharon R, Gengrinovitch S, Levi BZ. Similarities and differences between the vascular endothelial growth factor (VEGF) splice variants. Cancer and Metastasis Reviews 1996; 15: 153-8.
20. Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. Journal of Biological Chemistry 1992; 267: 26031-7.
21. Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC, Abraham JA. The human gene for vascular endothelial growth factor: Multiple protein forms are encoded through alternative exon splicing. Journal of Biological Chemistry 1991; 266: 11947-54.
22. Shibuya M, Yamaguchi S, Yamane A, Ikeda T, Tojo A, Matsushime H, Sato M. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely relatd to the fms family. Oncogene 1990; 5: 519-24.
23. Terman BI, Dougher-Vermazen M, Carrion ME, Dimitrov D, Armellino DC, Gospodarowicz D, Bohlen P. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochemical and Biophysical Research Communications 1992; 187: 1579-86.
24. Terman BI, Carrion ME, Kovacs E, Rasmussen BA, Eddy RL, Shows TB. Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 1991; 6: 1677-83.
25. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. Journal of Clinical Oncology 2002; 20: 4368-80.
26. Zeng H, Dvorak HF, Mukhopadhyay D. Vascular Permeability Factor (VPF)/Vascular Endothelial Growth Factor (VEGF) Receptor-1 Down-modulates VPF/VEGF Receptor-2-mediated Endothelial Cell Proliferation, but Not Migration, through Phosphatidylinositol 3-Kinase-dependent Pathways. Journal of Biological Chemistry 2001; 276: 26969-79.
27. Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NPH, Risau W, Ullrich A. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993; 72: 835-46.
28. Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Research 2000; 60: 203-12.
29. Abedi H, Zachary I. Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. Journal of Biological Chemistry 1997; 272: 15442-51.
30. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. Journal of Clinical Oncology 2005; 23: 1011-27.
31. Smith LM, Golub AS, Pittman RN. Interstitial Po2 Determination by Phosphorescence Quenching Microscopy. Microcirculation 2002; 9: 389-95.
32. Matschke K, Pfeiffer S, Mrowietz C, Geisler T, Tugtekin SM, Park JW, Knaut M, Jung F. Influence of ventricular pacing on myocardial oxygen tension. Microvascular Research 2005; 70: 97-101.
33. Goetze JP, Gore A, Moler CH, Steinbrüchel DA, Rehfeld JF, Nielsen LB. Acute myocardial hypoxia increases BNP gene expression. FASEB Journal 2004; 18: 1928-30.
34. Höckel M, Vaupel P. Biological consequences of tumor hypoxia. Seminars in Oncology 2001; 28: 36-41.
35. Moeller BJ, Dreher MR, Rabbani ZN, Schroeder T, Cao Y, Li CY, Dewhirst MW. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell 2005; 8: 99-110.
36. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Molecular and Cellular Biology 1992; 12: 5447-54.
37. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proceedings of the National Academy of Sciences of the United States of America 1995; 92: 5510-4.
38. Jiang BH, Rue E, Wang GL, Roe R, Semenza GL. Dimerization, DNA binding, and transactivation properties of hypoxia- inducible factor 1. Journal of Biological Chemistry 1996; 271: 17771-8.
39. Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU, Talks KL, Wood SM, Gatter KC, Harris AL, Pugh CW, Ratcliffe PJ, Maxwell PH. Induction of endothelial PAS domain protein-1 by hypoxia: Characterization and comparison with hypoxia-inducible factor-1α. Blood 1998; 92: 2260-8.
40. Rosenberger C, Mandriota S, Jurgensen JS, Wiesener MS, Horstrup JH, Frei U, Ratcliffe PJ, Maxwell PH, Bachmann S, Eckardt KU. Expression of hypoxia-inducible factor-1α and -2α in hypoxic and ischemic rat kidneys. Journal of the American Society of Nephrology 2002; 13: 1721-32.
41. Wiesener MS, Jurgensen JS, Rosenberger C, Scholze CK, Horstrup JH, Warnecke C, Mandriota S, Bechmann I, Frei UA, Pugh CW, Ratcliffe PJ, Bachmann S, Maxwell PH, Eckardt KU. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. The FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2003; 17: 271-3.
42. Hu CJ, Sataur A, Wang L, Chen H, Simon MC. The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1αand HIF-2α. Molecular Biology of the Cell 2007; 18: 4528-42.
43. Makino Y, Cao R, Svensson K, Bertilsson G, Asman M, Tanaka H, Cao Y, Berkenstam A, Poellinger L. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 2001; 414: 550-4.
44. Makino Y, Kanopka A, Wilson WJ, Tanaka H, Poellinger L. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3α locus. Journal of Biological Chemistry 2002; 277: 32405-8.
45. Hoffman EC, Reyes H, Chu FF, Sander F, Conley LH, Brooks BA, Hankinson O. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 1991; 252: 954-8.
46. Mason GGF, Witte AM, Whitelaw ML, Antonsson C, McGuire J, Wilhelmsson A, Poellinger L, Gustafsson JA. Purification of the DNA binding form of dioxin receptor. Role of the Arnt cofactor in regulation of dioxin receptor function. Journal of Biological Chemistry 1994; 269: 4438-49.
47. Whitelaw ML, Gustafsson J, Poellinger L. Identification of transactivation and repression functions of the dioxin receptor and its basic helix-loop-helix/PAS partner factor Arnt: Inducible versus constitutive modes of regulation. Molecular and Cellular Biology 1994; 14: 8343-55.
48. Maltepe E, Keith B, Arsham AM, Brorson JR, Simon MC. The role of ARNT2 in tumor angiogenesis and the neural response to hypoxia. Biochemical and Biophysical Research Communications 2000; 273: 231-8.
49. Tanguay RL, Andreasen E, Heideman W, Peterson RE. Identification and expression of alternatively spliced aryl hydrocarbon nuclear translocator 2 (ARNT2) cDNAs from zebrafish with distinct functions. Biochimica et Biophysica Acta - Gene Structure and Expression 2000; 1494: 117-28.
50. Semenza GL. Signal transduction to hypoxia-inducible factor 1. Biochemical Pharmacology 2002; 64: 993-8.
51. Minet E, Michel G, Mottet D, Raes M, Michiels C. Transduction pathways involved in hypoxia-inducible factor-1 phosphorylation and activation. Free Radical Biology and Medicine 2001; 31: 847-55.
52. Fukuda R, Hirota K, Fan F, Jung YD, Ellis LM, Semenza GL. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. Journal of Biological Chemistry 2002; 277: 38205-11.
53. Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter T, Vogt PK. Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth and Differentiation 2001; 12: 363-9.
54. Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB, Stokoe D, Giaccia AJ. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes and Development 2000; 14: 391-6.
55. Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, Giaccia AJ, Abraham RT. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Molecular and Cellular Biology 2002; 22: 7004-14.
56. Mayerhofer M, Valent P, Sperr WR, Griffin JD, Sillaber C. BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1α, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood 2002; 100: 3767-75.
57. Alvarez-Tejado M, Alfranca A, Aragones J, Vara A, Landazuri MO, Del Peso L. Lack of evidence for the involvement of the phosphoinositide 3-kinase/Akt pathway in the activation of hypoxia-inducible factors by low oxygen tension. Journal of Biological Chemistry 2002; 277: 13508-17.
58. Wang GL, Semenza GL. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. Journal of Biological Chemistry 1993; 268: 21513-8.
59. Wang GL, Jiang BH, Semenza GL. Effect of protein kinase and phosphatase inhibitors on expression of hypoxia-inducible factor 1. Biochemical and Biophysical Research Communications 1995; 216: 669-75.
60. Gao N, Jiang BH, Leonard SS, Corum L, Zhang Z, Roberts JR, Antonini J, Zheng JZ, Flynn DC, Castranova V, Shi X. p38 signaling-mediated hypoxia-inducible factor 1α and vascular endothelial growth factor induction by Cr(VI) in DU145 human prostate carcinoma cells. Journal of Biological Chemistry 2002; 277: 45041-8.
61. Sumpio BE, Timothy Riley J, Dardik A. Cells in focus: Endothelial cell. International Journal of Biochemistry and Cell Biology 2002; 34: 1508-12.
62. Dejana E, Corada M, Lampugnani MG. Endothelial cell-to-cell junctions. FASEB Journal 1995; 9: 910-8.
63. Staddon JM, Rubin LL. Cell adhesion, cell junctions and the blood-brain barrier. Current Opinion in Neurobiology 1996; 6: 622-7.
64. Lampugnani MG, Dejana E. Interendothelial junctions: Structure, signalling and functional roles. Current Opinion in Cell Biology 1997; 9: 674-82.
65. Ramesh KV, Shenoy KA. Endothelial dysfunction: Many ways to correct- trends that promise. Indian Journal of Pharmacology 2003; 35: 73-82.
66. Kroll DJ, Shaw HS, Oberlies NH. Milk thistle nomenclature: Wy it matters in cancer research and pharmacokinetic studies. Integrative Cancer Therapies 2007; 6: 110-9.
67. Post-White J, Ladas EJ, Kelly KM. Advances in the use of milk thistle (Silybum marianum). Integrative Cancer Therapies 2007; 6: 104-9.
68. Svobodova' A, Zdarilova' A, Maliskova' J, Mikulkova' H, Walterova' D, Vostalova' J. Attenuation of UVA-induced damage to human keratinocytes by silymarin. Journal of Dermatological Science 2007; 46: 21-30.
69. Agarwal R, Agarwal C, Ichikawa H, Singh RP, Aggarwal BB. Anticancer potential of silymarin: From bench to bed side. Anticancer Research 2006; 26: 4457-98.
70. Deep G, Agarwal R. Chemopreventive efficacy of silymarin in skin and prostate cancer. Integrative Cancer Therapies 2007; 6: 130-45.
71. Manna SK, Mukhopadhyay A, Van NT, Aggarwal BB. Silymarin suppresses TNF-induced activation of NF-κB, c-Jun N-terminal kinase, and apoptosis. Journal of Immunology 1999; 163: 6800-9.
72. Singh RP, Agarwal R. Prostate cancer chemoprevention by silibinin: Bench to bedside. Molecular Carcinogenesis 2006; 45: 436-42.
73. Singh RP, Agarwal R. A cancer chemopreventive agent silibinin, targets mitogenic and survival signaling in prostate cancer. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis 2004; 555: 21-32.
74. Singh RP, Gu M, Agarwal R. Silibinin inhibits colorectal cancer growth by inhibiting tumor cell proliferation and angiogenesis. Cancer Research 2008; 68: 2043-50.

------------------------------------------------------------------------ 第 20 筆 ---------------------------------------------------------------------
系統識別號 U0007-3107200915084200
論文名稱(中文) 家兔靜脈注射咖啡酸、阿魏酸及異阿魏酸之藥物結構與藥物動力學相關性研究
論文名稱(英文) Study on Structure and Pharmacokinetic Relationship of Caffeic Acid, Ferulic Acid and Isoferulic Acid in Rabbits after Intravenous Administration
校院名稱 臺北醫學大學
系所名稱(中) 藥學研究所
系所名稱(英) Graduate Institute of Pharmacy
學年度 97
學期 2
出版年 98
研究生(中文) 王詩茹
學號 M301095012
學位類別 碩士
語文別 中文
口試日期 2009-07-16
論文頁數 84頁
口試委員 指導教授-許光陽
委員-何意
委員-林君榮
關鍵字(中) 咖啡酸
阿魏酸
異阿魏酸
藥物動力學
關鍵字(英) Caffeic acid
Ferulic acid
Isoferulic acid
pharmacokinetics
學科別分類
中文摘要 咖啡酸(Caffeic acid, CA)、阿魏酸(Ferulic acid, FA)及異阿魏酸(Isoferulic acid, IFA)為常見於自然界之多酚類化合物,其結構極為相似;咖啡酸為鄰苯二酚(Catechol)的衍生物,屬於一種catecholic acid,一些研究報告指出,咖啡酸是兒茶酚氧位甲基轉移酶(Catechol-O-methyl transferase, COMT)之受質(substrate),其苯環上第3及第4位置各有一羥基,會經由COMT pathway甲基化(o-methylation)作用後,轉化代謝成阿魏酸與異阿魏酸。因此,本試驗以家兔為試驗動物,針對此三種結構相似的化合物,進行藥物動力學性質相關性的探討。
選取六隻雄性紐西蘭種家兔,分別靜脈給予咖啡酸、阿魏酸及異阿魏酸,注射劑量為10 mg/kg,採集血液及尿液檢品加以分析。家兔靜脈注射咖啡酸後,可得咖啡酸之曲線下面積為377.80 ± 72.32 μg/mL×min,排除半衰期為24.77 ± 10.08 min,清除率則為27.26 ± 5.03 mL/min/kg;而轉化成阿魏酸及異阿魏酸之曲線下面積分別為57.38 ± 15.05 μg/mL×min及6.08 ± 1.15 μg/mL×min,排除半衰期分別為15.85 ± 3.39 min及17.57 ± 1.95 min。家兔靜脈注射阿魏酸後,可得阿魏酸其曲線下面積為577.39 ± 76.64 μg/mL×min,排除半衰期為14.87 ± 2.77 min。家兔靜脈注射異阿魏酸後,可得異阿魏酸其曲線下面積為513.98 ± 179.16 μg/mL×min,排除半衰期為17.16 ± 2.27 min。
而分別投與咖啡酸、阿魏酸及異阿魏酸後,咖啡酸、阿魏酸及異阿魏酸以原態由尿液中排除之比率分別為46.93 ± 17.17%、27.63 ± 10.13%、1.77 ± 1.24%。另外,咖啡酸、阿魏酸及異阿魏酸以抱合反應後之結合態形式(glucuronidation及sulfation總和)排除體外之比率則分別為27.50 ± 5.59%、27.65 ± 10.02%及35.61 ± 8.98%。其中,glucuronidation比率分別為13.62 ± 3.81%、16.12 ± 6.86%及15.06 ± 3.38%,sulfation比率分別為13.88 ± 2.92%、11.53 ± 3.95%及20.55 ± 5.69%。
另外,投與咖啡酸後,在家兔體內約有15.16 ± 9.35%會轉化代謝成阿魏酸由尿液排出,僅有約0.29 ± 0.13%轉化代謝成異阿魏酸,顯示咖啡酸第3位置上的羥基較第4位置上的羥基易於進行甲基化;可知家兔體內的代謝酵素,對咖啡酸苯環上的羥基進行甲基化有位置選擇性(regioselectivity)。另外,靜脈注射投予阿魏酸及異阿魏酸,雖在血漿檢品中未偵測到咖啡酸,但在尿液檢品中皆偵測到約0.8%的微量咖啡酸,顯示阿魏酸及異阿魏酸在家兔體內亦會有微量的比例代謝轉化成咖啡酸。

英文摘要 Caffeic acid (CA), ferulic acid (FA) and isoferulic acid (IFA) are naturally occurring phenolic cmpounds and they have similar chemical structures. CA is the derivative of catechol, and FA and IFA are the methylation products of CA on meta- and para-position of catechol functional group, respectively. Therefore, the aim of this study was to investigate the structure-relationship pharmacokinetics of CA, FA and IFA in the rabbits.
CA, FA and IFA were given intravenously with a dose of 10 mg/kg to six male New Zealand white rabbits, respectively, in a crossover treatment. Pharmacokinetic parameters were determined with plasma concentration of CA, FA and IFA by noncompartmental method. After intravenous administration of CA at a dose 10 mg/kg in rabbits, the AUC0-∞, elimination half-life (t1/2) and clearance of CA were 377.80 ± 72.32 μg/mL×min, 24.77 ± 10.08 min and 27.26 ± 5.03 mL/min/kg, respectively. The AUC0-∞ of FA and IFA transformed from CA were 57.38 ± 15.05 μg/mL×min and 6.08 ± 1.15 μg/mL×min, and the elimination half-life (t1/2) of FA and IFA were 15.85 ± 3.39 and 17.57 ± 1.95 min.
After intravenous administration of FA at a dose 10 mg/kg in rabbits, the AUC0-∞, elimination half-life (t1/2) and clearance of of FA was 577.39 ± 76.64 μg/mL×min, 14.87 ± 2.77 min and 17.56 ± 2.21 mL/min/kg, respectively. After intravenous administration of IFA at a dose 10 mg/kg in rabbits, the AUC0-∞, elimination half-life (t1/2) and clearance of of of IFA was 513.98 ± 179.16 μg/mL×min, 17.16 ± 2.27 min and 21.45 ± 7.24 mL/min/kg, respectively.
Inaddition, the percentage of CA, FA and IFA excreted in the urine with unchanged form were 46.93 ± 17.17, 27.63 ± 10.13 and 1.77 ± 1.24(%), respectively. On the other hand, CA, FA and IFA excreted with conjugated form (glucuronidation plus sulfation) were 27.50 ± 5.59%、27.65 ± 10.02%及35.61 ± 8.98%, respectively. Percent glucuronidation of CA, FA and IFA were 13.62 ± 3.81%、16.12 ± 6.86%及15.06 ± 3.38%, respectively, and percent sulfation of CA, FA and IFA were 13.88 ± 2.92%、11.53 ± 3.95%及20.55 ± 5.69%, respectively.
After intravenous administration of CA, the percentage of CA excreted in urine as FA and IFA were 15.16± 9.53 and 0.29 ± 0.13(%), respectively. It indicated the formation ratio of FA was much higher than that of IFA, after administration of CA. It indicated that methylation of CA had regioselectivity. However, the percentage of IFA and FA excreted in urine as CA were negligible.
論文目次 壹、緒論 1
一、咖啡酸簡介 3
二、阿魏酸簡介 6
三、異阿魏酸簡介 8
四、同分異構物 10
五、藥物的生物轉化 13
貳、實驗方法及研究材料 24
一、試藥、材料及儀器 24
二、動物試驗 32
三、分析方法 36
四、數據處理 42
參、結果與討論 48
一、HPLC同時分析血漿中咖啡酸、阿魏酸與異阿魏酸分析 48
二、LC/MS/MS同時分析尿液中咖啡酸、阿魏酸與異阿魏酸分析 57
三、咖啡酸、阿魏酸及異阿魏酸靜脈投予家兔之藥物動力學 63
四、咖啡酸、阿魏酸及異阿魏酸靜脈投予家兔之血漿代謝物測定 68
五、咖啡酸、阿魏酸及異阿魏酸靜脈投予家兔尿液中原態排除測定 71
六、咖啡酸、阿魏酸及異阿魏酸靜脈投予家兔尿液中結合態代謝物測定 73
肆、結論 77
伍、參考文獻 79

參考文獻 1. Chopra, D., Janson, P., and Sawin, C. T.: Insensitivity to digoxin associated with hypocalcemia, The New England Journal of Medicine 296(16), pp. 917-918, 1977.
2. Kim, D. H.: Aspirin (II) - Structure-activity relationship of salicylates and improvements of their therapeutic value through structural modification, Archives of Pharmacal Research 2 (1), pp. 71-78, 1979.
3. Jones, A.L., Holborn, J., Ashley, S., Smith, I.E.: Effective new low toxicity chemotherapy with carboplatin, vinblastine and methotrexate for small cell lung cancer: A randomised trial against doxorubicin, cyclophosphamide and etoposide, European Journal of Cancer 27 (7), pp. 866-870, 1991.
4. Bravo, L.: Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews 56 (11), pp. 317-333, 1998.
5. H.Y. Hsu, Y.P. Chen and M. Hang: The chemical constituents of oriental herbs Vol. I, Oriental Healing Arts Institutes, Taipei, pp. 264, 1982.
6. K.C. Huang: The Pharmacology of Chinese Herbs 1st Ed, CRC Press Inc. pp. 160-178, 1993.
7. Helbig, B., Thiel, K.-D.: In vitro comparison of the antiviral activity of oxidized caffeic acid and hydrocaffeic acid against types 1 and 2 human herpes virus, Pharmazie 37 (8), pp. 603-604, 1982.
8. Djurica, G., Vesna, D., Elena, K.: The effect of caffeic acid phenethyl ester on healing capacity and repair of the dentin-pulp complex: In vivo study, Acta Veterinaria 58 (1), pp. 99-108, 2008.
9. Pereira, P., De Oliveira, P.A., Ardenghi, P., Rotta, L., Henriques, J.A.P., Picada, J.N.: Neuropharmacological analysis of caffeic acid in rats, Basic and Clinical Pharmacology and Toxicology 99 (5), pp. 374-378, 2006.
10. de Urbina, J.J., Martin, M.L., Sevilla, M.A., Montero, M.J., Carron, R., Roman, L.S.: Antispasmodic activity on rat smooth muscle of polyphenol compounds caffeic and protocathechic acids, Phytotherapy Research 4 (2), pp. 71-76, 1990.
11. Hung, C.C., Tsai, W.-J., Kuo, L.M.Y., Kuo, Y.H.: Evaluation of caffeic acid amide analogues as anti-platelet aggregation and anti-oxidative agents, Bioorganic and Medicinal Chemistry 13 (5), pp. 1791-1797, 2005.
12. Hirose, M., Takesada, Y., Tanaka, H., Tamano, S., Kato, T., Shirai, T.: Carcinogenicity of antioxidants BHA, caffeic acid, sesamol, 4-methoxyphenol and catechol at low doses, either alone or in combination, and modulation of their effects in a rat medium-term multi-organ carcinogenesis model, Carcinogenesis 19 (1), pp. 207-212, 1998.
13. Kimura, Y., Okuda, H., Okuda, T.: Studies on the activities of tannins and related compounds from medicinal plants and drugs. VII. Effects of extracts of leaves of Artemisia species, and caffeic acid and chlorogenic acid on lipid metabolic injury in rats fed peroxidized oil, Chemical and Pharmaceutical Bulletin 33 (5), pp. 2028-2034, 1985.
14. Koshihara, Y., Neichi, T., Murota, S.: Caffeic acid is a selective inhibitor for leukotriene biosynthesis, Biochimica et Biophysica Acta - Lipids and Lipid Metabolism 792 (1), pp. 92-97, 1984.
15. Okuyama, T., Shibata, S., Hoson, M.: Effect of oriental plant drugs on platelet aggregation; III. Effect of Chinese drug 'Xiebai' on human platelet aggregation, Planta Medica NO. 3, pp. 171-175, 1986.
16. Celli, N., Dragani, L.K., Murzilli, S., Pagliani, T., Poggi, A.: In vitro and in vivo stability of caffeic acid phenethyl ester, a bioactive compound of propolis, Journal of Agricultural and Food Chemistry 55 (9), pp. 3398-3407, 2007.
17. Uang, Y.-S., Hsu, K.-Y.: A dose-dependent pharmacokinetic study on caffeic acid in rabbits after intravenous administration, Biopharmaceutics and Drug Disposition 18 (8), pp. 727-736, 1997.
18. Saija, A., Tomaino, A., Lo Cascio, R., Trombetta, D., Proteggente, A., De Pasquale, A., Uccella, N., Bonina, F.: Ferulic and caffeic acids as potential protective agents against photooxidative skin damage, Journal of the Science of Food and Agriculture 79 (3), pp. 476-480, 1999.
19. Lu, G.H., Chan, K., Liang, Y.Z., Leung, K., Chan, C.L., Jiang, Z.H., Zhao, Z.Z.: Development of high-performance liquid chromatographic fingerprints for distinguishing Chinese Angelica from related umbelliferae herbs, Journal of Chromatography A 1073 (1-2), pp. 383-392, 2005.
20. Chang, G.T., Kang, S.K., Kim, J.H., Chung, K.H., Chang, Y.C., Kim, C.H.: Inhibitory effect of the Korean herbal medicine, Dae-Jo-Whan, on platelet-activating factor-induced platelet aggregation, Journal of Ethnopharmacology 102 (3), pp. 430-439, 2005.
21. Mathew, S., Abraham, T.E.: Ferulic acid: An antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications, Critical Reviews in Biotechnology 24 (2-3), pp. 59-83, 2004.
22. Ou, S., Kwok, K.C.: Ferulic acid: Pharmaceutical functions, preparation and applications in foods, Journal of the Science of Food and Agriculture 84 (11), pp. 1261-1269, 2004.
23. Pan, G.X., Thomson, C.I., Leary, G.J.: UV-Vis Spectroscopic characteristics of ferulic acid and related compounds, Journal of Wood Chemistry and Technology 22 (2-3), pp. 137-146, 2002.
24. Sang, W.C., Sung, K.L., Eun, O.K., Ji, H.O., Kyung, S.Y., Parris, N.: Antioxidant and antimelanogenic activities of polyamine conjugates from corn bran and related hydroxycinnamic acids, Journal of Agricultural and Food Chemistry 55 (10), pp. 3920-3925, 2007.
25. Janicke, B., Önning, G., Oredsson, S.M.: Differential effects of ferulic acid and p-coumaric acid on S phase distribution and length of S phase in the human colonic cell line Caco-2, Journal of Agricultural and Food Chemistry 53 (17), pp. 6658-6665, 2005.
26. Hirabayashi, T., Ochiai, H., Sakai, S., Nakajima, K., Terasawa, K.: Inhibitory effect of ferulic acid and isoferulic acid on murine interleukin-8 production in response to influenza virus infections in vitro and in vivo , Planta Medica 61 (3), pp. 221-226, 1995.
27. Li, Y.C., Ho. Y, Hsu K.Y.: Pharmacokinetic and pharmacodynamic model for ferulic acid in rabbits, Taipei Medical University, School of Pharmacy, Master Thesis, 2002.
28. Liu, I.-M., Chi, T.-C., Hsu, F.-L., Chen, C.-F., Cheng, J.-T.: Isoferulic acid as active principle from the rhizoma of Cimicifuga dahurica to lower plasma glucose in diabetic rats, Planta Medica 65 (8), pp. 712-714, 1999.
29. Chi, H., Hsieh, A.K., Ng, C.L., Lee, H.K., Li, S.F.Y.: Determination of components in propolis by capillary electrophoresis and photodiode array detection, Journal of Chromatography A 680 (2), pp. 593-597, 1994.
30. Hamauzu, Y., Inno, T., Kume, C., Irie, M., Hiramatsu, K.: Antioxidant and antiulcerative properties of phenolics from Chinese quince, quince, and apple fruits, Journal of Agricultural and Food Chemistry 54 (3), pp. 65-772, 2006.
31. Ueng, T.H., Kang, J.J., Wang, H.W., Lin, P.C.: An overview of the toxicology of commonly used traditional Chinese medicine, Journal of Food and Drug Analysis 5 (4), pp. 241-264, 1997.
32. Chang, H.J., Hsu K.Y., Pharmacokinetic studies of isoferulic acid in rabbits., Taipei Medical University, School of Pharmacy, Master Thesis, 2000.
33. Dinan F.J., Yee G.T.: An Adventure in Stereochemistry, Journal of College of Science Teaching 2 (34), pp. 25-29, 2004.
34. Roger C.: Chirality and the Biological Activity of Drugs, Boca Raton: CRC Press Inc., 1995.
35. Knoche, B., Blaschke, G.: Stereoselectivity of the in vitro metabolism of thalidomide, Chirality 6 (4), pp. 221-224, 1994.
36. Murphy, G.F., Sourkes, T.L.: The action of antidecarboxylases on the conversion of 3,4-dihydroxyphenylalanine to dopamine in vivo, Archives of Biochemistry and Biophysics 93 (2), pp. 338-343, 1961.
37. Leon, S., Andrew, Y.: Applied Biopharmaceutics & Pharmacokinetics 5th Ed, McGraw-Hill Inc. pp. 366-373, 2004.
38. Jaime N., William A.: Wilson & Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry 11th Ed, Lippincott-Raven Inc. pp. 45-113, 2004.
39. Reilly, D.K., Rivera-Calimlim, L., Van Dyke, D.: Catechol-O-methyl- transferase activity: A determinant of levodopa response , Clinical Pharmacology and Therapeutics 28 (2), pp. 278-286, 1980.
40. Mikus, G., Bochner, F., Eichelbaum, M., Horak, P., Somogyi, A.A., Spector, S.: Endogenous codeine and morphine in poor and extensive metabolisers of the CYP2D6 (debrisoquine/sparteine) polymorphism, Journal of Pharmacology and Experimental Therapeutics 268 (2), pp. 546-551, 1994.
41. Jeppesen, U., Gram, L.F., Vistisen, K., Loft, S., Poulsen, H.E., Brøsen, K.: Dose dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine , European Journal of Clinical Pharmacology 51 (1), pp. 73-78, 1996.
42. Ohyama, K., Nakajima, M., Suzuki, M., Shimada, N., Yamazaki, H., Yokoi, T.: Inhibitory effects of amiodarone and its N-deethylated metabolite on human cytochrome P450 activities: Prediction of in vivo drug interactions, British Journal of Clinical Pharmacology 49 (3), pp. 244-253, 2000.
43. Martin, W.R., Sloan, J.W., Sapira, J.D., Jasinski, D.R.: Physiologic, subjective, and behavioral effects of amphetamine, methamphetamine, ephedrine, phenmetrazine, and methylphenidate in man., Clinical Pharmacology and Therapeutics 12 (2), pp. 245-258, 1971.
44. Aprille, J.R., Malamud, D.F.: Catechol-O-methyl transferase in mouse liver plasma membranes, Biochemical and Biophysical Research Communications 64 (4), pp. 1293-1302, 1975.
45. Moridani, M.Y., Scobie, H., O'Brien, P.J.: Metabolism of caffeic acid by isolated rat hepatocytes and subcellular fractions, Toxicology Letters 133 (2-3), pp. 141-151, 2002.
46. Li, X., Yang, J., Li, X., Gu, W., Huang, J., Zhang, K.-Q.: The metabolism of ferulic acid via 4-vinylguaiacol to vanillin by Enterobacter sp. Px6-4 isolated from Vanilla root, Process Biochemistry 43 (10), pp. 1132-1137, 2008.
47. The MERCK INDEX, fourth edition.
48. Uang, Y.S., Kang, F.L., Hsu, K.Y.: Determination of caffeic acid in rabbit plasma by high-performance liquid chromatography, Journal of Chromatography B: Biomedical Applications 673 (1), pp. 43-49, 1995.
49. Wittemer, S.M., Veit, M.: Validated method for the determination of six metabolites derived from artichoke leaf extract in human plasma by high-performance liquid chromatography-coulometric-array detection, Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 793 (2), pp. 367-375, 2003.
50. Wang, L.H., Hsu, K.Y., Hsu, F.L., Lin, S.J.: Simultaneous determination of caffeic acid, ferulic acid and isoferulic acid in rabbit plasma by high performance liquid chromatography, Journal of Food and Drug Analysis 16 (1), pp. 34-40, 2008.
51. FDA guidance for industry-bioanalytical methods validation, 2001. (www.fda.gov)
52. Baba, S., Osakabe, N., Natsume, M., Muto, Y., Takizawa, T., Terao, J.: In vivo comparison of the bioavailability of (+)-catechin, (-)-epicatechin and their mixture in orally administered rats, Journal of Nutrition 131 (11), pp. 2885-2891, 2001.
53. Kauffmann, F.C.: Conjugation-deconjugation reactions in drug metabolism and toxicity, Federation Proceedings 46 (7), pp. 2434-2445, 1987

 


若您有任何疑問,請與我們聯絡!
臺北醫學大學 圖書館 簡莉婷
E-mail:etds@tmu.edu.tw
Tel:(02) 2736-1661 ext.2519
Fax:(02) 2737-5446